
Programming Languages
Practicals 3. Definition and Proof by Induction

Shin-Cheng Mu

Autumn 2023

1. Prove that length distributes into (++):

length (xs ++ ys) = length xs + length ys .

2. Prove: sum · concat = sum ·map sum .

3. Prove: filter p ·map f = map f · filter (p · f).
Hint: for calculation, it might be easier to use this definition of filter :

filter p [] = []
filter p (x : xs) = if p x then x : filter p xs

else filter p xs

and use the law that in the world of total functions we have:

f (if q then e1 else e2) = if q then f e1 else f e2

You may also carry out the proof using the definition of filter using guards:

. . .
filter p (x : xs) | p x = . . .

| otherwise = . . .

You will then have to distinguish between the two cases: p x and ¬ (p x), which makes the
proof more fragmented. Both proofs are okay, however.

4. Reflecting on the law we used in the previous exercise:

f (if q then e1 else e2) = if q then f e1 else f e2

Can you think of a counterexample to the law above, when we allow the presence of ⊥?
What additional constraint shall we impose on f to make the law true?

5. Prove: take n xs ++ drop n xs = xs , for all n and xs .

1

6. Define a function fan :: a → List a → List (List a) such that fan x xs inserts x into the
0th, 1st. . .nth positions of xs , where n is the length of xs . For example:

fan 5 [1, 2, 3, 4] = [[5, 1, 2, 3, 4], [1, 5, 2, 3, 4], [1, 2, 5, 3, 4], [1, 2, 3, 5, 4], [1, 2, 3, 4, 5]] .

7. Prove: map (map f) · fan x = fan (f x) · map f , for all f and x. Hint: you will need the
map-fusion law, and to spot that map f · (y :) = (f y :) ·map f (why?).

8. Define perms :: List a → List (List a) that returns all permutations of the input list. For
example:

perms [1, 2, 3] = [[1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 3, 2], [3, 1, 2], [3, 2, 1]] .

You will need several auxiliary functions defined in the lectures and in the exercises.

9. Prove: map (map f) ·perm = perm ·map f . You may need previously proved results, as well
as a property about concat andmap: for all g, we havemap g·concat = concat ·map (map g).

10. Define inits :: List a → List (List a) that returns all prefixes of the input list.

inits "abcde" = ["", "a", "ab", "abc", "abcd", "abcde"].

Hint: the empty list has one prefix: the empty list. The solution has been given in the lecture.
Please try it again yourself.

11. Define tails :: List a → List (List a) that returns all suffixes of the input list.

tails "abcde" = ["abcde", "bcde", "cde", "de", "e", ""].

Hint: the empty list has one suffix: the empty list. The solution has been given in the lecture.
Please try it again yourself.

12. The function splits :: List a → List (List a,List a) returns all the ways a list can be split
into two. For example,

splits [1, 2, 3, 4] = [([], [1, 2, 3, 4]), ([1], [2, 3, 4]), ([1, 2], [3, 4]),
([1, 2, 3], [4]), ([1, 2, 3, 4], [])] .

Define splits inductively on the input list. Hint: you may find it useful to define, in awhere-
clause, an auxiliary function f (ys , zs) = . . . that matches pairs. Or you may simply use
(λ (ys , zs) → . . .).

13. An interleaving of two lists xs and ys is a permutation of the elements of both lists such that
the members of xs appear in their original order, and so does the members of ys . Define
interleave :: List a → List a → List (List a) such that interleave xs ys is the list of
interleaving of xs and ys . For example, interleave [1, 2, 3] [4, 5] yields:

[[1, 2, 3, 4, 5], [1, 2, 4, 3, 5], [1, 2, 4, 5, 3], [1, 4, 2, 3, 5], [1, 4, 2, 5, 3],
[1, 4, 5, 2, 3], [4, 1, 2, 3, 5], [4, 1, 2, 5, 3], [4, 1, 5, 2, 3], [4, 5, 1, 2, 3]].

Page 2

14. A list ys is a sublist of xs if we can obtain ys by removing zero or more elements from xs . For
example, [2, 4] is a sublist of [1, 2, 3, 4], while [3, 2] is not. The list of all sublists of [1, 2, 3] is:

[[], [3], [2], [2, 3], [1], [1, 3], [1, 2], [1, 2, 3]].

Define a function sublist :: List a → List (List a) that computes the list of all sublists of the
given list. Hint: to form a sublist of xs , each element of xs could either be kept or dropped.

15. Consider the following datatype for internally labelled binary trees:

data Tree a = Null | Node a (Tree a) (Tree a) .

(a) Given (↓) :: Nat → Nat → Nat , which yields the smaller one of its arguments, define
minT :: Tree Nat → Nat , which computes the minimal element in a tree. (Note: (↓) is
actually called min in the standard library. In the lecture we use the symbol (↓) to be
brief.)

(b) Define mapT :: (a → b) → Tree a → Tree b, which applies the functional argument
to each element in a tree.

(c) Can you define (↓) inductively on Nat?

(d) Prove that for all n and t, minT (mapT (n+) t) = n + minT t. That is, minT ·
mapT (n+) = (n+) ·minT .

Page 3

