Programming Languages:

Functional Programming

1. Introduction to Haskell: Value, Functions, And Types

Shin-Cheng Mu

Autumn 2023

A Quick Introduction to Haskell

« We will mostly learn some syntactical issues, but
there are some important messages too.

+ Most of the materials today are adapted from the
book Introduction to Functional Programming using

Haskell by Richard Bird. Prentice Hall 1998.

- References to more Haskell materials are on the
course homepage.

Course Materials and Tools

« Course homepage:
plfp/

https://scmu.github.io/

- Announcements, slides, assignments, addi-
tional materials, etc.

« We will be using the Glasgow Haskell Compiler
(GHC).

— A Haskell compiler written in Haskell, with an
interpreter that both interprets and runs com-
piled code.

- See the course homepage for instructions for
installation and other info.

Function Definition

« A function definition consists of a type declaration,
and the definition of its body:

square ;2 Int — Int
square x =X XX
smaller 2 Int — Int — Int

smaller x y = if x <y then x else y

« The GHCi interpreter evaluates expressions in the
loaded context:

? square 3768

14197824

? square (smaller 5 (3+4))
25

1 Values and Evaluation

Evaluation
One possible sequence of evaluating (simplifying, or
reducing) square (3+4):

square (3+4)

{ definition of + }
square 7

{ definition of square }
7x7

{ definition of x }
49

Another Evaluation Sequence
« Another possible reduction sequence:

square (3+4)

= { definition of square }
(3+4)x(3+4)

= { definition of 4 }
7x(3+4)

= { definition of 4+ }

Tx7

{ definition of x }
49

« In this sequence the rule for square is applied first.
The final result stays the same.

- Do different evaluations orders always vyield the
same thing?

A Non-terminating Reduction

« Consider the following program:

three ::Int — Int
threex =3
infinity :: Int

infinity = infinity + 1

« Try evaluating three infinity. If we simplify infinity
first:

three infinity

= { definition of infinity }
three (infinity + 1)

= three ((infinity+1)+1)...

« If we start with simplifying three:

three infinity
= { definition of three }
3

Evaluation Order

« There can be many other evaluation orders. As we
have seen, some terminates while some do not.

« normal form: an expression that cannot be reduced
anymore.
- 49 is in normal form, while 7 x 7 is not.
- Some expressions do not have a normal form.
E.g. infinity.
« A corollary of the Church—Rosser theorem: an ex-

pression has at most one normal form.

- If two evaluation sequences both terminate,
they reach the same normal form.

Evaluation Order

« Applicative order evaluation: starting with the in-
nermost reducible expression (a redex).

« Normal order evaluation: starting with the outer-
most redex.

« If an expression has a normal form, normal order
evaluation delivers it. Hence the name.

« For now you can imagine that Haskell uses normal
order evaluation. A way to implement normal order
evaluation is called lazy evaluation.

2 Functions
Mathematical Functions

« Mathematically, a function is a mapping between
arguments and results.

- Afunction f :: A — B maps each element in A
to a unique element in B.

« In contrast, C “functions” are not mathematical
functions:

- int y = 1; int f (x:int) { return

((y++) * x); }

« Functions in Haskell have no such side-effects: (un-
constrained) assignments, 10, etc.

« Why removing these useful features? We will talk

about that later in this course.

2.1 Using Functions

Curried Functions
« Consider again the function smaller:

smaller :: Int — Int — Int
smaller x y = if x <y then x else y

« We sometimes informally call it a function “taking
two arguments”.

« Usage: smaller 3 4.

« Strictly speaking, however, smaller is a function re-
turning a function. The type should be bracketed as
Int — (Int — Int).

Precedence and Association

« In a sense, all Haskell functions takes exactly one
argument.

— Such functions are often called curried.

« Typeta—b—c=a— (b—c),not (a—b)—c.

Application: f xy = (f x) y, not f (xy).
- smaller 3 4 means (smaller 3) 4.

- square square 3 means (square square) 3,
which results in a type error.

« Function application binds tighter than infix opera-
tors. E.g. square 3+ 4 means (square 3) +4.

Why Currying?

« It exposes more chances to reuse a function, since it
can be partially applied.

twice t(a—a)— (a—a)
twice fx = f (f x)

quad o Int — Int

quad = twice square

« Try evaluating quad 3:

quad 3

= twice square 3

square (square 3)

« Had we defined:

twice t(a—aa)—a

twice (f,x) = f (f x)
we would have to write

quad ::Int — Int
quad x = twice (square,x)

« There are situations where you’d prefer not to have
curried functions. We will talk about coversion be-
tween curried and uncurried functions later.

2.2 Sectioning

Sectioning

« Infix operators are curried too. The operator (+)
may have type Int — Int — Int.

« Infix operator can be partially applied too.

(x®)y =x@y
(®y)x =xdy

- (1 +) :: Int — Int increments its argument by
one.

- (1.0 /) :: Float — Float is the “reciprocal”
function.

- (/ 2.0) :: Float — Float is the “halving” func-
tion.

Infix and Prefix

« To use an infix operator in prefix position, sur-
rounded it in parentheses. For example, (+) 3 4 is
equivalent to 3+4.

« Surround an ordinary function by back-quotes (not
quotes!) to put it in infix position. E.g. 3 ‘mod* 4 is
the same as mod 3 4.

Function Composition
» Functions composition:
()(b—c)=(a—=b)—=(a—c)
(f-8)x=f(g%)
« E.g. another way to write quad:
quad :: Int — Int
quad = square - square
« Some important properties:
-id-f=f=f-id, whereid x =x.
- (f-8)-h=[(g-h)

2.3 Definitions
Guarded Equations

« Recall the definition:

smaller :: Int — Int — Int
smaller x y = if x <y then x else y

- We can also write:

smaller 2 Int — Int — Int
smaller xy |x<y=x
[x>y=y

« Equivalently,

smaller :: Int — Int — Int
smallerxy |x <y =x
| otherwise =y

« Helpful when there are many choices:

signum :: Int — Int

signumx | x>0 =1
[x==0 =0
[x<0=-1

Otherwise we’d have to write

signum x = if x > 0 then 1
else if x :- 0 then O else — 1

A Expressions

« Since functions are first-class constructs, we can
also construct functions in expressions.

« A A expression denotes an anonymous function.

- Ax — e: a function with argument x and body
e.

- Ax — Ay — e abbreviates to Ax y — e.
- In ASCII, we write 4 as \

« Yet another way to define smaller:

smaller :: Int — Int — Int
smaller = Axy— if x <y then x else y

« Why As? Sometimes we may want to quickly define
a function and use it only once.

« Infact, A is a more primitive concept.

Local Definitions
There are two ways to define local bindings in Haskell.

« let-expression:

f :: Float — Float — Float
fxy =leta=(x+y)/2
b=(x+y)/3

in(a+1)x(b+2)

« where-clause:

f 2 Int — Int — Int
fxy|x<10=x+a
[x>10=x—a
where a = square (y+1)

« let can be used in expressions (e.g. 1+ (let..in..)),
while where qualifies multiple guarded equations.

3 Types
Types

« The universe of values is partitioned into collec-
tions, called types.

« Some basic types: Int, Float, Bool, Char...

« Type “constructors™ functions, lists, trees ...to be
introduced later.

« Operations on values of a certain type might
not make sense for other types. For example:
square square 3.

« Strong typing: the type of a well-formed expression
can be deducted from the constituents of the ex-
pression.

— It helps you to detect errors.

- More importantly, programmers may consider
the types for the values being defined before
considering the definition themselves, leading
to clear and well-structured programs.

Polymorphic Types

« Suppose square :: Int — Int and sqrt :: Int — Float.

— square - square :: Int — Int
— sqrt-square :: Int — Float
« The (-) operator has different types in the two ex-
pressions:
- (+) = (Int = Int) — (Int — Int) — (Int — Int)
- (%) =t (Int — Float) — (Int — Int) — (Int —

Float)

« To allow (+) to be used in many situations, we intro-
duce type variables and let its type be: (b — ¢) —
(a—Db) = (a—c).

Summary So Far

+ Functions are essential building blocks in a Haskell
program. They can be applied, composed, passed as
arguments, and returned as results.

« Types sometimes guide you through the design of a
program.

« Equational reasoning: let the symbols do the work!

Recommanded Textbooks

« Introduction to Functional Programming using
Haskell [Bir98]. My recommended book. Covers
equational reasoning very well.

« Programming in Haskell [Hut07]. A thin but com-
plete textbook.

Online Haskell Tutorials

« Learn You a Haskell for Great Good! [Lip11], a nice
tutorial with cute drawings!

« Yet Another Haskell Tutorial [D102].

« A Gentle Introduction to Haskell by Paul Hudak, John
Peterson, and Joseph H. Fasel: a bit old, but still
worth a read. [HPF00]

« Real World Haskell [OSG98]. Freely available on-

line.

It assumes some basic knowledge of Haskell,

however.

References

[Bir9s8]

[DI02]

[HPF00]

[Hut07]

[Lip11]

[0SG98]

Richard S. Bird. Introduction to Functional Pro-
gramming using Haskell. Prentice Hall, 1998.

Hal Daume Ill. Yet another haskell tu-
torial. http://en.wikibooks.org/wiki/
Haskell/YAHT, 2002.

Paul Hudak, John Peterson, and Joseph Fasel.
A gentle introduction to haskell, version
98. http://www.haskell.org/tutorial/,
2000.

Graham Hutton. Programming in Haskell.
Cambridge University Press, 2007.

Miran Lipovaca. Learn You a Haskell for Great
Good! No Starch Press, 2011. Available online
at http://learnyouahaskell.com/.

Bryan O’Sullivan, Don Stewart, and John
Goerzen. Real World Haskell. O’Reilly,
1998. Available online at http://book.
realworldhaskell.org/.

A GHCi Commands

(statement)

:\{\n ..lines.. \n:\}\n}
:add [*]<module>
:browse[!] [[*]<mod>]

:cd <dir>
:cmd <expr>
:ctags[!] [<file>]

:def <cmd> <expr>

redit <file>

redit

retags [<file>]

thelp, :7?

:info [<name> ...]
:issafe [<mod>]

:kind <type>

:load [*]<module> ...
:main [<arguments> ...]

:module [+/-] [*]<mod> ...

1quit
:reload

:run function [<arguments>

:script <filename>
:type <expr>
:undef <cmd>
: !'<command>

Commands for debugging

:abandon
:back

:break [<mod>] <1> [<col>]

:break <name>

:continue

:delete <number>
:delete *

:force <expr>

:forward

:history [<n>]

:list

:list identifier

:1list [<module>] <line>

:print [<name> ...]
:sprint [<name> ...]
:step

evaluate/run (statement)

repeat last command

multiline command

add module(s) to the current target set

display the names defined by module <mod> (!: more details; *: all
top-level names)

change directory to <dir>

run the commands returned by <expr>::I0 String

create tags file for Vi (default: "tags") (!: use regex instead of line
number)

define command :<cmd> (later defined command has precedence,
: :<cmd> is always a builtin command)

edit file

edit last module

create tags file for Emacs (default: "TAGS")

display this list of commands

display information about the given names

display safe haskell information of module <mod>

show the kind of <type>

load module(s) and their dependents

run the main function with the given arguments

set the context for expression evaluation

exit GHCi

reload the current module set

run the function with the given arguments

run the script <filename>

show the type of <expr>

undefine user-defined command :<cmd>

run the shell command <command>

at a breakpoint, abandon current computation
go back in the history (after :trace)

set a breakpoint at the specified location

set a breakpoint on the specified function
resume after a breakpoint

delete the specified breakpoint

delete all breakpoints

print <expr>, forcing unevaluated parts

go forward in the history (after :back)

after :trace, show the execution history

show the source code around current breakpoint
show the source code for <identifier>

show the source code around line number <line>
prints a value without forcing its computation
simplifed version of :print

single-step after stopping at a breakpoint

:step <expr>
:steplocal
:stepmodule

:trace

:trace <expr>

single-step into <expr>

single-step within the current top-level binding
single-step restricted to the current module
trace after stopping at a breakpoint

evaluate <expr> with tracing on (see :history)

Commands for changing settings

:set <option>
:seti <option>
args <arg>

:set
:set
:set
:set
:set

Options for :set and :unset

prog <progname>
prompt <prompt>

editor <cmd>
stop [<n>] <cmd> set the command to run when a breakpoint is hit
:unset <option>

+m
+r
+s
+t

-<flags>

set options

set options for interactive evaluation only

set the arguments returned by System. getArgs
set the value returned by System.getProgName
set the prompt used in GHCi

set the command used for :edit

unset options

allow multiline commands
revert top-level expressions after each evaluation
print timing/memory stats after each evaluation
print type after evaluation

most GHC command line flags can also be set here (eg. -v2,

-fglasgow-exts, etc). For GHCi-specific flags, see User’s Guide,
Flag reference, Interactive-mode options.

Commands for displaying information

:show

:show

:show
:show
:show
:show
:show

:show

bindings
breaks
context
imports
modules
packages
language
<setting>

:showi language

show the current bindings made at the prompt

show the active breakpoints

show the breakpoint context

show the current imports

show the currently loaded modules

show the currently active package flags

show the currently active language flags

show value of <setting>, which is one of [args, prog, prompt,
editor, stop]

show language flags for interactive evaluation

