Programming Languages
Practicals 3. Definition and Proof by Induction

Shin-Cheng Mu

Autumn 2023

1. Prove that length distributes into (+):

length (zs +H-ys) = length xs + length ys .

Solution: Prove by induction on the structure of zs.
Case s := [|:
length ([] -+ ys)
= { definition of (-+) }
length ys
= { definition of (+) }
0 + length ys
= { definition of length }
length [| + length ys

Case 75 := x : xs:

length ((z : xs) Hys)

= { definition of (++) }
length (x : (zs +H ys))

= { definition of length }
1 + length (xs H ys)

= { by induction }
1 + length xs + length ys

= { definition of length }
length (x : xs) + length ys

Note that we in fact omitted one step using the associativity of (+).

2. Prove: sum - concat = sum - map sum.

Solution: By extensional equality, sum - concat = sum - map sum if and only if
(sum - concat) zss = (sum - map sum) zss,

for all zss, which, by definition of (), is equivalent to
sum (concat xss) = sum (map sum xss),

which we will prove by induction on wss.

Case 1ss := [|:

sum (concat []))

= { definition of concat }
sum [|

= { definition of map }

sum (map sum [])

Case 1ss := xs : xss:

sum (concat (s : 1s))
= { definition of concat }
sum (xs +H-(concat ss))
= { lemma: sum distributes over ++ }
sum s + sum (concat ss)
= { by induction }
sum xs + sum (map sum ss)
= { definition of sum }
sum (sum s : map sum ss)
= { definition of map }

sum (map sum (s : xss)).
The lemma that sum distributes over ++, that is,
sum (xs +H ys) = sum s + sum ys,

needs a separate proof by induction. Here it goes:

Case zs := []:

sum ([] + ys)

Page 2

= { definition of (-++) }
sum ys

= { definition of (+) }
0+ sum ys

= { definition of sum }

sum []+ sum ys.
Case zs :=x : zs:

sum ((x : xs) +H ys)

= { definition of (++) }
sum (z : (zs +H ys))

= { definition of sum }
x + sum (xzs +H ys)

= { induction }
x + (sum zs + sum ys)

= { since (+) is associative }
(x + sum zs) + sum ys

= { definition of sum }

sum (z : xs) + sum ys.

3. Prove: filter p- map f = map f - filter (p- f).
Hint: for calculation, it might be easier to use this definition of filter:

filter p [] =]
filter p (x : zs) = if p x then x : filter p zs
else filter p xs

and use the law that in the world of total functions we have:
f (if ¢ then e; else ey) = if g then f e; else f ey
You may also carry out the proof using the definition of filter using guards:
filterp (x:zs) |px=...
| otherwise = . ..

You will then have to distinguish between the two cases: p and = (p), which makes the
proof more fragmented. Both proofs are okay, however.

Page 3

Solution:

filter p - map f = map f - filter (p- f)
= { extensional equality }

(Vas =2 (filter p - map f) s = (map f - filter (p- f)) xs)
= { definition of () }

(Vs =2 filter p (map f xs) = map f (filter (p- f) zs)).

We proceed by induction on xs.

Case zs := []:

filter p (map f[])
= { definition of map }

filter p[]

= { definition of filter }

— H{ definition of map }
map f []

= { definition of filter }
map [(filter (p- f) [])

Case zs := x : zs:

filter p (map f (z : zs))
= { definition of map }

filter p (f = : map f xs)
= { definition of filter }

if p (f x) then f z : filter p (map f xs) else filter p (map f xs)
= { induction hypothesis }

if p (f «) then f x : map f (filter(p- f) xs) else map f (filter (p- f) xs)
= { defintion of map }

if p (f x) then map f (x : filter (p- f) xs) else map f (filter (p- f) xs)
= { since f (if ¢ then e; else e5) = if g then [e; else f es }

map f (if p (f x) then x : filter (p- f) zs else filter (p - f) xs)
= { definition of (-) }

map f (if (p- f) x then z : filter (p- f) zs else filter (p- f) zs)
= { definition of filter }

map f (filter (p- f) (x : 25))

Page 4

4. Reflecting on the law we used in the previous exercise:
f (if g then e, else ey) = if g then f e else f ey

Can you think of a counterexample to the law above, when we allow the presence of 1?
What additional constraint shall we impose on f to make the law true?

Solution: Let f = const 1 (where const x y = x), and ¢ = L. We have:

const 1 (if L then e; else e3)

= { definition of const }
1

1
= { if is strict on the conditional expression }
if | then f e else f e;

The rule is restored if f is strict, thatis, f 1. = L.

5. Prove: take n xs ++ drop n xs = xs, for all n and xs.

Solution: By induction on n, then induction on zs.

Casen =0

take 0 zs H- drop 0 xs

= { definitions of take and drop }
[+ s

= { definition of (++) }

IS.

Casen :=1, nand zs := []

take (14 n) []+drop (14 n) []
= { definitions of take and drop }
[]+(]
= { definition of (++) }

[]-

Casen:=1,nandzs:=x:zs

take (14 n) (z : xs) ++ drop (14 n) (x : zs)

Page 5

= { definitions of take and drop }
(x : take n xs) ++ drop n zs

= { definition of (++) }
x @ take n xs H drop n xs

= { induction}

T . XS.

6. Define a function fan :: a — List a — List (List a) such that fan = zs inserts x into the
Oth, 1st...nth positions of xs, where n is the length of zs. For example:

fan 511,2,3,4] = [[5,1,2,3,4],[1,5,2,3,4],[1,2,5,3,4],[1,2,3,5,4],[1, 2, 3,4, 5]] .

Solution:
fan :a — List a — List (List a)
fan z (] = [[]]

Jana (y:ys) = (x:y:ys): map (y) (fan 2ys)

7. Prove: map (map f) - fan x = fan (f x) - map f, for all f and z. Hint: you will need the
map-fusion law, and to spot that map f - (y:) = (f y:) - map f (why?).

Solution: This is equivalent to proving that, for all f, x, and zs:

map (map f) (fan x xs) = fan (f x) (map f xs) .

Induction on zs.
Case s := []:

map (map f) (fan z [])
= { definition of fan }

map (map f) [[z]]

= { definition of map }
[[f =]

= { definition of fan }
fan(f) []

= { definition of fan }
fan (f x) (map f[]) .

Page 6

Case zs := vy : ys:

map (map [) (fan x (y : ys))
= { definition of fan }

map (map f) ((z:y: ys) : map (y :) (fan x ys))
= { definition of map }

map f (x :y :ys) : map (map f) (map (y :) (fan x ys)))
= { map-fusion }

map [(x 2y :ys) : map (map f-(y:)) (fan z ys)
= { definition of map }

map f (x:y:ys): map ((fy:)- map f) (fan x ys)
= { map-fusion }

map f(x :y:ys) : map (fy:) (map (map f) (fan z ys))
= { induction }

map [(x :y :ys): map (fy:) (fan (f) (map f ys))
= { definition of map }

(f x: fy:map fys):map (fy:) (fan (f x) (map [ys))
= { definition of fan }

fan (f x) (fy : map f ys)
= { definition of map }

fan (f x) (map f (y : ys)) .

8. Define perms :: List a — List (List a) that returns all permutations of the input list. For
example:

perms [1,2,3] = [[1,2,3],[2,1,3],[2,3,1],[1,3,2],[3,1,2],[3,2,1]] .

You will need several auxiliary functions defined in the lectures and in the exercises.

Solution:

perms :: List a — List (List a)

perms [] =[]
perms (x : xs) = concat (map (fan x) (perms zs))

9. Prove: map (map f)-perm = perm-map f. You may need previously proved results, as well
as a property about concat and map: for all g, we have map g-concat = concat-map (map g).

Page 7

Solution: This is equivalent to proving that, for all f and xs:

map (map f) (perm zs) = perm (map f xs) .

Induction on zs.
Case zs := []:

map (map f) (perm [])
= { definition of perm }

map (map f) [H]
= { definition of map }

[[]]

= { definition of perm }
perm []

= { definition of map }

perm (map f[]) .

Case zs := x : zs:

map (map f) (perm (x : zs))
= { definition of perm }
map (map f) (concat (map (fan x) (perm zs)))
= { since map g - concat = concat - map (map g) }
concat (map (map (map f))(map (fan x) (perm zs)))
= { map-fusion }
concat (map (map (map f) - fan x) (perm xs))
= { previous exercise }
concat (map (fan (f x) - map f) (perm xs))
= { map-fusion }
concat (map (fan (f x)) (map (map f) (perm zs)))
= { induction }
concat (map (fan (f x)) (perm (map f xs)))
= { definition of perm }
perm (f x : map f zs)
= { definition of map }
perm (map f (z : xs)) .

10. Define inits :: List a — List (List a) that returns all prefixes of the input list.
ZTLZtS "abcde" — [II n’ uau7 nabu7 "abc", "abcd", "abcde"].

Hint: the empty list has one prefix: the empty list. The solution has been given in the lecture.
Please try it again yourself.

Page 8

Solution:

inits :: List a — List (List a)

inits [] = [[]]

inits (x : xs) =[] : map (x) (inits zs) .

11. Define tails :: List a — List (List a) that returns all suffixes of the input list.

tails "abcde" — [nabcden7 ||bcdeu7 ucdell7 ndeu7 ueu] u]‘

Y

Hint: the empty list has one suffix: the empty list. The solution has been given in the lecture.
Please try it again yourself.

Solution:
tails :: List a — List (List a)
tails [] =[]

tails (x : xs) = (x : xs) : tails xs .

12. The function splits :: List a — List (List a, List a) returns all the ways a list can be split
into two. For example,

splits [172’374] = [(Ha[1’27374D7([1]7[27374])7([1’2]7[374])7
((1,2,3],[4]), ([1,2,3,4], [])] -

Define splits inductively on the input list. Hint: you may find it useful to define, in a where-

clause, an auxiliary function f (ys, zs) = ... that matches pairs. Or you may simply use
(A (ys,zs) = ...).

Solution:

splits :: List a — List (List a, List a)

splits |] = [([], (D]
splits (x = zs) = (][], : xs) : map cons1 (splits zs) ,
where consl (ys, zs) = (z: ys, zs) .

If you know how to use A expressions, you may:

splits :: List a — List (List a, List a)

splits [] = [([],[])]

splits (x = zs) = ([],x : zs) : map (X (ys, zs) — (x : ys, zs)) (splits xs) .

Page 9

13. An interleaving of two lists zs and ys is a permutation of the elements of both lists such that
the members of zs appear in their original order, and so does the members of ys. Define
interleave :: List a — List a — List (List a) such that interleave xs ys is the list of
interleaving of zs and ys. For example, interleave [1,2,3] [4,5] yields:

[[1,2,3,4,5],[1,2,4,3,5],[1,2,4,5,3],[1,4,2,3,5], [1,4,2,5,3],
[1,4,5,2,3],[4,1,2,3,5],[4,1,2,5,3],[4,1,5,2,3],[4,5,1, 2, 3]l.

Solution:
interleave :: List a — List a — List (List a)
interleave [] ys = [ys]
interleave xs [] = [xs]

interleave (x : xs) (y : ys) = map (z :) (interleave xs (y : ys)) H
map (y :) (interleave (x : xs) ys) .

14. Alist ys is a sublist of xs if we can obtain ys by removing zero or more elements from zs. For
example, [2,4] is a sublist of [1, 2, 3, 4], while [3, 2] is not. The list of all sublists of [1,2, 3] is

[0, [31, 121, 12, 3], [1], [1, 3], [1, 2], [1, 2, 3]].

Define a function sublist :: List a — List (List a) that computes the list of all sublists of the
given list. Hint: to form a sublist of zs, each element of xs could either be kept or dropped.

Solution:
sublist :: List a — List (List a)
sublist [] = [[]]

sublist (x : xs) = xss + map (x :) zss
where zss = sublist xs .

The righthand side could be sublist zs ++ map (x :) (sublist zs) (but it could be much
slower).

15. Consider the following datatype for internally labelled binary trees:
data Tree a = Null | Node a (Tree a) (Tree a) .

(a) Given (]) :: Nat — Nat — Nat, which yields the smaller one of its arguments, define
minT :: Tree Nat — Nat, which computes the minimal element in a tree. (Note: (]) is

actually called min in the standard library. In the lecture we use the symbol (]) to be
brief.)

Page 10

Solution:

minT ;2 Tree Nat — Nat
minT Null = mazBound
minT (Nodex tu) = x| minT t | minT u .

(b) Define mapT :: (a — b) — Tree a — Tree b, which applies the functional argument

to each element in a tree.

Solution:
mapT (@ —b) = Tree a — Tree b
mapT f Null = Null

mapT f (Node x tu) = Node (f z) (mapT ft) (mapT fu) .

(c) Can you define ({) inductively on Nat?

Solution:
() :: Nat — Nat — Nat
0dn =0
(1ym) L (1en) = 14 (min) .

(d) Prove that for all n and t, minT (mapT (n+) t) = n + minT t. That is, minT -

mapT (n+) = (n+) - minT.

Solution: Induction on ¢.
Case t := Null. Omitted.
Case t := Node z ¢ w.

minT (mapT (n+) (Node x t u))
= { definition of mapT }
minT (Node (n + x) (mapT (n+) t) (mapT (n+) u))
= { definition of minT }
(n+x))} minT (mapT (n+) t)) L minT (mapT (n+) u)
= { by induction }
(n+2x)d(n+minT t)] (n+ minT u)
— {lemma: (n+2) L (n+y)=n+ (@ ly))

Page 11

n+ (xlminT t{minT u)
= { definition of minT }
n+ minT (Node = t u) .

The lemma (n + x) | (n +y) = n+ (x | y) can be proved by induction on n, using
inductive definitions of (+) and ({).

Page 12

