Programming Languages: Functional Programming
Practicals 4. Program Calculation

Shin-Cheng Mu

Autumn 2023

1. Let descend be defined by:

descend :: Nat — List Nat
descend 0 = []

descend (1. n) =1, n: descend n .

(a) Let sumseries = sum - descend. Synthesise an inductive definition of sumseries.

(b) The function repeatN :: (Nat, a) — List a is defined by
repeatN (n,x) = map (const x) (descend n) .

Thus repeatN (n,z) produces n copies of = in a list. E.g. repeatN (3,’a’) = "aaa".
Calculate an inductive definition of repeatN.

(c) The function rld :: List (Nat, a) — List a performs run-length decoding;:

rld = concat - map repeatN .

For example, rld [(2,°a’),(3,°b’), (1, ’c’)] = "aabbbc". Come up with an inductive
defintion of rid.

2. There is another way to define pos such that pos = xs yields the index of the first occurrence
of z in zs:

pos :: Eq a = a — List a — Int
pos x = length - take While (z =)

(This pos behaves differently from the one in the lecture when z does not occur in zs.) Con-
struct an inductive definition of pos.

3. Zipping and mapping.
(a) Let second f (z,y) = (x,f y). Provethat zip s (map f ys) = map (second f) (zip xs ys).



(b) Consider the following definition

delete :: List a — List (List a)
delete [| =[]
delete (x: xs) = xs: map (z:) (delete zs)

such that
delete [1,2,3,4] =[[2,3,4],[1, 3,4],[1,2,4],[1,2,3]] .

That is, each element in the input list is deleted in turns. Let select::List a — List (a, List a)
be defined by select xs = zip xs (delete xs). Come up with an inductive definition of
select. Hint: you may find second useful.

(c) An alternative specification of delete is

delete xs = map (del zs) [0..length xs — 1]
where del zs i = take i xs H drop (1 +1) xs ,

(here we take advantage of the fact that [0..n] returns [| when n is negative). From
this specification, derive the inductive definition of delete given above. Hint: you may
need the following property:

0..n]=0:map (1) [0..n—1], ifn >0, (1)
and the map-fusion law (2) given below.

4. Prove the following map-fusion law:

map f - map g =map (f - g) - ()

5. Assume that multiplication (x) is a constant-time operation. One possible definition for
exp m n = m' could be:

exp :: Nat — Nat — Nat
exp m 0 =1
ecpm (lyn)=mXxexpmn .

Therefore, to compute exp m n, multiplication is called n times: m x m ... m x 1. Can we do
better? Yet another way to represent a natural number is to use the binary representation.

(a) The function binary :: Nat — List Bool returns the reversed binary representation of a
natural number. For example:

binary 0 =[] ,
binary 1 = [T] ,
binary 2 = [F,T] ,

Page 2



binary 3 =[T,T] ,
binary 4 = [F,F, T] |

where T and F abbreviates True and False. Given the following functions:

even :: Nat — Bool, returning true iff the input is even,
odd :: Nat — Bool, returning true iff the input is odd, and
div :: Nat — Nat — Nat, for integral division,

define binary. You may just present the code.
Hint One possible implementation discriminates between 3 cases - the input is 0, the
input is odd, and the input is even.

(b) Briefly explain in words whether your implementation of binary terminates for all input
in Nat, and why.

(c) Define a function decimal :: List Bool — Nat that takes the reversed binary represen-
tation and returns the corresponding natural number. E.g. decimal [T, T,F, T] = 11.
You may just present the code.

(d) Let roll m = exp m - decimal. Assuming we have proved that exp m n satisfies all
arithmetic laws for m™. Construct (with algebraic calculation) a definition of roll that
does not make calls to exp or decimal.

Remark If the fusion succeeds, we have derived a program computing m™:
fastexp m = roll m - binary.

The algorithm runs in time proportional to the length of the list generated by binary, which
is O(logy n).

. The following problem concerns calculating the sum Y "7 (2; X y"). Let geo be defined by:

geo y = 1:map (yx) (geo y) ,
horner y xs = sum (map mul (zip zs (geo y))) ,

where mul (a,b) = a x b. Let zs = [z, 21,22 ... T,], horner y xs computes the sum
To+ 1 XY+ 29 X Y2 + - + 2, X y". (Remark: for those who familiar with currying,
mul = uncurry (X).)

(@) Show that mul - second (yx) = (yx) - mul.

(b) Let n = length zs. Asymptotically (that is, in terms of the big-O notation), how many
multiplications (x) one must perform to compute horner y xs?

(c) Prove that sum - map (yx) = (yx) - sum.

(d) Construct an inductive definition of horner that uses only O(n) multiplications to com-
pute horner y xs. Hint: you will need a number of properties proved in the previous
problems in this exercise, and perhaps some more properties.

Page 3



