
Programming Languages: Functional Programming
7. Types and Logic

Shin-Cheng Mu

Augumn 2023

Anatomy of a (Programming) Language

• To define a (programming) language, we typically
have to define

– its syntax;

– its type system;

– and its semantics.

• Syntax is considered by some an issue that is done
with. There are occasionally interesting new re-
search results, though.

• We briefly talked about semantics before, and un-
fortunately won’t have time to cover more.

• Type is a hot topic in the area of programming lan-
guages.

What are Types For?

• What does a type system do?

• Kris de Volder: “... making sure that no operations
are performed on inappropriate arguments.”

– e.g. "abc"× 123.

• “A type system is a tractable syntactic method for
proving the absence of certain program behaviours
by classifying phrases according to the kinds of val-
ues they compute” Benjamine Pierce, Types and Pro-
gramming Languages (MIT, 2002).

• A type system guarantees safety properties by lim-
iting the programs you are allowed to write.

• Certain safety properties are not decidable. Type
systems for them cannot be precise, and some safe
programs might be ruled out too.

• A static type system verifies the program text before
it is run.

• A dynamic type system verifies the actual expres-
sion during it is run.

• A practical type system could be a mixture of both.
This course mainly concerns the former.

Motivations for a Type System

• Safety: early detection of certain kinds of errors.

– e.g. trivial things like integer + string.
– Types that guarantees that no communication

error occurs, polynomal running time, etc.

• Efficiency: allowing certain optimisations.

– e.g. if we are sure that array indexing never
goes out of bound, we do not have to do run-
time bound check.

– Some type systems guarantee certain resource
usage: “this variable is used only once.”

• Specification: the type specifies part of what a pro-
gram does.

– As we have seen, programs are often struc-
tured around the datatype it is defined on.

– Type guarantees certain behaviour. E.g. if f ::
List a → a we must have f ·map g = g · f .

– “This function computes sort .”

Nothing Comes for Free
What’s the price?

• A type system rules out certain programs as illegal.
However, a static type system must make a conser-
vative guess.

– The following program does not generate a
run-time type error, but is not typable in
Haskell.

f b = if b then g b else ord (g b)
g b = if b then 65 else ’A’

1

• A more expressive type system makes a finer guess,
and also allows more to be said in the type. How-
ever, you often need to provide a lot more infor-
mation and put more efforts persuading the type
checker that a program is correct.

1 Intuitionistic Propositional
Logic

Propositional Logic

• For reasons that will be clear later, we introduce
some logic before talking about types.

• Propositional logic: a simple form of logic having
some very nice properties.

• Let P be the set of propositional symbols. The syn-
tax of propositional logic is given by

PL = True | False | P
| PL ⇒ PL | PL ∧ PL | PL ∨ PL

• There are several formal systems to prove state-
ments in propositional logic. We will present one
of them.

Natural Deduction for Intuitionistic Propositional
Logic

• Let Γ be a set of propositions that are assumed to
be true.

• The judgement Γ ⊢ P means that “given the as-
sumptions in Γ, P is provable”.

P ∈ Γ Hyp
Γ ⊢ P
Γ, P ⊢ Q

⇒I
Γ ⊢ P ⇒ Q

Γ ⊢ P ⇒ Q Γ ⊢ P
⇒E

Γ ⊢ Q

True-I
Γ ⊢ True

Γ ⊢ False
False-E

Γ ⊢ P

Natural Deduction for Constructive Propositional
Logic

Γ ⊢ P Γ ⊢ Q
∧I

Γ ⊢ P ∧Q

Γ ⊢ P ∧Q ∧E1Γ ⊢ P

Γ ⊢ P ∧Q ∧E2Γ ⊢ Q

Γ ⊢ P ∨I1Γ ⊢ P ∨Q
Γ ⊢ Q ∨I2Γ ⊢ P ∨Q

Γ ⊢ P ∨Q Γ, P ⊢ R Γ, Q ⊢ R
∨E

Γ ⊢ R

Observations...

• Each logical symbol comes with some introduction
rule and some elimination rule...

– no introduction rule for False .

• To prove a proposition, we work upwards from the
bottom. Ex. prove that (P → Q → R) → (P →
Q) → P → R.

• Negation can be defined by ¬P = P → False .

Excluded Middle

• Note that we do not have such a rule:

Excluded-Middle
Γ ⊢ P ∨ ¬P

• This rule is valid in classical logic, which talks about
truth or falsehood — a proposition is either true or
false.

• It is questioned by the constructive (intuitionistic)
school of logicians. Constructive logic is about prov-
ability: it is not always the case that either P or ¬P
has a proof.

• Such different views led to many famous debates in
history.

• Not having such a rule makes intuitionistic incom-
plete (see next slide).

Consistency, Soundness, and Completeness

• A deduction system suggests a way to construct
proofs. But do we know whether the proofs are cor-
rect?

• Correctness is discussed with respect to a seman-
tics:

– Assign each free identifier a true/false value.

– Each logical operator is a function, etc

• A deduction system is

– consistent: if falsehood cannot be proved;

– sound: if every provable proposition is indeed
true in the semantics;

– complete: if every true proposition in the se-
mantics is provable.

• The deduction system for prositional logic (with the
addition of the law of excludedmiddle) has all these
nice properties. It is not so for more complex logic.

2

2 Untyped and Typed λ Calculus

2.1 Untyped λ Calculus
λ Calculus

• A very concise model of computation. LetX be the
set of variables. The syntax for λ calculus is given
by:

Term = λX.Term | Term Term | X

• Operationally, λx.e defines an anonymous function
with local variable x, while e1 e2 is function appli-
cation.

• Occurrences of x in λx.e is bound. A variable occur-
rence that is not bound is called free.

– E.g. in λx.(z (λy.x y)) y, x is bound and z is
free. The first y is bound, the second is free.

λ Calculus: α Conversion and β Reduction

• e1[x\e2]: substitute the free occurrences of x in e1
for e2. More on the next slide.

• α conversion: λx.e ≡ λy.e[x\y] for some y not oc-
curring free in e.

– Meaning that names of bound variables do not
matter.

• β reduction: (λx.e1) e2
β−→ e1[x\e2].

– Mimicking function application.

• These already constitute a Turing-complete model
of computation!

– You can model numbers (search for “Church
encoding”), addition, subtraction...

– You may perform recursion, and even non-
terminating computation! (Search for “Y com-
binator”)

λ Calculus: Substitution

• e1[x\e2]: substitute the free occurrences of x in e1
for e2 — and perform necessary changes of names.

– A seemingly trivial operation whose formal
definition is surprisingly tedious. For this
course we might not need all the details, so
I’ll go with a “learn by examples” approach.

• E.g. (λx.y x)[y\λz.z w] = λx.(λz.z w)x.

• (λx.y x)[x\λz.z] = (λx.y x), since x is bound.

• (x (λy.z x y))[x\y z] ̸= (y z) (λy.z (y z) y)! The
free occurrence of y in y z is “captured”.

– Haskell analog: let f x = let y = ... in ..x...

– f (y+3) ̸= let y = ... in ..(y+3).., since the
y in y + 3 refers to some global y, not the y in
f .

• It ought to be (y z) (λw.z (y z)w). The term
(λy.z x y) is α-converted to avoid name capture.

Summary of λ Calculus

• A simple syntax.

• Two rules: α and β.

• Yet it is Turing-complete — every computation pos-
sible on a Turing machine can be expressed in λ cal-
culus.

• You can see it as a small fragment of Haskell (or,
LISP/Scheme). In fact, λ calculus forms the theo-
retical basis of functional languages.

2.2 Simply Typed λ Calculus

Simply Typed λ Calculus

• One of the typed version of λ calculus.

• We postulate existence of certain basic types, e.g.
Nat , Char , etc.

• Each λ bound variables is annotated with its type.
(It’s like in many programming languages where
you have to specify the types of arguments to func-
tions.)

Term = λ(X :: Type).Term | Term Term | X

• Remark: there is another formulation of simply
typed λ calculus (the Curry style, as opposed to the
Church style here) without type annotations. The
two styles are equivalent, however.

3

Extension with Basic Types

• For illustrative purposes, it is often convenient to
extend λ calculus with some basic types, e.g.

Term = λ(X :: Type).Term | Term Term | X
| Nat | Term⊕ Term

– where ⊕ ∈ {+,−,×}, etc.

• So you can write, e.g. (λ(x :: Nat).λ(y :: Nat).(x+
1)× y) ((λ(x :: Nat).x× x) 2) z

Typing Rules

• A typing context: a mapping from variable names to
types.

– Empty context: ∅, or sometimes just left blank.

– Γ, x :: τ denotes Γ extended with the assump-
tion that x has type τ ((,) is like (:) for lists,
but appending the new element to the right-
hand side).

• In the typing rules below we assume that all bound
names in expressions have been α converted to
unique names, which is possible because there is an
infinite supply of names.

• A typing relation: Γ ⊢ e :: τ says that “the expres-
sion e has type τ in the typing context Γ.”

• Typing rules:

x :: τ ∈ Γ
Var

Γ ⊢ x :: τ

Γ, x :: σ ⊢ e :: τ
→I

Γ ⊢ λ(x : σ).e :: σ → τ

Γ ⊢ e1 :: σ → τ Γ ⊢ e2 :: σ
→E

Γ ⊢ e1 e2 :: τ

• With extensions:

n ∈ Nat
Nat

Γ ⊢ n :: Nat

Γ ⊢ e1 :: Nat Γ ⊢ e2 :: Nat
NatOp

Γ ⊢ e1 ⊕ e2 :: Nat

Several Ways to Use These Rules

• Type checking: given Γ, e, and τ , verify that Γ ⊢ e ::
τ .

• Type inference: given Γ and e, find τ such that Γ ⊢
e :: τ .

• Type inhabitation: given Γ and τ , find e such that
Γ ⊢ e :: τ .

Type Checking Example
See Figure 1

Several Things to Note

• In each step there is only one rule we could apply,
guided by the syntax.

– Typing tree of an expression is composed by
the typing trees of its sub-expressions.

– In the 90’s there was a trend to make every
static analysis a type system, since type sys-
tems are very structured.

Several Things to Note

• Can the same expression be typed by (Bool →
Bool → (Bool → Nat)) → Bool → (Bool →
Nat), given suitable Γ, and extending the typing
rules with those for Bool)?

• Yes. Typing is not unique. Which brings up the
question whether there is a “most general” type we
can give to an expression.

2.3 Type Safety
Type Safety

• Type systems try to guarantee certain safety prop-
erties.

• Subject reduction (or type preservation): if Γ ⊢
e1 :: τ and e1

β−→ e2, we have Γ ⊢ e2 :: τ .

– In words, typable terms are still typable by the
same types after β reduction.

• Progress: if Γ ⊢ e1 :: τ , either e1
β−→ e2 for some

e2, or e1 is a value.

– Definition of a “value” varies. E.g., a normal
form.

– In words, we never get stuck in a state where
no further reductions are possible (counter ex-
ample: 1 + ’c’).

• Slogan “well-typed programs don’t go wrong.”

• A language guarantees certain type safety, that ty-
pable programs don’t go wrong, is called strong typ-
ing.

• But there is always a grey area: what about 1/0?

4

Denote x :: Nat → Nat → Nat , y :: Nat by Γ (we omit the type annotations in λ to save space):

x :: Nat → Nat → Nat ∈ Γ
Var

Γ ⊢ x :: Nat → Nat → Nat

y :: Nat ∈ Γ
Var

Γ ⊢ y :: Nat
→E

Γ ⊢ x y :: Nat → Nat

y :: Nat ∈ Γ
Var

Γ ⊢ y :: Nat
→E

Γ ⊢ (x y) y :: Nat
→I

x :: Nat → Nat → Nat ⊢ λy.(x y) y :: Nat → Nat
→I⊢ λx.λy.(x y) y :: (Nat → Nat → Nat) → Nat → Nat

Figure 1: An example of type checking.

• In theory, all dynamic properties can be captured
by a type system that is expressive enough. How-
ever, such a type system could be very tedious to
use. Design of such systems is still an active topic.

• In practise, we try to capture some reasonable type
errors (1 + ’c’) and leave some to runtime (1/0),
and still call the language strongly typed.

2.4 More Datatypes
Products

• To addmore datatypes to the language, just add the
corresponding introduction and elimination rules.

• For pairs (product type), we have

Γ ⊢ e1 :: σ Γ ⊢ e2 :: τ ×I
Γ ⊢ (e1, e2) :: (σ, τ)

Γ ⊢ e :: (σ, τ)
×E1Γ ⊢ fst e :: σ

Γ ⊢ e :: (σ, τ)
×E2Γ ⊢ snd e :: τ

• Products are like “struct” in C.

Sum

• There is a type we should have talked more about:
data Either a b = Left a | Right b. We will abbre-
viate Either a b to a+ b, Left to L, Right to R.

• Typing rules:

Γ ⊢ e :: σ +I1Γ ⊢ Left e :: σ + τ
Γ ⊢ e :: τ +I2Γ ⊢ Right e :: σ + τ

Γ ⊢ e :: σ + τ Γ, x :: σ ⊢ e1 :: γ Γ, y :: τ ⊢ e2 :: γ
+E

Γ ⊢ case e of Lx → e1;R y → e2 :: γ

• Sums are like “union” in C.

Unit and Empty

• The unit type in Haskell is written (). It has only
one element, also written ().

Unit-I
Γ ⊢ () :: ()

• The empty type consists of no term. You can de-
fine it in Haskell by data Empty . There is only an
elimination rule:

Γ ⊢ e1 :: Empty
Empty-E

Γ ⊢ e2 :: τ

That is, if you manage to construct a term e1 having
type Empty (which cannot happen), you can assign
e2 any type.

3 Curry-Howard Isomorphism
Proof Terms

But aren’t they just natural deduction rules annotated
by terms?

x :: τ ∈ Γ
Var

Γ ⊢ x :: τ
Γ, x :: σ ⊢ e :: τ

→I
Γ ⊢ λx.e :: σ → τ

Γ ⊢ e1 :: σ → τ Γ ⊢ e2 :: σ
→E

Γ ⊢ e1 e2 :: τ

Unit-I
Γ ⊢ () :: ()

Γ ⊢ e1 :: Empty
Empty-E

Γ ⊢ e2 :: τ

Proof Terms

Γ ⊢ e1 :: σ Γ ⊢ e2 :: τ ×I
Γ ⊢ (e1, e2) :: (σ, τ)

Γ ⊢ e :: (σ, τ)
×E1Γ ⊢ fst e :: σ

Γ ⊢ e :: (σ, τ)
×E2Γ ⊢ snd e :: τ

Γ ⊢ e :: σ +I1Γ ⊢ Left e :: σ + τ
Γ ⊢ e :: τ +I2Γ ⊢ Right e :: σ + τ

Γ ⊢ e :: σ + τ Γ, x :: σ ⊢ e1 :: γ Γ, y :: τ ⊢ e2 :: γ
+E

Γ ⊢ case e of Lx → e1;R y → e2 :: γ

5

Programs are Proofs
See Figure 2.

Programs are Proofs
See Figure 3.

Curry-Howard Isomorphism

• It was noticed that programs and proofs have such
correspondence. Types are propositions, programs
are proofs.

• Logic is thus given a computational meaning.

– A proof of P ⇒ Q, for example, is a function
that takes a proof of P and produces a proof
of Q;

– A proof of P ∧Q is a pair consisting a proof of
P and a proof of Q, etc.

• “Given a proposition, find a proof” is the type in-
habitation problem.

• β reduction is proof reduction (proof simplification).

• Propositional logic is a simple logic with nice prop-
erties: every true proposition has a proof, etc. This
nice properties carries over to simply typed λ calcu-
lus.

• There are stronger logic, though. When we design a
new type system, we often ask ourselves what logic
it corresponds to, and vice versa.

More Expressive Logic/Type Systems

• Second-order logic: allowing ∀ that quantifies over
propositions (types):

– e.g. ∀a.(∀b.b → b) → a → a.

– That gives us polymorphic types.

– Haskell’s (original) Hindley-Milner type sys-
tem is a more restrictive version that allows
∀ only at the outer-most level.

• First-order logic: allowing ∀ that quantifies over
terms:

– e.g ∀m,n ∈ Nat .m ⩽ n → 1 +m ⩽ 1 + n.

– Dependent type. A very expressive type system
in which you may express various properties:
e.g. a function returns a sorted list.

More Expressive Logic/Type Systems

• Allowing ∃: existential type. Used to express ab-
stract datatypes.

– ∃a.a ∧ (a → a → a): some type that has a
base element and an “addition” operator.

• Subtyping: Nat ⩽ Real ⩽ Complex ... related to
ad-hoc polymorphism.

• If we allow everything in the typing context to be
used exactly once, e.g:

Γ1 ⊢ e1 :: σ → τ Γ2 ⊢ e2 :: σ
→E

Γ1 ⊎ Γ2 ⊢ e1 e2 :: τ

– whereΓ1⊎Γ2 denotes disjoint union —Γ1 and
Γ2 must not share elements,

– we get linear type. Used to reason about usage
of resources.

More Expressive Logic/Type Systems

• Recall the law of excluded middle:

Excluded-Middle
Γ ⊢ P ∨ ¬P

– If we want such a rule for the types, what is
the corresponding term?

– It has to do with continuations — think of it as
a kind of “go-to”.

• And many more. Research on types is still a hot
topic.

4 Polymorphic λ Calculus
Polymorphism

• Allowing values of different types to be handled
through a uniform interface.

• Christopher Strachey descriped two kinds of poly-
morphism:

• Ad-hoc polymorphism: allowing potentially differ-
ent code (e.g. + for Int and Float) to “look the
same”.

– e.g. function overloading, and method over-
loading in many OO languages.

– e.g. type classes (Eq a ⇒ . . .) in Haskell.

6

Let Γ = P → Q → R,P → Q,P . Prove that (P → Q → R) → (P → Q) → P → R.

P → Q → R ∈ Γ
Hyp

Γ ⊢ P → Q → R
P ∈ Γ Hyp
Γ ⊢ P

→E
Γ ⊢ Q → R

P → Q ∈ Γ
Hyp

Γ ⊢ P → Q
P ∈ Γ Hyp
Γ ⊢ P

→E
Γ ⊢ Q

→E
Γ ⊢ R →I

P → Q → R,P → Q ⊢ P → R
→I

P → Q → R ⊢ (P → Q) → P → R
→I⊢ (P → Q → R) → (P → Q) → P → R

Figure 2: Proving (P → Q → R) → (P → Q) → P → R

Let Γ = f :: P → Q → R, g :: P → Q, x :: P .

f :: P → Q → R ∈ Γ
Var

Γ ⊢ f :: P → Q → R
x :: P ∈ Γ

Var
Γ ⊢ x :: P

→E
Γ ⊢ f x :: Q → R

g :: P → Q ∈ Γ
Var

Γ ⊢ g :: P → Q
x :: P ∈ Γ

Var
Γ ⊢ x :: P

→E
Γ ⊢ g x :: Q

→E
Γ ⊢ f x (g x) :: R

→I
f :: P → Q → R, g :: P → Q ⊢ λx.f x (g x) :: P → R

→I
f :: P → Q → R ⊢ λg.λx.f x (g x) :: (P → Q) → P → R

→I⊢ λf.λg.λx.f x (g x) :: (P → Q → R) → (P → Q) → P → R

Figure 3: The term λf.λg.λx.f x (g x) sufficiently records the proof, from which we can reconstruct the proof tree.

• Parametric polymorphism: allowing the same piece
of code, which does not depend on the type of the
input data, to be used on a wide range of types.

– e.g. reverse :: List a → List a in Haskell.

• We will only briefly talk about the second kind.

Polymorphic λ Calculus (System F)

• Proposed by Girard.

• An additional construct in the syntax of types
(where T ranges over type variables):

τ = Unit | Empty | Nat | T
| τ → τ | (τ, τ) | τ + τ | ∀T .τ

• And two additional construct of terms:

Γ ⊢ e :: τ a not free in Γ ∀I
Γ ⊢ Λa.e :: ∀a.τ

Γ ⊢ e :: ∀a.τ ∀E
Γ ⊢ e σ :: τ [a\σ]

Terms may take types as arguments!

• One more reduction rule: (Λa.e) σ
β−→ e[a\σ].

Example: Polymorphic const
Recall the function const x y = x in Haskell. The

corresponding function in System F:

x :: a ∈ {x :: a, y :: b}
Var

x :: a, y :: b ⊢ x :: a
→ I

x :: a ⊢ λ(y :: b).x :: b → a
→ I⊢ λ(x :: a).λ(y :: b).x :: a → b → a

∀I⊢ Λb.λ(x :: a).λ(y :: b).x :: ∀b.a → b → a
∀I⊢ Λa.Λb.λ(x :: a).λ(y :: b).x :: ∀a.∀b.a → b → a

Example: Using Polymorphic Functions
See Figure 4.

Second-Order Logic

• Recall Curry-Howard isomorphism? What logic
does this type system correspond to?

• Ans: second-order (intuitionistic) logic. That is,
propositional logic extended with ∀, and in all ∀a,
a is a type (proposition).

– There ought to be an ∃ operator too, but it can
be simulated by ∀ and is often omitted.

7

Let Γ = f :: ∀a.a → a. Abbreviate Bool to B.

f :: ∀a.a → a ∈ Γ
Var

Γ ⊢ f :: ∀a.a → a
∀E

Γ ⊢ f Nat :: Nat → Nat
Nat

Γ ⊢ 3 :: Nat
→ E

Γ ⊢ f Nat 3 :: Nat

(omitted)
Γ ⊢ f B True :: B

×I
Γ ⊢ (f Nat 3, f B True) :: (Nat ,B)

→ I⊢ λf.(f Nat 3, f B True) :: (∀a.a → a) → (Nat ,B)

Figure 4: Example: type checking a polymorphic function.

• 2nd-order logic: very expressive. You can encode all
inductive and coinductive datatypes in it! (Search
for Church encoding.)

• Sound. But no deductive system for it can be com-
plete — there are true propositions that cannot be
proved. Thus type inhabitance for it is undecidable.

Second-Order Logic/Polymorphic λ Calculus

• Type inference is undecidable.

• Type checking is decidable — for the Church style
(where λ abound variables are annotated with
types).

– For Curry style, even type checking is unde-
cidable.

Polymorphic Datatypes

• When we define a datatype data Nat = Zero |
Suc Nat in Haskell, we have introduced:

– a type Nat ,

– two data constructors Zero :: Nat and Suc ::
Nat → Nat .

• When we define a polymorphic data type
data List a = [] | a : List a in Haskell, we
have introduced:

– a type constructor List — a function from a
type to a type, e.g. from Int to List Int .

– two data constructors []_ :: ∀a.List a, and
(:_) :: ∀a.a → List a → List a.

– To build a list of Int we should have written,
e.g, 1 :Int 2 :Int 3 :Int []Int . But in Haskell we
always omit the type application (since they
can be inferred).

Comparison

• Type of a polymorphic function in Haskell, e.g, zip ::
List a → List b → List (a, b), should actually be
∀a.∀b.List a → List b → List (a, b).

• In Haskell we omit all the type applica-
tions. E.g. we say zip [1, 2] "ab" instead of
zip Nat Char [1, 2] "ab".

• Finally, Haskell uses a weaker system of polymor-
phic type:

– Names of types starting with lower-case char-
acters are assumed to be ∀-quantified. An-
other way to say that is “lower-cased types are
type variables.”

– All ∀s appear at outer-most positions only.
Thus List a → List b → List (a, b) is seen
as ∀a.∀b.List a → List b → List (a, b).

– The type (∀a.a → a) → (Nat ,B), which we
have seen previously, is not allowed in (stan-
dard) Haskell 98!

– Thus the ∀ symbol is not explicit written.

• Why these restrictions? To allow type inference!

5 Hindley-Milner Style Type In-
ference

Type Inference
Example: find τ such that ⊢ λx.λy.x :: τ . Note that

x and y are no longer annotated with types. We have to
somehow find them out.

x :: e ∈ {x :: b, y :: d}
Var

x :: b, y :: d ⊢ x :: e
→ I

x :: b ⊢ λy.x :: c
→ I⊢ λx.λy.x :: a

8

a = b → c

c = d → e

e = b

Thus τ = ∀b.∀d.b → d → b.

Hindley-Milner Style Type Inference

• Assume the unknown types to be type variables.

• Proceed with the typing rules of simply typed λ cal-
culus, and use a unification engine to discover con-
straints between the type variables.

– Algorithms for unification can be quite non-
trivial. We do not go into the details for this
course, and rely merely on your intuition to
perform the unification manually.

• If the procedure succeeds, ∀-quantify all the uncon-
strained variables.

• The procedure fails if we encounter circular con-
straints: a = . . . a

Example of a Type Error

f :: e → c ∈ {f :: b}
Var

f :: b ⊢ f :: e → c

f :: e ∈ {f :: b}
Var

f :: b ⊢ f :: e
→ E

f :: b ⊢ f f :: c
→ I⊢ λf.f f :: a

a = b → c

b = e → c

b = e

The constraints imply e = e → c, a circular type. So we
signal a type error.

Hindley-Milner Type Inference

• The Hindley-Milner system is essentially a
monomorphic type system disguised as polymor-
phic.

• By doing so it found a nice balance — limited poly-
morphism, with type inference.

• Adopted by some early typed functional languages.
It was believed that programmers no longer need to
write types.

• Later, people were not satisfied with its limitation,
and the Haskell type system was extended with
more features (e.g. those more like System F, type
classes, etc) but we lost full type inference.

More on Types

• Many other aspects on types that we won’t have
time to talk about:

• “free theorems” of polymorphic functions.

– What can we say about a function f ::
∀a.List a → a?

– f ·map g = g · f .

• Existential type (∃) is dual to ∀, and implements ab-
stract data types (e.g ∃t.Printable t).

• Subtyping: Nat ⩽ Real ⩽ Complex ... related to
ad-hoc polymorphism.

• What type corresponds to first order logic? Depen-
dent type, a highly expressive type system.

• And many more. Research on types is still a hot
topic.

9

