
Programming Languages: Functional Programming
1. Introduction to Haskell: Value, Functions, And Types

Shin-Cheng Mu

Autumn 2023

AQuick Introduction to Haskell

• We will mostly learn some syntactical issues, but
there are some important messages too.

• Most of the materials today are adapted from the
book Introduction to Functional Programming using
Haskell by Richard Bird. Prentice Hall 1998.

• References to more Haskell materials are on the
course homepage.

Course Materials and Tools

• Course homepage: https://scmu.github.io/
plfp/

– Announcements, slides, assignments, addi-
tional materials, etc.

• We will be using the Glasgow Haskell Compiler
(GHC).

– A Haskell compiler written in Haskell, with an
interpreter that both interprets and runs com-
piled code.

– See the course homepage for instructions for
installation and other info.

Function Definition

• A function definition consists of a type declaration,
and the definition of its body:

square :: Int → Int
square x = x× x

smaller :: Int → Int → Int
smaller x y = if x ≤ y then x else y

• The GHCi interpreter evaluates expressions in the
loaded context:

? square 3768
14197824
? square (smaller 5 (3+4))
25

1 Values and Evaluation
Evaluation

One possible sequence of evaluating (simplifying, or
reducing) square (3+4):

square (3+4)
= { definition of + }

square 7
= { definition of square }

7×7
= { definition of × }

49

Another Evaluation Sequence

• Another possible reduction sequence:

square (3+4)
= { definition of square }

(3+4)× (3+4)
= { definition of + }

7× (3+4)
= { definition of + }

7×7
= { definition of × }

49

• In this sequence the rule for square is applied first.
The final result stays the same.

• Do different evaluations orders always yield the
same thing?

1

A Non-terminating Reduction

• Consider the following program:

three :: Int → Int
three x = 3
infinity :: Int
infinity = infinity+1

• Try evaluating three infinity. If we simplify infinity
first:

three infinity
= { definition of infinity }

three (infinity+1)
= three ((infinity+1)+1) . . .

• If we start with simplifying three:

three infinity
= { definition of three }

3

Evaluation Order

• There can be many other evaluation orders. As we
have seen, some terminates while some do not.

• normal form: an expression that cannot be reduced
anymore.

– 49 is in normal form, while 7×7 is not.

– Some expressions do not have a normal form.
E.g. infinity.

• A corollary of the Church–Rosser theorem: an ex-
pression has at most one normal form.

– If two evaluation sequences both terminate,
they reach the same normal form.

Evaluation Order

• Applicative order evaluation: starting with the in-
nermost reducible expression (a redex).

• Normal order evaluation: starting with the outer-
most redex.

• If an expression has a normal form, normal order
evaluation delivers it. Hence the name.

• For now you can imagine that Haskell uses normal
order evaluation. A way to implement normal order
evaluation is called lazy evaluation.

2 Functions
Mathematical Functions

• Mathematically, a function is a mapping between
arguments and results.

– A function f :: A → B maps each element in A
to a unique element in B.

• In contrast, C “functions” are not mathematical
functions:

– int y = 1; int f (x:int) { return
((y++) * x); }

• Functions in Haskell have no such side-effects: (un-
constrained) assignments, IO, etc.

• Why removing these useful features? We will talk
about that later in this course.

2.1 Using Functions
Curried Functions

• Consider again the function smaller:

smaller :: Int → Int → Int
smaller x y = if x ≤ y then x else y

• We sometimes informally call it a function “taking
two arguments”.

• Usage: smaller 3 4.

• Strictly speaking, however, smaller is a function re-
turning a function. The type should be bracketed as
Int → (Int → Int).

Precedence and Association

• In a sense, all Haskell functions takes exactly one
argument.

– Such functions are often called curried.

• Type: a → b → c = a → (b → c), not (a → b)→ c.

• Application: f x y = (f x) y, not f (x y).

– smaller 3 4 means (smaller 3) 4.

– square square 3 means (square square) 3,
which results in a type error.

• Function application binds tighter than infix opera-
tors. E.g. square 3+4 means (square 3)+4.

2

Why Currying?

• It exposes more chances to reuse a function, since it
can be partially applied.

twice :: (a → a)→ (a → a)
twice f x = f (f x)
quad :: Int → Int
quad = twice square

• Try evaluating quad 3:

quad 3
= twice square 3
= square (square 3)
= . . .

• Had we defined:

twice :: (a → a,a)→ a
twice (f ,x) = f (f x)

we would have to write

quad :: Int → Int
quad x = twice (square,x)

• There are situations where you’d prefer not to have
curried functions. We will talk about coversion be-
tween curried and uncurried functions later.

2.2 Sectioning

Sectioning

• Infix operators are curried too. The operator (+)
may have type Int → Int → Int.

• Infix operator can be partially applied too.

(x ⊕) y = x⊕ y
(⊕ y) x = x⊕ y

– (1 +) :: Int → Int increments its argument by
one.

– (1.0 /) :: Float → Float is the “reciprocal”
function.

– (/ 2.0) :: Float → Float is the “halving” func-
tion.

Infix and Prefix

• To use an infix operator in prefix position, sur-
rounded it in parentheses. For example, (+) 3 4 is
equivalent to 3+4.

• Surround an ordinary function by back-quotes (not
quotes!) to put it in infix position. E.g. 3 ‘mod‘ 4 is
the same as mod 3 4.

Function Composition

• Functions composition:

(·) :: (b → c)→ (a → b)→ (a → c)
(f ·g) x = f (g x)

• E.g. another way to write quad:

quad :: Int → Int
quad = square · square

• Some important properties:

– id · f = f = f · id, where id x = x.
– (f ·g) ·h = f · (g ·h).

2.3 Definitions
Guarded Equations

• Recall the definition:

smaller :: Int → Int → Int
smaller x y = if x ≤ y then x else y

• We can also write:

smaller :: Int → Int → Int
smaller x y | x ≤ y = x

| x > y = y

• Equivalently,

smaller :: Int → Int → Int
smaller x y | x ≤ y = x

| otherwise = y

• Helpful when there are many choices:

signum :: Int → Int
signum x | x > 0 = 1

| x = = 0 = 0
| x < 0 =−1

Otherwise we’d have to write

signum x = if x > 0 then 1
else if x = = 0 then 0 else −1

3

λ Expressions

• Since functions are first-class constructs, we can
also construct functions in expressions.

• A λ expression denotes an anonymous function.

– λx → e: a function with argument x and body
e.

– λx → λy → e abbreviates to λx y → e.

– In ASCII, we write λ as \

• Yet another way to define smaller:

smaller :: Int → Int → Int
smaller = λx y → if x ≤ y then x else y

• Why λ s? Sometimes wemaywant to quickly define
a function and use it only once.

• In fact, λ is a more primitive concept.

Local Definitions
There are two ways to define local bindings in Haskell.

• let-expression:

f :: Float → Float → Float
f x y = let a = (x+ y)/2

b = (x+ y)/3
in (a+1)× (b+2)

• where-clause:

f :: Int → Int → Int
f x y | x ≤ 10 = x+a

| x > 10 = x−a
where a = square (y+1)

• let can be used in expressions (e.g. 1+(let..in..)),
while where qualifies multiple guarded equations.

3 Types
Types

• The universe of values is partitioned into collec-
tions, called types.

• Some basic types: Int, Float, Bool, Char. . .

• Type “constructors”: functions, lists, trees . . . to be
introduced later.

• Operations on values of a certain type might
not make sense for other types. For example:
square square 3.

• Strong typing: the type of a well-formed expression
can be deducted from the constituents of the ex-
pression.

– It helps you to detect errors.

– More importantly, programmersmay consider
the types for the values being defined before
considering the definition themselves, leading
to clear and well-structured programs.

Polymorphic Types

• Suppose square :: Int → Int and sqrt :: Int → Float.

– square · square :: Int → Int

– sqrt · square :: Int → Float

• The (·) operator has different types in the two ex-
pressions:

– (·) :: (Int → Int)→ (Int → Int)→ (Int → Int)

– (·) :: (Int → Float) → (Int → Int) → (Int →
Float)

• To allow (·) to be used in many situations, we intro-
duce type variables and let its type be: (b → c) →
(a → b)→ (a → c).

Summary So Far

• Functions are essential building blocks in a Haskell
program. They can be applied, composed, passed as
arguments, and returned as results.

• Types sometimes guide you through the design of a
program.

• Equational reasoning: let the symbols do the work!

Recommanded Textbooks

• Introduction to Functional Programming using
Haskell [Bir98]. My recommended book. Covers
equational reasoning very well.

• Programming in Haskell [Hut07]. A thin but com-
plete textbook.

4

Online Haskell Tutorials

• Learn You a Haskell for Great Good! [Lip11], a nice
tutorial with cute drawings!

• Yet Another Haskell Tutorial [DI02].

• AGentle Introduction to Haskell by Paul Hudak, John
Peterson, and Joseph H. Fasel: a bit old, but still
worth a read. [HPF00]

• Real World Haskell [OSG98]. Freely available on-
line. It assumes some basic knowledge of Haskell,
however.

References
[Bir98] Richard S. Bird. Introduction to Functional Pro-

gramming using Haskell. Prentice Hall, 1998.

[DI02] Hal Daume III. Yet another haskell tu-
torial. http://en.wikibooks.org/wiki/
Haskell/YAHT, 2002.

[HPF00] Paul Hudak, John Peterson, and Joseph Fasel.
A gentle introduction to haskell, version
98. http://www.haskell.org/tutorial/,
2000.

[Hut07] Graham Hutton. Programming in Haskell.
Cambridge University Press, 2007.

[Lip11] Miran Lipovača. Learn You a Haskell for Great
Good! No Starch Press, 2011. Available online
at http://learnyouahaskell.com/.

[OSG98] Bryan O’Sullivan, Don Stewart, and John
Goerzen. Real World Haskell. O’Reilly,
1998. Available online at http://book.
realworldhaskell.org/.

5

A GHCi Commands

⟨statement⟩ evaluate/run ⟨statement⟩
: repeat last command
:\{\n ..lines.. \n:\}\n} multiline command
:add [*]<module> ... add module(s) to the current target set
:browse[!] [[*]<mod>] display the names defined by module <mod> (!: more details; *: all

top-level names)
:cd <dir> change directory to <dir>
:cmd <expr> run the commands returned by <expr>::IO String
:ctags[!] [<file>] create tags file for Vi (default: "tags") (!: use regex instead of line

number)
:def <cmd> <expr> define command :<cmd> (later defined command has precedence,

::<cmd> is always a builtin command)
:edit <file> edit file
:edit edit last module
:etags [<file>] create tags file for Emacs (default: "TAGS")
:help, :? display this list of commands
:info [<name> ...] display information about the given names
:issafe [<mod>] display safe haskell information of module <mod>
:kind <type> show the kind of <type>
:load [*]<module> ... load module(s) and their dependents
:main [<arguments> ...] run the main function with the given arguments
:module [+/-] [*]<mod> ... set the context for expression evaluation
:quit exit GHCi
:reload reload the current module set
:run function [<arguments> ...] run the function with the given arguments
:script <filename> run the script <filename>
:type <expr> show the type of <expr>
:undef <cmd> undefine user-defined command :<cmd>
:!<command> run the shell command <command>

Commands for debugging

:abandon at a breakpoint, abandon current computation
:back go back in the history (after :trace)
:break [<mod>] <l> [<col>] set a breakpoint at the specified location
:break <name> set a breakpoint on the specified function
:continue resume after a breakpoint
:delete <number> delete the specified breakpoint
:delete * delete all breakpoints
:force <expr> print <expr>, forcing unevaluated parts
:forward go forward in the history (after :back)
:history [<n>] after :trace, show the execution history
:list show the source code around current breakpoint
:list identifier show the source code for <identifier>
:list [<module>] <line> show the source code around line number <line>
:print [<name> ...] prints a value without forcing its computation
:sprint [<name> ...] simplifed version of :print
:step single-step after stopping at a breakpoint

6

:step <expr> single-step into <expr>
:steplocal single-step within the current top-level binding
:stepmodule single-step restricted to the current module
:trace trace after stopping at a breakpoint
:trace <expr> evaluate <expr> with tracing on (see :history)

Commands for changing settings

:set <option> ... set options
:seti <option> ... set options for interactive evaluation only
:set args <arg> ... set the arguments returned by System.getArgs
:set prog <progname> set the value returned by System.getProgName
:set prompt <prompt> set the prompt used in GHCi
:set editor <cmd> set the command used for :edit
:set stop [<n>] <cmd> set the command to run when a breakpoint is hit
:unset <option> ... unset options

Options for :set and :unset

+m allow multiline commands
+r revert top-level expressions after each evaluation
+s print timing/memory stats after each evaluation
+t print type after evaluation
-<flags> most GHC command line flags can also be set here (eg. -v2,

-fglasgow-exts, etc). For GHCi-specific flags, see User’s Guide,
Flag reference, Interactive-mode options.

Commands for displaying information

:show bindings show the current bindings made at the prompt
:show breaks show the active breakpoints
:show context show the breakpoint context
:show imports show the current imports
:show modules show the currently loaded modules
:show packages show the currently active package flags
:show language show the currently active language flags
:show <setting> show value of <setting>, which is one of [args, prog, prompt,

editor, stop]
:showi language show language flags for interactive evaluation

7

