
Programming Languages: Functional Programming
0. Introduction

Shin-Cheng Mu

Autumn 2023

So, what is this course about?

• Some people refer to this course as “programming
language theory”, that is, theories about the lan-
guage and tools we use to program.

• Why does it matter to us?

1 The Isle of Knights and Knaves
• On a remote isle there live two kinds of people:

– the knights always tell the truth, while

– the knaves always lie.

– Everyone on the isle is either a knight or a
knave.

• You are at the entrance of a cave. Lengend has
it that the deep in the cave there buries a huge
amount of gold... or a dragon that may swallow you
alive. You see an old man. How do you form a ques-
tion to know which is the case?

Warming Up

• With two islanders, A and B:

• A says: “if you ask B whether he is a knight, he
would say ‘Yes’.”.

• What can you infer about A and B?

Exhaustive Enumeration?

• What matters more is how you solved the problem.

• Most people would exhaustively enumerate all pos-
sibilities.

– “Suppose that A is a knight...”

Equivalence

• Abbreviate “A is a knight” to A.

• As a convention (among certain circles), we write
logical equivalence, that is, “if and only if”, or equal-
ity on booleans, as ≡.

• Suppose that A said some sentence P. If A is a
knight, Pmust beTrue . Otherwise Pmust beFalse .

• Thus, “A said P” can be denoted by A ≡ P .

Warming Up. . .

• A ≡ A is always True .

– Indeed, any person would say he/she is a
knight.

• “A says: ‘B is a knight’.”

– A ≡ B.
– A and B are of the same kind.

• A says: “if you ask B whether he is a knight, he
would say ‘Yes’.”.

A ≡ (B ≡ B)
≡ A ≡ True
≡ A.

– Thus we know that A is a knight. Nothing can
be said about B.

• A says: “B and I are of the same kind!”

A ≡ (A ≡ B)
≡ { ≡ is associative }
(A ≡ A) ≡ B

≡ True ≡ B
≡ B.

• Thus we know that B is a knight. Nothing can be
said about A.

• In fact, not many people know that ≡ is associative.

1



Back to the Cave. . .

• Goal: design a question Q such that A answers Yes
iff. there is gold in the cave.

• “A answers Yes to question Q” is also writtenA ≡ Q.

• Let G denote “there is gold in the cave.”

• “A answers Yes to Q iff. there is gold in the cave.”

(A ≡ Q) ≡ G
≡ (Q ≡ A) ≡ G
≡ Q ≡ (A ≡ G).

• So the question is “Is ‘You are a knight’ equivalent
to ‘there is gold in the cave’?”

2 Abstraction
HowWas the Problem Solved?

1. Turn the problem into mathematical formulae.

2. And then calculate, using the rules associated with
the operators.

• The first step, called “abstraction”, is harder.

• The second step is much easier, because we let the
symbols do the work!

– Well-designed symbols relieve us of the men-
tal burden.

– Recall how you calculate, say 17 × 24?

• Why does that concern us?

A Programming Language is a Symbolic, Formal
System

• Because a programming language is an abstract
model, and a collections of symbols and their related
rules, to relieve us of the mental burden of program-
ming.

• Abstraction: a programming language models the
real world, while throws away some “unimportant
parts”.

• A formal system: a collection of symbols, and some
rules to manipulate them.

– Wehope that a programming language is well-
designed, such that it helps us to program.

Abstraction

• “What are the three most important factors in real
estate?”

– Location, location, and location.

• “What are the threemost important factors in a pro-
gramming language?”

– Abstraction, abstraction, and abstraction —
Paul Hudak.

• Abstration: the process of

– extracting the underlying essence of a mathe-
matical concept,

– removing any dependence on real world ob-
jects with which it might originally have been
connected, and

– generalizing it so that it has wider applica-
tions or matching among other abstract de-
scriptions of equivalent phenomena.

Algebra

• “Mary had twice as many apples as John had. Mary
found that half of her apples are rotten and thus
throws them away. John ate one of his apples. Still,
Mary has twice as many apples as John has. How
many apples did they originally have?”

m = 2 ⋅ j,

m/2 = 2 ⋅ (j − 1).

Abstraction

• From “Mary had twice as many apples as John. . . ”
to “m = 2 ⋅ j”:

– extracted: values, and their relationships.

– dropped: time, causality, . . .

• What if time and causality turn out to be impor-
tant? We need another abstraction.

– Perhaps a stronger logic/algebra.

2



Not One, but Many Logics

• Propositional logic.

• (First-order) predicate logic: for all, exists. . .

• Modal logic: describing time and order.

• Separation logic: sharing of resources.

• Descriptive logic: concepts, and relationship be-
tween concepts.

• Each (or, some) logic corresponds to a type system
in a programming language.

Abstraction in Imperative Programming Lan-
guages

• Abstraction of control structures: for-loops, while-
loops. . .

• Procedure abstraction.

• Data abstraction: user-defined datatypes, instead
of bits and bytes. . .

• What algebraic laws do they satisfy? Hmm... not
many, unfortunately.

Abstractions of Other Paradigms

• Object-oriented programming: everything is an ob-
ject!

• Functional programming: everything is a function!

• Logic programming: “computation = controlled de-
duction!” “algorithm = logic + control!”

A Language is an Abstraction

• Aprogramming language is an abstract view toward
computation, with attention on aspects the design-
ers care about.

• To learn a language is to learn its view.

• Alan Perlis: “A language that doesn’t affect the way
you think about programming, is not worth knowing.”

• In this term I hope you will see something that af-
fects the way you think about programming.

3 Algebraic Manipulation

• What qualifies as a good abstraction?

• Our point of view: one that gives us more properties
to manipulate with.

Greek Alphabetical Numerals

• See Figure 1 for Greek alphabetical numerals.

• 11, 12, 13 are written ια, ιβ, ιγ.

• 21, 22, 23 are written κα, κβ, κγ.

• Natural in a way. Not very suitable for calculation.

• Why can we not denote 23 by βγ? What about 203
and 2003?

Maya Numerals

• See Figure 2.

• Orders vertically stack, bottom to top. 20-base,
apart from the second order, since 18 × 20 = 360
is closer to the number of days in a year.

• Relatively easy arithmetic calculation.

• Zero is represented by 0.

Algebraic Properties of Programs?
The following two programs are equivalent.

• s = 0; m = 0;
for (i=0; i<=N; i++) s = a[i] + s;
for (i=0; i<=N; i++) m = a[i] + m;

• s = 0; m = 0;
for (i=0; i<=N; i++) {

s = a[i] + s;
m = a[i] + m;

}

Is that easily seen? Can we transform one to another?
Does the equivalence still hold if we replace the assign-
ment by other statements?

3



α β γ δ ε ϛ ζ η θ ι κ λ μ ν ξ ο π ϙ

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90
ρ σ τ υ φ χ ψ ω ϡ ͵α ͵β ͵γ

100 200 300 400 500 600 700 800 900 1000 2000 3000

Figure 1: Greek alphabetical numerals.

1 1 × 18 × 20 × 20 × 20 × 20 = 2880000

2 2 × 18 × 20 × 20 × 20 = 288000

15 6 × 18 × 20 × 20 = 43200

2 2 × 18 × 20 = 720

355 13 × 20 = 260

4555 19
total: 3212199

(a) Representating 3212199.

25 2 45 55

155 +

555 =
155555 = 15

151 55 206 206
(b) Addition

Figure 2: The Maya arithmetic.

Maximum Segment Sum

• The specification: max { sum (i, j) ∶∶ 0 ≤ i ≤ j ≤ N },
where sum (i, j) = a[i] + a[i + 1] + . . . + a[j − 1].

– What we want the program to do.

– One can imagine a programusing three nested
loops.

• The program:

s = 0; m = 0;
for (i=0; i<=N; i++) {

s = max(0, a[j]+s);
m = max(m, s);

}

– How to do it.

• They do not look like each other at all!

• Moral: programs that appear “simple” might not be
that simple after all!

“. . . the designer of the program had better regard the
program as a sophisticated formula. And we also know
that there is only one trustworthy way of designing a so-
phisticated formula, viz., derivation by means of symbol
manipulation. We have to let the symbols do the work.”
— E.W.Dijkstra, The next forty years. 14 June 1989.

Programming, and Programming Languages

• Correctness: that the behaviour of a program is al-
lowed by the specification.

• Semantics: defining “behaviours” of a program.

• Programming: to code up a correct program!

• Thus the job of a programming language is to help
the programmer to program,

– either bymaking it easy to check that whether
a program is correct,

– or by ensuring that programmers may only
construct correct programs, that is, disallow-
ing the very construction of incorrect pro-
grams!

4 Plans for this Term
Plans for this Term

• We will start with learning a functional language,
Haskell.

– We can learn something new since it is so dif-
ferent from what you are used to.

• Much emphasis will be on

– How to construct programs in a disciplined
manner.

4



– How to show that programs are correct.

• Haskell will be used as a tool to learn semantics.

• When the time comes, we will use a dependently
typed language, Agda, to talk about relationship be-
tween programs and proofs.

Textbook and Homepage

• Unfortunately, there is not a completely suitable
textbook.

– For the functional programming part, I am
currently working on a draft textbook! It is
available on the course website. Comments
welcomed.

• There are a number of good Haskell tutorials.

• Course homepage: https://scmu.github.io/
plfp/. More info will be updated there.

I wish you enjoy this course.

5


