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Total Functional Programming

• The next few lectures concerns inductive definitions
and proofs of datatypes and programs.

• While Haskell provides allows one to define nonter-
minating functions, infinite data structures, for now
we will only consider its total, finite fragment.

• That is, we temporarily

– consider only finite data structures,

– demand that functions terminate for all value
in its input type, and

– provide guidelines to construct such functions.

• Infinite datatypes and non-termination will be dis-
cussed later in this course.

1 Induction on Natural Numbers
The So-Called “Mathematical Induction”

• Let P be a predicate on natural numbers.

– What is a predicate? Such a predicate can be
seen as a function of type Nat → Bool .

– So far, we see Haskell functions as simple
mathematical functions too.

– However, Haskell functions will turn out to be
more complex than mere mathematical func-
tions later. To avoid confusion, we do not use
the notation Nat → Bool for predicates.

• We’ve all learnt this principle of proof by induction:
to prove that P holds for all natural numbers, it is
sufficient to show that

– P 0 holds;

– P (1 + n) holds provided that P n does.

1.1 Proof by Induction

Proof by Induction on Natural Numbers

• We can see the above inductive principle as a re-
sult of seeing natural numbers as defined by the
datatype 1

data Nat = 0 | 1+ Nat .

• That is, any natural number is either 0, or 1+ n
where n is a natural number.

• In this lecture, 1+ is written in bold font to empha-
sise that it is a data constructor (as opposed to the
function (+), to be defined later, applied to a num-
ber 1).

A Proof Generator
Given P 0 and P n ⇒ P (1+ n), how does one prove,

for example, P 3?

P (1+ (1+ (1+ 0)))
⇐ { P (1+ n) ⇐ P n }

P (1+ (1+ 0))
⇐ { P (1+ n) ⇐ P n }

P (1+ 0)
⇐ { P (1+ n) ⇐ P n }

P 0 .

Having done math. induction can be seen as having
designed a program that generates a proof — given any
n :: Nat we can generate a proof of P n in the manner
above.

1.2 Inductively Definition of Functions

Inductively Defined Functions

1Not a real Haskell definition.
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• Since the typeNat is defined by two cases, it is nat-
ural to define functions on Nat following the struc-
ture:

exp :: Nat → Nat → Nat
exp b 0 = 1
exp b (1+ n) = b× exp b n .

• Even addition can be defined inductively

(+) :: Nat → Nat → Nat
0 + n = n
(1+ m) + n = 1+ (m+ n) .

• Exercise: define (×)?

A Value Generator
Given the definition of exp, how does one compute

exp b 3?

exp b (1+ (1+ (1+ 0)))
= { definition of exp }

b× exp b (1+ (1+ 0))
= { definition of exp }

b× b× exp b (1+ 0)
= { definition of exp }

b× b× b× exp b 0
= { definition of exp }

b× b× b× 1 .

It is a program that generates a value, for any n :: Nat .
Compare with the proof of P above.

Moral: Proving is Programming
An inductive proof is a program that generates a proof

for any given natural number.
An inductive program follows the same structure of an

inductive proof.
Proving and programming are very similar activities.

Without the n+ k Pattern

• Unfortunately, newer versions of Haskell aban-
doned the “n + k pattern” used in the previous
slides:

exp :: Int → Int → Int
exp b 0 = 1
exp b n = b× exp b (n− 1) .

• Nat is defined to be Int in MiniPrelude.hs. With-
out MiniPrelude.hs you should use Int .

• For the purpose of this course, the pattern 1 + n
reveals the correspondence between Nat and lists,
and matches our proof style. Thus we will use it in
the lecture.

• Remember to remove them in your code.

Proof by Induction

• To prove properties about Nat , we follow the struc-
ture as well.

• E.g. to prove that exp b (m+n) = exp bm×exp b n.

• One possibility is to preform induction on m. That
is, prove P m for all m :: Nat , where P m ≡ (∀n ::
exp b (m+ n) = exp b m× exp b n).

Case m := 0. For all n, we reason:

exp b (0 + n)
= { defn. of (+) }

exp b n
= { defn. of (×) }

1× exp b n
= { defn. of exp }

exp b 0× exp b n .

We have thus proved P 0.
Case m := 1+ m. For all n, we reason:

exp b ((1+ m) + n)
= { defn. of (+) }

exp b (1+ (m+ n))
= { defn. of exp }

b× exp b (m+ n)
= { induction }

b× (exp b m× exp b n)
= { (×) associative }

(b× exp b m)× exp b n
= { defn. of exp }

exp b (1+ m)× exp b n .

We have thus proved P (1+ m), given P m.

Structure Proofs by Programs

• The inductive proof could be carried out smoothly,
because both (+) and exp are defined inductively
on its lefthand argument (of type Nat ).

• The structure of the proof follows the structure of
the program, which in turns follows the structure
of the datatype the program is defined on.
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Lists and Natural Numbers

• We have yet to prove that (×) is associative.

• The proof is quite similar to the proof for associa-
tivity of (++), which we will talk about later.

• In fact,Nat and lists are closely related in structure.

• Most of us are used to think of numbers as atomic
and lists as structured data. Neither is necessarily
true.

• For the rest of the course we will demonstrate in-
duction using lists, while taking the properties for
Nat as given.

1.3 A Set-Theoretic Explanation of Induc-
tion

An Inductively Defined Set?

• For a set to be “inductively defined”, we usually
mean that it is the smallest fixed-point of some func-
tion.

• What does that maen?

Fixed-Point and Prefixed-Point

• A fixed-point of a function f is a value x such that
f x = x.

• Theorem. f has fixed-point(s) if f is a monotonic
function defined on a complete lattice.

– In general, given f there may be more than
one fixed-point.

• A prefixed-point of f is a value x such that f x ≤ x.

– Apparently, all fixed-points are also prefixed-
points.

• Theorem. the smallest prefixed-point is also the
smallest fixed-point.

Example: Nat

• Recall the usual definition: Nat is defined by the
following rules:

1. 0 is in Nat ;

2. if n is in Nat , so is 1+ n;

3. there is no other Nat .

• If we define a function F from sets to sets: F X =
{0} ∪ {1+ n | n ∈ X}, 1. and 2. above means that
F Nat ⊆ Nat . That is, Nat is a prefixed-point of F .

• 3. means that we want the smallest such prefixed-
point.

• Thus Nat is also the least (smallest) fixed-point of
F .

Least Prefixed-Point
Formally, let F X = {0} ∪ {1+ n | n ∈ X}, Nat is a

set such that

F Nat ⊆ Nat , (1)

(∀X : F X ⊆ X ⇒ Nat ⊆ X) , (2)

where (1) says that Nat is a prefixed-point of F , and (2)
it is the least among all prefixed-points of F .

Mathematical Induction, Formally

• Given property P , we also denote by P the set of
elements that satisfy P .

• That P 0 and P n ⇒ P (1+n) is equivalent to
{0} ⊆ P and {1+ n | n ∈ P} ⊆ P ,

• which is equivalent to F P ⊆ P . That is, P is a
prefixed-point!

• By (2) we have Nat ⊆ P . That is, all Nat satisfy P !

• This is “why mathematical induction is correct.”

Coinduction?
There is a dual technique called coinductionwhere, in-

stead of least prefixed-points, we talk about greatest post-
fixed points. That is, largest x such that x ≤ f x.
With such construction we can talk about infinite data

structures.

2 Induction on Lists
Inductively Defined Lists

• Recall that a (finite) list can be seen as a datatype
defined by: 2

data List a = [ ] | a : List a .

• Every list is built from the base case [ ], with ele-
ments added by (:) one by one: [1, 2, 3] = 1 : (2 :
(3 : [ ])).

2Not a real Haskell definition.
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All Lists Today are Finite
But what about infinite lists?

• For now let’s consider finite lists only, as having in-
finite lists make the semantics much more compli-
cated. 3

• In fact, all functions we talk about today are total
functions. No ⊥ involved.

Set-Theoretically Speaking...
The type List a is the smallest set such that

1. [ ] is in List a;

2. if xs is in List a and x is in a, x : xs is in List a as
well.

Inductively Defined Functions on Lists

• Many functions on lists can be defined according to
how a list is defined:

sum :: List Int → Int
sum [ ] = 0
sum (x : xs) = x+ sum xs .

map :: (a → b) → List a → List b
map f [ ] = [ ]
map f (x : xs) = f x : map f xs .

– sum [1..10] = 55

– map (1+) [1, 2, 3, 4] = [2, 3, 4, 5]

2.1 Append, and Some of Its Properties
List Append

• The function (++) appends two lists into one

(++) :: List a → List a → List a
[ ] ++ ys = ys
(x : xs)++ ys = x : (xs ++ ys) .

• Compare the definition with that of (+)!

Proof by Structural Induction on Lists

• Recall that every finite list is built from the base case
[ ], with elements added by (:) one by one.

• To prove that some property P holds for all finite
lists, we show that

1. P [ ] holds;
2. forall x and xs , P (x : xs) holds provided that

P xs holds.
3What does that mean? We will talk about it later.

For a Particular List...
Given P [ ] and P xs ⇒ P (x : xs), for all x and xs ,

how does one prove, for example, P [1, 2, 3]?

P (1 : 2 : 3 : [ ])
⇐ { P (x : xs) ⇐ P xs }

P (2 : 3 : [ ])
⇐ { P (x : xs) ⇐ P xs }

P (3 : [ ])
⇐ { P (x : xs) ⇐ P xs }

P [ ] .

Appending is Associative
To prove that xs ++(ys ++ zs) = (xs ++ ys)++ zs .
Let P xs = (∀ys, zs :: xs ++(ys ++ zs) =

(xs ++ ys)++ zs), we prove P by induction on xs .
Case xs := [ ]. For all ys and zs, we reason:

[ ] ++(ys ++ zs)
= { defn. of (++) }

ys ++ zs
= { defn. of (++) }

([ ] ++ ys)++ zs .

We have thus proved P [].
Case xs := x : xs . For all ys and zs, we reason:

(x : xs)++(ys ++ zs)
= { defn. of (++) }

x : (xs ++(ys ++ zs))
= { induction }

x : ((xs ++ ys)++ zs)
= { defn. of (++) }

(x : (xs ++ ys))++ zs
= { defn. of (++) }

((x : xs)++ ys)++ zs .

We have thus proved P (x : xs), given P xs.

DoWe Have To Be So Formal?

• In our style of proof, every step is given a reason.
Do we need to be so pedantic?

• Being formal helps you to do the proof:

– In the proof of exp b (m + n) = exp b m ×
exp b n, we expect that we will use induction
to somewhere. Therefore the first part of the
proof is to generate exp b (m+ n).

– In the proof of associativity, we were working
toward generating xs ++(ys ++ zs).
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• By being formal we can work on the form, not
the meaning. Like how we solved the knight/knave
problem

• Being formal actually makes the proof easier!

• Make the symbols do the work.

Length

• The function length defined inductively:

length :: List a → Nat
length [ ] = 0
length (x : xs) = 1+ (length xs) .

• Exercise: prove that length distributes into (++):

length (xs ++ ys) = length xs + length ys

Concatenation

• While (++) repeatedly applies (:), the function
concat repeatedly calls (++):

concat :: List (List a) → List a
concat [ ] = [ ]
concat (xs : xss) = xs ++ concat xss .

• Compare with sum .

• Exercise: prove sum · concat = sum ·map sum .

2.2 More Inductively Defined Functions
Definition by Induction/Recursion

• Rather than giving commands, in functional pro-
gramming we specify values; instead of performing
repeated actions, we define values on inductively
defined structures.

• Thus induction (or in general, recursion) is the only
“control structure” we have. (We do identify and ab-
stract over plenty of patterns of recursion, though.)

• Note Terminology: an inductive definition, as
we have seen, define “bigger” things in terms of
“smaller” things. Recursion, on the other hand, is
a more general term, meaning “to define one entity
in terms of itself.”

• To inductively define a function f on lists, we spec-
ify a value for the base case (f [ ]) and, assuming
that f xs has been computed, consider how to con-
struct f (x : xs) out of f xs .

Filter

• filter p xs keeps only those elements in xs that sat-
isfy p.

filter :: (a → Bool) → List a → List a
filter p [ ] = [ ]
filter p (x : xs) | p x = x : filter p xs

| otherwise = filter p xs .

Take and Drop

• Recall take and drop, which we used in the previous
exercise.

take :: Nat → List a → List a
take 0 xs = [ ]
take (1+ n) [ ] = [ ]
take (1+ n) (x : xs) = x : take n xs .

drop :: Nat → List a → List a
drop 0 xs = xs
drop (1+ n) [ ] = [ ]
drop (1+ n) (x : xs) = drop n xs .

• Prove: take n xs ++ drop n xs = xs , for all n and
xs .

TakeWhile and DropWhile

• takeWhile p xs yields the longest prefix of xs such
that p holds for each element.

takeWhile :: (a → Bool) → List a → List a
takeWhile p [ ] = [ ]
takeWhile p (x : xs) | p x = x : takeWhile p xs

| otherwise = [ ] .

• dropWhile p xs drops the prefix from xs .

dropWhile :: (a → Bool) → List a → List a
dropWhile p [ ] = [ ]
dropWhile p (x : xs) | p x = dropWhile p xs

| otherwise = x : xs .

• Prove: takeWhile p xs ++ dropWhile p xs = xs .

List Reversal

• reverse [1, 2, 3, 4] = [4, 3, 2, 1].

reverse :: List a → List a
reverse [ ] = [ ]
reverse (x : xs) = reverse xs ++[x] .
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All Prefixes and Suffixes

• inits [1, 2, 3] = [[ ], [1], [1, 2], [1, 2, 3]]

inits :: List a → List (List a)
inits [ ] = [[ ]]
inits (x : xs) = [ ] : map (x :) (inits xs) .

• tails [1, 2, 3] = [[1, 2, 3], [2, 3], [3], [ ]]

tails :: List a → List (List a)
tails [ ] = [[ ]]
tails (x : xs) = (x : xs) : tails xs .

Totality

• Structure of our definitions so far:

f [ ] = . . .
f (x : xs) = . . . f xs . . .

– Both the empty and the non-empty cases
are covered, guaranteeing there is a matching
clause for all inputs.

– The recursive call is made on a “smaller” argu-
ment, guranteeing termination.

• Together they guarantee that every input is mapped
to some output. Thus they define total functions on
lists.

2.3 Other Patterns of Induction
Variations with the Base Case

• Some functions discriminate between several base
cases. E.g.

fib :: Nat → Nat
fib 0 = 0
fib 1 = 1
fib (2 + n) = fib (1+n) + fib n .

• Some functions make more sense when it is defined
only on non-empty lists:

f [x] = . . .
f (x : xs) = . . .

• What about totality?

– They are in fact functions defined on a differ-
ent datatype:

data List+ a = Singleton a | a : List+ a .

– We do not want to definemap, filter again for
List+ a. Thus we reuse List a and pretend
that we were talking about List+ a.

– It’s the same with Nat . We embedded Nat
into Int .

– Ideally we’d like to have some form of sub-
typing. But that makes the type system more
complex.

Lexicographic Induction

• It also occurs often that we perform lexicographic
induction on multiple arguments: some arguments
decrease in size, while others stay the same.

• E.g. the functionmerge merges two sorted lists into
one sorted list:

merge :: List Int → List Int → List Int
merge [ ] [ ] = [ ]
merge [ ] (y : ys) = y : ys
merge (x : xs) [ ] = x : xs
merge (x : xs) (y : ys) | x ≤ y = x : merge xs (y : ys)

| otherwise = y : merge (x : xs) ys .

Zip
Another example:

zip :: List a → List b → List (a, b)
zip [ ] [ ] = [ ]
zip [ ] (y : ys) = [ ]
zip (x : xs) [ ] = [ ]
zip (x : xs) (y : ys) = (x, y) : zip xs ys .

Non-Structural Induction

• In most of the programs we’ve seen so far, the re-
cursive call are made on direct sub-components of
the input (e.g. f (x : xs) = ..f xs..). This is called
structural induction.

– It is relatively easy for compilers to recognise
structural induction and determine that a pro-
gram terminates.

• In fact, we can be sure that a program terminates
if the arguments get “smaller” under some (well-
founded) ordering.
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Mergesort

• In the implemenation of mergesort below, for exam-
ple, the arguments always get smaller in size.

msort :: List Int → List Int
msort [ ] = [ ]
msort [x] = [x]
msort xs = merge (msort ys) (msort zs) ,
where n = length xs ‘div ‘ 2

ys = take n xs
zs = drop n xs .

– What if we omit the case for [x]?

• If all cases are covered, and all recursive calls are
applied to smaller arguments, the program defines
a total function.

A Non-Terminating Definition

• Example of a function, where the argument to the
recursive does not reduce in size:

f :: Int → Int
f 0 = 0
f n = f n .

• Certainly f is not a total function. Do such defini-
tions “mean” something? We will talk about these
later.

3 User Defined Inductive
Datatypes

Internally Labelled Binary Trees

• This is a possible definition of internally labelled bi-
nary trees:

data Tree a = Null | Node a (Tree a) (Tree a) ,

• on which we may inductively define functions:

sumT :: Tree Nat → Nat
sumT Null = 0
sumT (Node x t u) = x+ sumT t+ sumT u .

Exercise: given (↓) :: Nat → Nat → Nat , which
yields the smaller one of its arguments, define the fol-
lowing functions

1. minT :: Tree Nat → Nat , which computes the
minimal element in a tree.

2. mapT :: (a → b) → Tree a → Tree b, which
applies the functional argument to each element in
a tree.

3. Can you define (↓) inductively on Nat? 4

Induction Principle for Tree

• What is the induction principle for Tree?

• To prove that a predicate P on Tree holds for every
tree, it is sufficient to show that

1. P Null holds, and;

2. for every x, t, and u, if P t and P u holds,
P (Node x t u) holds.

• Exercise: prove that for all n and t,
minT (mapT (n+) t) = n + minT t. That
is, minT ·mapT (n+) = (n+) ·minT .

Induction Principle for Other Types

• Recall that data Bool = False | True . Do we have
an induction principle for Bool?

• To prove a predicate P on Bool holds for all
booleans, it is sufficient to show that

1. P False holds, and

2. P True holds.

• Well, of course.

• What about (A×B)? How to prove that a predicate
P on (A×B) is always true?

• One may prove some property P1 on A and some
property P2 on B, which together imply P .

• That does not say much. But the “induction princi-
ple” for products allows us to extract, from a proof
of P , the proofs P1 and P2.

• Every inductively defined datatype comes with its in-
duction principle.

• We will come back to this point later.

4In the standard Haskell library, (↓) is called min .
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