Programming Languages:

Functional Programming

4. Simple Program Calculation

Shin-Cheng Mu

Autumn 2023

A Quick Review

« Functions are the basic building blocks. They may
be passed as arguments, may return functions, and
can be composed together.

« While one issues commands in an imperative lan-
guage, in functional programming we specify val-
ues, and computers try to reduce the values to their
normal forms.

« Formal reasoning: reasoning with the form (syntax)
rather than the semantics. Let the symbols do the
work!

« ‘Wholemeal’ programming: think of aggregate data
as a whole, and process them as a whole.

algebraic
themselves

« Once you describe the values as
datatypes, most programs write
through structural recursion.

« Programs and their proofs are closely related. They
share similar structure, by induction over input
data.

« Properties of programs can be reasoned about in
equations, just like high school algebra.

1 Some Comments on Efficiency
Data Representation

« So far we have (surprisingly) been talking about
mathematics without much concern regarding ef-
ficiency. Time for a change.

« Take lists for example. Recall the definition:
data List a = []| a: List a.

« Our representation of lists is biased. The left most
element can be fetched immediately.

- Thus. (:), head, and tail are constant-time op-
erations, while init and last takes linear-time.

« In most implementations, the list is represented as
a linked-list.

List Concatenation Takes Linear Time

« Recall (++):

[]++ys =ys
(x:xs)Hys =x: (xs+ys)

« Consider [1,2, 3] +[4, 5]

(1:2:3:[])+(4:5:[])
= 1:((2:3:[)+(4:5:(])
= 1:2:(@: [)++E:5:10])
=1:2:3: (H (4:5:[]))
=1:2:3:4:5:]]

« (4+) runs in time proportional to the length of its
left argument.

Full Persistency

« Compound data structures, like simple values, are
just values, and thus must be fully persistent.

« That is, in the following code:

let zs =[1,2,3]

ys = [4,5]
28 = xS+ ys
.. body ...

« The body may have access to all three values. Thus
—++ cannot perform a destructive update.

8,0
...

Figure 1: How (++) allocates new (:) cells in the heap.

Linked v.s. Block Data Structures « Consider init [1,2,3,4]:
. L im't (1 2 3 4: [])
« Trees are usually represented in a similar manner, .
rough finks. =1:2: zmt(4)
« Fully persistency is easier to achieve for such linked i 1 g g ﬁ”t (4:1])

data structures.

« Accessing arbitrary elements, however, usually Sum, Map, etc

takes linear time. « Functions like sum, mazimum, etc. needs to tra-

verse through the list once to produce a result. So
their running time is definitely O(n), where n is the
length of the list.

« In imperative languages, constant-time random ac-
cess is usually achieved by allocating lists (usually
called arrays in this case) in a consecutive block of
memory. . If f takes time O(t), map f takes time O(n x t) to

complete. Similarly with filter p.
« Consider the following code, where zs is an array

(implemented as a block), and ys is like xs, apart
from its 10th element:

- Inalazy setting, map f produces its first result
in O(t) time. We won’t need lazy features for
now, however.

let zs = [1..100]
ys = update xs 10 20 .
-~ body . .. 2 A First Taste of Program Calcu-

lation
« To allow access to both zs and ys in body, the
update operation has to duplicate the entire array. Sum of Squares

« Given a sequence a1,a2,...,ay, compute a% + a% +

« Thus people have invented some smart data struc- 2 I -
..+a;. Specification: sumsq = sum-map square.

ture to do so, in around O(logn) time.
« The spec. builds an intermediate list. Can we elim-
« On the other hand, update may simply overwrite inate it?
xs if we can somehow make sure that nobody other

than ys uses zs. « The input is either empty or not. When it is empty:

sumsq ||
+ Both are advanced topics, however. = { definition of sumsq }

(sum - map square) |]

Another Linear-Time Operation = { function composition }
sum (map square [])
« Taking all but the last element of a list: = { definition of map }
sum []
init [x] =] = { definition of sum }
init (x: xs) = x : init s 0

Sum of Squares, the Inductive Case

« Consider the case when the input is not empty:

sumsq (x : xs)
= { definition of sumsq }

sum (map square (x : xs))
= { definition of map }

sum (square x : map square zs)
= { definition of sum }

square x + sum (map square xs)
= { definition of sumsq }

square x + sumsq xs

Alternative Definition for sumsq

« From sumsq = sum - map square, we have proved

that

sumsq [] =0
sumsq (x : xs) = square x + sumsq s

« Equivalently, we have shown that sum-map square

is a solution of

i =0

f(x:as) =squarex + f xs

« However, the solution of the equations above is

unique.

« Thus we can take it as another definition of sumsgq.
Denotationally it is the same function; opera-

tionally, it is (slightly) quicker.

« Exercise: try calculating an inductive definition of

count.

How Far Can We Get?
« Specification of maximum segment sum:

mss :: List Int — Int

mss = maximum - map sum - segments

segments :: List a — List (List a)
segments = concat - map inits - tails

- Or, segments s = [zs | ys < tails xs, zs

inits ys].

« From the specification we can calculate a linear time

algorithm.

Remark: Why Functional Programming?

« Time to muse on the merits of functional program-
ming. Why functional programming?

- Algebraic datatype? List comprehension?
Lazy evaluation? Garbage collection? These
are just language features that can be mi-
grated.

- No side effects.! But why taking away a lan-
guage feature?

« By being pure, we have a simpler semantics in
which we are allowed to construct and reason about
programs.

- Inanimperative language we do not even have

fAd+f4=2x fA.

« Ease of reasoning. That’s the main benefit we get.

"Unless introduced in a disciplined way. See Section ??.

