
Programming Languages: Functional Programming
Practicals 1: Functions and Definitions

Shin-Cheng Mu

Sep. 07, 2023

You should have installed GHC, with its commandline interface GHCi. Open your favourite
text editor, create a new plain text file. The filename extension must end in .hs. This will be
your working file for this practical. Type ghci <filename>.hs in the command line to load the
working file into GHCi.

1. Define a functionmyeven :: Int → Bool that determines whether the input is an even number.
You may use the following functions:

mod :: Int → Int → Int ,
(= =) :: Int → Int → Bool .

(Types of the functions written above are not in their most general form.)

Solution:

myeven :: Int → Bool
myeven x = x ‘mod ‘ 2 = = 0 .

2. Define a function that computes the area of a circle with given radius r (using 22 / 7 as an
approximation to π). The return type of the function might be Float.

Solution:

area :: Float → Float
area r = (22 / 7)× r × r .

3. Part-time students in Institute of Information Science are paid NTD 130 per hour. Define a
function payment :: Int → Int that, when applied to the numbers of weeks a student work,
compute the amount of money the Institute has to pay the student.

1



(a) Assume that there are five working days in a week, eight working hours per day. Define
payment . For clarity, use let to define local variables recording number of days worked,
number of hours worked, etc.

Solution:

payment :: Int → Int
payment weeks = let days = 5× weeks

hours = 8× days
in 130× hours .

(b) Define payment again, but declare the local variables usingwhere. Which style do you
prefer?

Solution:

payment :: Int → Int
payment weeks = 130× hours
where hours = 8× days

days = 5× weeks .

(c) The regulation states that students are considered workers, and if a worker works for
more than 19 weeks, the Institute has to pay, in addition to the salary, health insurance
and pension reserves for the worker. The amount is 6% of the worker’s salary.
Update definition of payment in the form:

payment :: Int → Int
payment weeks | weeks > 19 = …

| otherwise = …

You may need a function fromIntegral to convert Int to Float, and a function round that
rounds a floating point number to the nearest integer.
In this case, should you use let or where?

Solution:

payment :: Int → Int
payment weeks | weeks > 19 = round (fromIntegral baseSalary × 1.06)

| otherwise = baseSalary
where baseSalary = 130× hours

hours = 8× days
days = 5× weeks .

Page 2



For this situation,whereworks better than let, sincewewant the scope of baseSalary
to extend to both guarded branches.

4. More on let.

(a) Guess what the value of nested would be. Type it into your working file and evaluated
in in GHCi to see whether you guessed right. Note that indentation matters.

nested :: Int
nested = let x = 3

in (let x = 5
in x + x) + x .

Solution: nested evaluates to 13, since the x in x + x refers to 5 and the x in .. + x
refers to 3.

(b) Guess what the value of recursive would be. Try it in GHCi.

recursive :: Int
recursive = let x = 3

in let x = x + 1
in x .

Solution: The computation does not terminate, since the x in x + 1 refers to itself.

5. Type in the definition of smaller into your working file.

smaller :: Int → Int → Int
smaller x y = if x ⩽ y then x else y .

Then try the following:

(a) In GHCi, type :t smaller to see the type of smaller .

(b) Try applying it to some arguments, e.g. smaller 3 4, smaller 3 1.

(c) Use :t to see the type of smaller 3 4.

(d) Use :t to see the type of smaller 3.

(e) In your working file, define a new function st3 = smaller 3.

(f) Find out the type of st3 in GHCi. Try st3 4, st3 1. Explain the results you see.

6. More practice on curried functions.

Page 3



(a) Define a function poly such that poly a b c x = a× x2 + b× x + c. All the inputs and the
result are of type Float .

(b) Reuse poly to define a function poly1 such that poly1 x = x2 + 2× x + 1.

(c) Reuse poly to define a function poly2 such that poly2 a b c = a× 22 + b × 2 + c.

Solution:

poly :: Float → Float → Float → Float → Float
poly a b c x = a× x × x + b × x + c

poly1 :: Float → Float
poly1 = poly 1 2 1

poly :: Float → Float → Float → Float
poly2 a b c = poly a b c 2

7. Type in the definition of square in your working file.

(a) Define a function quad :: Int → Int such that quad x computes x4.

Solution:

quad :: Int → Int
quad x = square (square x) .

(b) Type in this definition into your working file. Describe, in words, what this function
does.

twice :: (a → a) → (a → a)
twice f x = f (f x) .

(c) Define quad using twice.

Solution:

quad :: Int → Int
quad = twice square .

8. Replace the previous twice with this definition:

twice :: (a → a) → (a → a)
twice f = f · f .

Page 4



(a) Does quad still behave the same?

(b) Explain in words what this operator (·) does.

9. Functions as arguments, and a quick practice on sectioning.

(a) Type in the following definition to your working file, without giving the type.

forktimes f g x = f x × g x .

Use : t in GHCi to find out the type of forktimes. You will end up getting a complex type
which, for now, can be seen as equivalent to

(t → Int) → (t → Int) → t → Int .

Can you explain this type?

(b) Define a function that, given input x , use forktimes to compute x2 + 3 × x + 2. Hint:
x2 + 3× x + 2 = (x + 1)× (x + 2).

Solution:

compute :: Int → Int
compute = forktimes (+1) (+2) .

(c) Type in the following definition into your working file: lift2 h f g x = h (f x) (g x). Find
out the type of lift2. Can you explain its type?

Solution:

lift2 :: (a → b → c) → (d → a) → (d → b) → d → c .

(d) Use lift2 to compute x2 + 3× x + 2.

Solution:

compute :: Int → Int
compute = lift2 (×) (+1) (+2) .

10. Let the following identifiers have type:

f :: Int → Char
g :: Int → Char → Int
h :: (Char → Int) → Int → Int
x :: Int
y :: Int
c :: Char

Page 5



Which of the following expressions are type correct?

1. (g · f ) x c

2. (g x · f ) y
3. (h · g) x y

4. (h · g x) c

5. h · g x c

You may type the expressions into Haskell and see whether they type check. To define f , for
example, include the following in your working file:

f :: Int → Char
f = undefined

However, it is better if you can explain why the answers are as they are.

Solution:

1. (g · f ) x c. We calculate:

(g · f ) x c
= { function application binds to the left }
((g · f ) x) c

= { definition of (·) }
(g (f x)) c .

One can then see that there is a type error: f x is a Char, while g expects Int as its
first argument.

2. (g x · f ) y . We calculate:

(g x · f ) y
= { definition of (·) }
g x (f y) ,

which type-checks because

• we have g :: Int → Char → Int, and

• x is an Int, thus g x :: Char → Int.

• Furthermore, f y is a Char. Thus g x (f y) :: Int.

The result type is Int.

Page 6



3. (h · g) x y . We calculate:

(h · g) x y
= { function application binds to the left }
((h · g) x) y

= { definition of (·) }
(h (g x)) y .

Now we reason:

• Recall h :: (Char → Int) → Int → Int.

• Since g :: Int → Char → Int and x :: Int, we have g x :: Char → Int

• Thus h (g x) :: Int → Int.

• Since y :: Int, we have (h (g x)) y :: Int.

Thus the expression type-checks, with type Int.

4. (h · g x) c. We calculate:

(h · g x) c
= { definition of (·) }
h (g x c) .

We reason:

• The part g x c type-checks, since g :: Int → Char → Int, x :: Int, and c :: Char.
We have that g x c :: Int.

• However, h::(Char → Int) → Int → Int expects a function of type Char → Int
as an argument, not Int. Thus the expression fails to type-check.

5. h ·g x c. Similar to the reasoning above, g x c :: Int. However, function composition
(·) expect to compose functions together, and g x c is not a function. Thus the
expression fails to type-check.

Page 7


