Programming Languages:

Functional Programming

3. Definition and Proof by Induction

Shin-Cheng Mu

Autumn 2023

Total Functional Programming

« The next few lectures concerns inductive definitions
and proofs of datatypes and programs.

« While Haskell provides allows one to define nonter-
minating functions, infinite data structures, for now
we will only consider its total, finite fragment.

« That is, we temporarily

- consider only finite data structures,

— demand that functions terminate for all value
in its input type, and

— provide guidelines to construct such functions.

« Infinite datatypes and non-termination will be dis-
cussed later in this course.

1 Induction on Natural Numbers
The So-Called “Mathematical Induction”

+ Let P be a predicate on natural numbers.

- What is a predicate? Such a predicate can be
seen as a function of type Nat — Bool.

- So far, we see Haskell functions as simple
mathematical functions too.

- However, Haskell functions will turn out to be
more complex than mere mathematical func-
tions later. To avoid confusion, we do not use
the notation Nat — Bool for predicates.

« We've all learnt this principle of proof by induction:
to prove that P holds for all natural numbers, it is
sufficient to show that

— PO holds;
- P (14 n) holds provided that P n does.

1.1 Proof by Induction

Proof by Induction on Natural Numbers

« We can see the above inductive principle as a re-
sult of seeing natural numbers as defined by the
datatype '

data Nat = 0|14 Nat .

« That is, any natural number is either 0, or 1. n
where n is a natural number.

« In this lecture, 1 is written in bold font to empha-
sise that it is a data constructor (as opposed to the
function (+), to be defined later, applied to a num-
ber 1).

A Proof Generator

Given PO and Pn = P (14 n), how does one prove,
for example, P 3?

P (14 (14 (11 0)))

< {P(1lyn)<Pn}
P (14 (14 0))

< {P(lyn)<=Pn}
P (1, 0)

< {P(lyn)<Pn}
PO.

Having done math. induction can be seen as having
designed a program that generates a proof — given any
n :: Nat we can generate a proof of Pn in the manner
above.

1.2 Inductively Definition of Functions

Inductively Defined Functions

"Not a real Haskell definition.

« Since the type Nat is defined by two cases, it is nat-
ural to define functions on Nat following the struc-
ture:

exp :: Nat — Nat — Nat
exp b0 =1
expb(lin) =bxexpbn .

« Even addition can be defined inductively

(+) i Nat — Nat — Nat
0+n =n
1ym)+n =14 (m+n) .

- Exercise: define (x)?

A Value Generator
Given the definition of exp, how does one compute
exp b 3?

exp b (14 (14 (140)))
= { definition of exp }
bxexpb(1ly (14 0))
= { definition of exp }
bxbxexpb(1y0)
= { definition of exp }
bxbxbxexpb0
= { definition of exp }
bxbxbx1.

Itis a program that generates a value, for any n :: Nat.
Compare with the proof of P above.

Moral: Proving is Programming

An inductive proof is a program that generates a proof
for any given natural number.

An inductive program follows the same structure of an
inductive proof.

Proving and programming are very similar activities.

Without the n + k Pattern

« Unfortunately, newer versions of Haskell aban-
doned the “n + k pattern” used in the previous
slides:

erp :Int — Int — Int
expb0 =1
expbn =bxexpb(n—1) .

« Nat is defined to be Int in MiniPrelude.hs. With-
out MiniPrelude.hs you should use Int.

« For the purpose of this course, the pattern 1 + n
reveals the correspondence between Nat and lists,
and matches our proof style. Thus we will use it in
the lecture.

« Remember to remove them in your code.

Proof by Induction

« To prove properties about Nat, we follow the struc-
ture as well.

. E.g. toprovethat exp b (m+n) = expbmx exp bn.

« One possibility is to preform induction on m. That
is, prove P 'm for all m :: Nat, where Pm = (Vn :
exp b (m+n)=expbm X exp bn).

Case m := 0. For all n, we reason:

exp b (04 n)
{ defn. of (+) }
erp bn
{ defn. of (x) }
1xexpbn
= { defn. of exp }
ezpb0 xXexpbn .

We have thus proved P 0.
Case m := 1 m. For all n, we reason:

exp b (14 m)+n)
{ defn. of (+) }
exp b (Ly (m -+ n))
= { defn. of exp }
bx expb(m+n)
= { induction }
bx (exp bm X exp bn)
= { (x) associative }
(bx expbm) X expbn
= { defn. of exp }
expb (1o m) X expbn .

We have thus proved P (1 m), given P m.

Structure Proofs by Programs

« The inductive proof could be carried out smoothly,
because both (+) and exp are defined inductively
on its lefthand argument (of type Nat).

« The structure of the proof follows the structure of
the program, which in turns follows the structure
of the datatype the program is defined on.

Lists and Natural Numbers

« We have yet to prove that (X) is associative.

« The proof is quite similar to the proof for associa-
tivity of (++), which we will talk about later.

« Infact, Nat and lists are closely related in structure.

« Most of us are used to think of numbers as atomic
and lists as structured data. Neither is necessarily
true.

« For the rest of the course we will demonstrate in-
duction using lists, while taking the properties for
Nat as given.

1.3 A Set-Theoretic Explanation of Induc-
tion

An Inductively Defined Set?

« For a set to be “inductively defined”, we usually
mean that it is the smallest fixed-point of some func-
tion.

« What does that maen?

Fixed-Point and Prefixed-Point

« A fixed-point of a function f is a value x such that
fx==x

« Theorem. f has fixed-point(s) if f is a monotonic
function defined on a complete lattice.

- In general, given f there may be more than
one fixed-point.

« A prefixed-point of f is a value x such that fx < x.

- Apparently, all fixed-points are also prefixed-
points.

« Theorem. the smallest prefixed-point is also the

smallest fixed-point.

Example: Nat

« Recall the usual definition: Nat is defined by the
following rules:

1. Oisin Nat;
2. if nisin Nat,sois 14 n;

3. there is no other Nat.

« If we define a function F' from sets to sets: ' X =
{0} U {14 n|ne X}, 1. and 2. above means that
F Nat C Nat. That is, Nat is a prefixed-point of F.

+ 3. means that we want the smallest such prefixed-
point.

« Thus Nat is also the least (smallest) fixed-point of
F.

Least Prefixed-Point
Formally,let F X = {0} U{1:n|n € X}, Natisa
set such that
F Nat C Nat ,
VX:FXCX = Nat CX) ,

(1)
()

where (1) says that Nat is a prefixed-point of F, and (2)
it is the least among all prefixed-points of F'.

Mathematical Induction, Formally

« Given property P, we also denote by P the set of
elements that satisfy P.

« That PO and Pn = P (1;n) is equivalent to
{0} CPand{1,n|neP}CP,

« which is equivalent to F'P C P. That is, P is a
prefixed-point!

+ By (2) we have Nat C P. That is, all Nat satisfy P!

« This is “why mathematical induction is correct.”

Coinduction?

There is a dual technique called coinduction where, in-
stead of least prefixed-points, we talk about greatest post-
fixed points. That is, largest = such that x < f .

With such construction we can talk about infinite data
structures.

2 Induction on Lists

Inductively Defined Lists

« Recall that a (finite) list can be seen as a datatype
defined by: ?

data Lista = []|a: Lista .

« Every list is built from the base case [], with ele-
ments added by (:) one by one: [1,2,3] =1 : (2:
3:[1))-

2Not a real Haskell definition.

All Lists Today are Finite
But what about infinite lists?

« For now let’s consider finite lists only, as having in-
finite lists make the semantics much more compli-
cated. ?

« In fact, all functions we talk about today are total
functions. No L involved.

Set-Theoretically Speaking...
The type List a is the smallest set such that
1. []isin List a;

2. ifzsisin List aand x isina, z : xsisin List a as
well.

Inductively Defined Functions on Lists

« Many functions on lists can be defined according to
how a list is defined:

sum :0 List Int — Int
sum [] =0
sum (x : x8) = x + sum s .

map 2 (a—b) = Lista — List b
map f [] =]
map f (x:xs) = fx:map f zs .

- sum [1..10] = 55

- map (1) [1,2,3,4] = [2,3,4, 5]

2.1
List Append

Append, and Some of Its Properties

« The function (++) appends two lists into one

(+) it List a — List a — List a
[J+ys = ys
(z:zs)+Hys =x: (zs+Hys) .

« Compare the definition with that of (4)!

Proof by Structural Induction on Lists

« Recall that every finite list is built from the base case
[], with elements added by (:) one by one.

« To prove that some property P holds for all finite
lists, we show that
1. P[] holds;

2. forall z and zs, P (z : zs) holds provided that
P xs holds.

3What does that mean? We will talk about it later.

For a Particular List...
Given P[] and P zs = P (x : xs), for all z and =,
how does one prove, for example, P [1,2, 3]?

P(1:2:3:]))

< {P(zx:as)<=Puas}
P(2:3:]])

< {P(zr:as)«<=Pus}
P3:1])

< {P(x:zs)<=Pus}
Pl].

Appending is Associative
To prove that zs H-(ys +H- 2zs) = (zs H ys) +H zs.
Let P zs = (Vys,zs s H(ys Hzs) =
(zs + ys) ++ zs), we prove P by induction on zs.
Case s := []. For all ys and zs, we reason:

[1++(ys + 29)

{ defn. of (+) }
Ys +H- zs

{ defn. of (++) }
([+ys) +zs .

We have thus proved P [].
Case zs := x : xs. For all ys and zs, we reason:

(z: zs) H(ys +H 29)

{ defn. of (+) }
x: (zs H-(ys +H 2s))

{ induction }

x: ((@s +H ys) H 2s)

{ defn. of (-+) }
(x: (zs++ys)) Hzs
= { defn. of (+) }

((x: zs) Hys) Hz2s .

We have thus proved P (x : xs), given P xs.

Do We Have To Be So Formal?

« In our style of proof, every step is given a reason.
Do we need to be so pedantic?

« Being formal helps you to do the proof:

- In the proof of exp b (m + n) = exp b m X
exp b n, we expect that we will use induction
to somewhere. Therefore the first part of the
proof is to generate exp b (m + n).

- In the proof of associativity, we were working
toward generating zs +H(ys +H 2s).

« By being formal we can work on the form, not
the meaning. Like how we solved the knight/knave
problem

« Being formal actually makes the proof easier!

« Make the symbols do the work.

Length
+ The function length defined inductively:

length :: List a — Nat
length [] =0
length (z : zs) = 14 (length xs) .

« Exercise: prove that length distributes into (++):

length (zs ++ ys) = length xs + length ys

Concatenation

« While (-+) repeatedly applies (:), the function
concat repeatedly calls (++):

concat . List (List a) — List a
concat [] =]
concat (zs : xss) = xs +H- concat xss .

« Compare with sum.

« Exercise: prove sum - concat = sum - map sum.

2.2 More Inductively Defined Functions

Definition by Induction/Recursion

« Rather than giving commands, in functional pro-
gramming we specify values; instead of performing
repeated actions, we define values on inductively
defined structures.

« Thus induction (or in general, recursion) is the only
“control structure” we have. (We do identify and ab-
stract over plenty of patterns of recursion, though.)

« Note Terminology: an inductive definition, as
we have seen, define “bigger” things in terms of
“smaller” things. Recursion, on the other hand, is
a more general term, meaning “to define one entity
in terms of itself”

« To inductively define a function f on lists, we spec-
ify a value for the base case (f []) and, assuming
that f xs has been computed, consider how to con-
struct f (z : xs) out of f xs.

Filter

« filter p xs keeps only those elements in xs that sat-
isfy p.

filter :: (a = Bool) — List a — List a
filter p [] =[]
filter p (z : xs) | pax = x : filter p xs

| otherwise = filter p xs .

Take and Drop

« Recall take and drop, which we used in the previous
exercise.

take :: Nat — List a — List a
take O s
take (14 n) [] =[]

take (14 n) (x : zs) = x : take n xs .

drop :: Nat — List a — List a
drop 0 s = x5
drop (14 n) [] =]

drop (14 n) (x : zs) = dropn zs .

« Prove: take n xs +H- drop n xs = zs, for all n and
xs.

TakeWhile and DropWhile

« takeWhile p xs yields the longest prefix of s such
that p holds for each element.

take While it (a = Bool) — List a — List a
take While p || =]
takeWhile p (z : xs) | px = x : takeWhile p xs

| otherwise =[] .

« dropWhile p zs drops the prefix from xs.

drop While it (@ = Bool) — List a — List a
drop While p [] =]
dropWhile p (x : xs) | p x = drop While p xs

| otherwise = z : zs .

« Prove: take While p xs -+ drop While p xs = xs.

List Reversal
. reverse [1,2,3,4] = [4,3,2,1].

reverse : List a — List a
reverse [] =]
reverse (x : xs) = reverse zs +[z| .

All Prefixes and Suffixes

. anats [1,2,3] =[], [1], [1, 2], [1, 2, 3]]
inits it List a — List (List a)
inits [| = (1]
inits (z : xs) =[] : map (x :) (inits zs) .

+ tails [1,2,3] = [[1,2,3],[2,3], [3], []]

tails :: List a — List (List a)
tails [] = {1
tails (x : xzs) = (x : xs) : tails zs .

Totality

« Structure of our definitions so far:

moo=.
flxias)=...fuas...

- Both the empty and the non-empty cases
are covered, guaranteeing there is a matching
clause for all inputs.

- The recursive call is made on a “smaller” argu-
ment, guranteeing termination.

« Together they guarantee that every input is mapped
to some output. Thus they define total functions on
lists.

2.3 Other Patterns of Induction

Variations with the Base Case

« Some functions discriminate between several base

cases. E.g.
fib :: Nat — Nat
fib0 =0
fib1 =1

fib(2+n) =fib(14n)+ fibn .

« Some functions make more sense when it is defined
only on non-empty lists:

« What about totality?

- They are in fact functions defined on a differ-
ent datatype:

data List™ a = Singletona | a: Listt a .

- We do not want to define map, filter again for
List* a. Thus we reuse List a and pretend
that we were talking about List™ a.

- It’s the same with Nat. We embedded Nat
into Int.

- ldeally we’d like to have some form of sub-
typing. But that makes the type system more
complex.

Lexicographic Induction

« It also occurs often that we perform lexicographic
induction on multiple arguments: some arguments
decrease in size, while others stay the same.

« E.g. the function merge merges two sorted lists into
one sorted list:

merge :: List Int — List Int — List Int
merge []] iy
merge [(y : ys) =y:ys
merge (x : xs) [] =x:1s
merge (x : xs) (y: ys) |z <y =x: merge xs (y: ys)

| otherwise = y : merge (x : xs) ys .
Zip

Another example:

zip i List a — List b — List (a,b)

]
x,Yy) : 2ip TS YS .

Non-Structural Induction

+ In most of the programs we’ve seen so far, the re-
cursive call are made on direct sub-components of
the input (e.g. f (x : zs) = ..f xs..). This is called
structural induction.

- It is relatively easy for compilers to recognise
structural induction and determine that a pro-
gram terminates.

« In fact, we can be sure that a program terminates
if the arguments get “smaller” under some (well-
founded) ordering.

Mergesort

« In the implemenation of mergesort below, for exam-
ple, the arguments always get smaller in size.

msort it List Int — List Int

msort [| =]

msort [x] = [z]

msort s = merge (msort ys) (msort zs) ,

where n = length xs ‘div‘ 2
ys = take n xs
zs = dropn xs .

- What if we omit the case for [z]?

« If all cases are covered, and all recursive calls are
applied to smaller arguments, the program defines
a total function.

A Non-Terminating Definition

« Example of a function, where the argument to the
recursive does not reduce in size:

fuInt— Int
f0 =0
fn=fn.

« Certainly f is not a total function. Do such defini-
tions “mean” something? We will talk about these

later.
3 User Defined Inductive
Datatypes

Internally Labelled Binary Trees

« This is a possible definition of internally labelled bi-
nary trees:

data Tree a = Null | Node a (Tree a) (Tree a) ,

« on which we may inductively define functions:

sumT :: Tree Nat — Nat
sumT Null =0
sumT (Nodez tu) = z+ sumT t+ sumT u .

Exercise: given (}) :: Nat — Nalt — Nat, which
yields the smaller one of its arguments, define the fol-
lowing functions

1. minT :: Tree Nat — Nat, which computes the
minimal element in a tree.

2. mapT == (a — b) — Tree a — Tree b, which
applies the functional argument to each element in
a tree.

3. Can you define (|) inductively on Nat?

Induction Principle for Tree

« What is the induction principle for Tree?

« To prove that a predicate P on Tree holds for every
tree, it is sufficient to show that

1. P Null holds, and;

2. for every z, t, and u, if P t and P u holds,
P (Node z t u) holds.

« Exercise: prove that for all n and ¢,
minT (mapT (n+) t) = n + minT t. That
is, minT - mapT (n+) = (n+) - minT.

Induction Principle for Other Types

« Recall that data Bool = False | True. Do we have
an induction principle for Bool?

« To prove a predicate P on Bool holds for all
booleans, it is sufficient to show that

1. P False holds, and
2. P True holds.

« Well, of course.

« What about (A x B)? How to prove that a predicate
P on (A x B) is always true?

« One may prove some property P; on A and some
property P, on B, which together imply P.

« That does not say much. But the “induction princi-
ple” for products allows us to extract, from a proof
of P, the proofs P; and Ps.

« Every inductively defined datatype comes with its in-
duction principle.

« We will come back to this point later.

#In the standard Haskell library, ({) is called min.

