
Programming Languages: Functional Programming
4. Simple Program Calculation

Shin-Cheng Mu

Autumn 2023

AQuick Review

• Functions are the basic building blocks. They may
be passed as arguments, may return functions, and
can be composed together.

• While one issues commands in an imperative lan-
guage, in functional programming we specify val-
ues, and computers try to reduce the values to their
normal forms.

• Formal reasoning: reasoning with the form (syntax)
rather than the semantics. Let the symbols do the
work!

• ‘Wholemeal’ programming: think of aggregate data
as a whole, and process them as a whole.

• Once you describe the values as algebraic
datatypes, most programs write themselves
through structural recursion.

• Programs and their proofs are closely related. They
share similar structure, by induction over input
data.

• Properties of programs can be reasoned about in
equations, just like high school algebra.

1 Some Comments on Efficiency
Data Representation

• So far we have (surprisingly) been talking about
mathematics without much concern regarding ef-
ficiency. Time for a change.

• Take lists for example. Recall the definition:
data List a = [] | a : List a.

• Our representation of lists is biased. The left most
element can be fetched immediately.

– Thus. (:), head , and tail are constant-time op-
erations, while init and last takes linear-time.

• In most implementations, the list is represented as
a linked-list.

List Concatenation Takes Linear Time

• Recall (++):

[] ++ ys = ys
(x : xs)++ ys = x : (xs ++ ys)

• Consider [1, 2, 3]++[4, 5]:

(1 : 2 : 3 : [])++(4 : 5 : [])
= 1 : ((2 : 3 : [])++(4 : 5 : []))
= 1 : 2 : ((3 : [])++(4 : 5 : []))
= 1 : 2 : 3 : ([] ++(4 : 5 : []))
= 1 : 2 : 3 : 4 : 5 : []

• (++) runs in time proportional to the length of its
left argument.

Full Persistency

• Compound data structures, like simple values, are
just values, and thus must be fully persistent.

• That is, in the following code:

let xs = [1, 2, 3]
ys = [4, 5]
zs = xs ++ ys

in . . . body . . .

• The body may have access to all three values. Thus
++ cannot perform a destructive update.

1

1

: :

2

:

3

[] :

4

:

5

[]xs ys

: : :zs

Figure 1: How (++) allocates new (:) cells in the heap.

Linked v.s. Block Data Structures

• Trees are usually represented in a similar manner,
through links.

• Fully persistency is easier to achieve for such linked
data structures.

• Accessing arbitrary elements, however, usually
takes linear time.

• In imperative languages, constant-time random ac-
cess is usually achieved by allocating lists (usually
called arrays in this case) in a consecutive block of
memory.

• Consider the following code, where xs is an array
(implemented as a block), and ys is like xs , apart
from its 10th element:

let xs = [1..100]
ys = update xs 10 20

in . . . body . . .

• To allow access to both xs and ys in body , the
update operation has to duplicate the entire array.

• Thus people have invented some smart data struc-
ture to do so, in around O(log n) time.

• On the other hand, update may simply overwrite
xs if we can somehow make sure that nobody other
than ys uses xs .

• Both are advanced topics, however.

Another Linear-Time Operation

• Taking all but the last element of a list:

init [x] = []
init (x : xs) = x : init xs

• Consider init [1, 2, 3, 4]:

init (1 : 2 : 3 : 4 : [])
= 1 : init (2 : 3 : 4 : [])
= 1 : 2 : init (3 : 4 : [])
= 1 : 2 : 3 : init (4 : [])
= 1 : 2 : 3 : []

Sum, Map, etc

• Functions like sum , maximum , etc. needs to tra-
verse through the list once to produce a result. So
their running time is definitelyO(n), where n is the
length of the list.

• If f takes time O(t), map f takes time O(n× t) to
complete. Similarly with filter p.

– In a lazy setting,map f produces its first result
in O(t) time. We won’t need lazy features for
now, however.

2 A First Taste of Program Calcu-
lation

Sum of Squares

• Given a sequence a1,a2,. . . ,an, compute a21 + a22 +
. . .+a2n. Specification: sumsq = sum·map square.

• The spec. builds an intermediate list. Can we elim-
inate it?

• The input is either empty or not. When it is empty:

sumsq []
= { definition of sumsq }

(sum ·map square) []
= { function composition }

sum (map square [])
= { definition of map }

sum []
= { definition of sum }

0

2

Sum of Squares, the Inductive Case

• Consider the case when the input is not empty:

sumsq (x : xs)
= { definition of sumsq }

sum (map square (x : xs))
= { definition of map }

sum (square x : map square xs)
= { definition of sum }

square x+ sum (map square xs)
= { definition of sumsq }

square x+ sumsq xs

Alternative Definition for sumsq

• From sumsq = sum ·map square, we have proved
that

sumsq [] = 0
sumsq (x : xs) = square x+ sumsq xs

• Equivalently, we have shown that sum·map square
is a solution of

f [] = 0
f (x : xs) = square x+ f xs

• However, the solution of the equations above is
unique.

• Thus we can take it as another definition of sumsq.
Denotationally it is the same function; opera-
tionally, it is (slightly) quicker.

• Exercise: try calculating an inductive definition of
count .

How Far Can We Get?

• Specification of maximum segment sum:

mss :: List Int → Int
mss = maximum ·map sum · segments
segments :: List a→ List (List a)
segments = concat ·map inits · tails

– Or, segments xs = [zs | ys ← tails xs, zs ←
inits ys].

• From the specificationwe can calculate a linear time
algorithm.

Remark: Why Functional Programming?

• Time to muse on the merits of functional program-
ming. Why functional programming?

– Algebraic datatype? List comprehension?
Lazy evaluation? Garbage collection? These
are just language features that can be mi-
grated.

– No side effects.1 But why taking away a lan-
guage feature?

• By being pure, we have a simpler semantics in
which we are allowed to construct and reason about
programs.

– In an imperative languagewe do not even have
f 4 + f 4 = 2× f 4.

• Ease of reasoning. That’s the main benefit we get.

1Unless introduced in a disciplined way. See Section ??.

3

