
Programming Languages: Functional Programming
Practicals 4. Program Calculation

Shin-Cheng Mu

Autumn 2023

1. Let descend be defined by:

descend :: Nat → List Nat
descend 0 = []
descend (1+ n) = 1+ n : descend n .

(a) Let sumseries = sum · descend . Synthesise an inductive definition of sumseries .

Solution: It is immediate that sum (descend 0) = 0. For the inductive case we
calculate:

sum (descend (1+ n))
= { definition of descend }
sum ((1+ n) : descend n)

= { definition of sum }
(1+ n) + sum (descend n)

= { definition of sumseries }
(1+ n) + sumseries n .

Thus we have

sumseries 0 = 0
sumseries (1+ n) = (1+ n) + sumseries n .

(b) The function repeatN :: (Nat, a) → List a is defined by

repeatN (n, x) = map (const x) (descend n) .

Thus repeatN (n, x) produces n copies of x in a list. E.g. repeatN (3, ’a’) = "aaa".
Calculate an inductive definition of repeatN .

1

Solution: It is immediate that repeatN (0, x) = []. For the inductive case we
calculate

repeatN (1+ n, x)
= { definition of repeatN }
map (const x) (descend (1+ n))

= { definition of descend }
map (const x) (1+ n : descend n)

= { definition of map and const }
x :map (const x) (descend n)

= { definition of repeatN }
x : repeatN (n, x) .

Thus we have

repeatN (0, x) = []
repeatN (1+ n, x) = x : repeatN (n, x) .

(c) The function rld :: List (Nat, a) → List a performs run-length decoding:

rld = concat ·map repeatN .

For example, rld [(2, ’a’), (3, ’b’), (1, ’c’)] = "aabbbc". Come up with an inductive
defintion of rld .

Solution: For the base case:

rld []
= { definition of rld }
concat (map repeatN [])

= { definitions of map and concat }
[]

For the inductive case:

rld ((n, x) : xs)
= { definition of rld }
concat (map repeatN ((n, x) : xs))

= { definitions of map }
concat (repeatN (n, x) :map repeatN xs)

= { definitions of concat }
repeatN (n, x) ++ concat (map repeatN xs)

= { definition of rld }
repeatN (n, x) ++ rld xs .

Page 2

We have thus derived:

rld [] = []
rld ((n, x) : xs) = repeatN (n, x) ++ rld xs .

We can in fact further construct a definition of rld that does not use (++), by pat-
tern matching on n . It is immediate that rld ((0, x) : xs) = rld xs . By a routine
calculation we get:

rld [] = []
rld ((0, x) : xs) = rld xs .
rld ((1+ n, x) : xs) = x : rld ((n, x) : xs) .

2. There is another way to define pos such that pos x xs yields the index of the first occurrence
of x in xs :

pos :: Eq a ⇒ a → List a → Int
pos x = length · takeWhile (x ̸= =)

(This pos behaves differently from the one in the lecture when x does not occur in xs .) Con-
struct an inductive definition of pos .

Solution: It is immediate that pos x [] = 0. For the inductive case we calculate:

pos x (y : ys)
= { definition of pos }
length (takeWhile (x ̸= =) (y : ys))

= { definition of takeWhile }
length (if x ̸= = y then y : takeWhile (x ̸= =) ys else [])

= { function application distributes into if , defn. of length }
if x ̸= = y then 1+ (length (takeWhile (x ̸= =) ys)) else 0

= { definition of pos }
if x ̸= = y then 1+ (pos x ys) else 0 .

Thus we have constructed:

pos x [] = 0
pos x (y : xs) = if x ̸= = y then 1+ (pos x xs) else 0 .

3. Zipping and mapping.

Page 3

(a) Let second f (x , y) = (x , f y). Prove that zip xs (map f ys) = map (second f) (zip xs ys).

Solution: Recall one of the possible definitions of zip:

zip [] ys = []
zip (x : xs) [] = []
zip (x : xs) (y : ys) = (x , y) : zip xs ys .

Following the structure, we prove the proposition by induction on xs and ys . A tip
for equational reasoning: it is usually easier to go from the more complex side to
the simpler side, from the side with more structure to the side with less structure.
Thus we start from the left-hand side.
Case xs := [].

map (second f) (zip [] ys)
= { definition of zip }
map (second f) []

= { definition of map }
[]

= { definition of zip }
zip [] (map f ys) .

Case xs := x : xs , ys := []:

map (second f) (zip (x : xs) [])
= { definiton of zip }
map (second f) []

= { definition of map }
[]

= { definition of zip }
zip (x : xs) []

= { definition of map }
zip (x : xs) (map f []) .

Case xs := x : xs , ys := y : ys :

map (second f) (zip (x : xs) (y : ys))
= { definition of zip }
map (second f) ((x , y) : zip xs ys)

= { definition of map }
second f (x , y) :map (second f) (zip xs ys)

= { definition of second }
(x , f y) :map (second f) (zip xs ys)

Page 4

= { induction }
(x , f y) : zip xs (map f ys)

= { definiton of zip }
zip (x : xs) (f y :map f ys)

= { definition of map }
zip (x : xs) (map f (y : ys)) .

(b) Consider the following definition

delete :: List a → List (List a)
delete [] = []
delete (x : xs) = xs :map (x :) (delete xs) ,

such that

delete [1, 2, 3, 4] = [[2, 3, 4], [1, 3, 4], [1, 2, 4], [1, 2, 3]] .

That is, each element in the input list is deleted in turns. Let select ::List a → List (a, List a)
be defined by select xs = zip xs (delete xs). Come up with an inductive definition of
select . Hint: you may find second useful.

Solution: The base case [] is immediate. For the inductive case:

select (x : xs)
= { definition of select }
zip (x : xs) (delete (x : xs))

= { definition of delete }
zip (x : xs) (xs :map (x :) (delete xs))

= { definition of zip }
(x , xs) : zip xs (map (x :) (delete xs))

= { property proved above }
(x , xs) :map (second (x :)) (zip xs (delete xs))

= { definition of select }
(x , xs) :map (second (x :)) (select xs) .

We thus have

select [] = []
select (x : xs) = (x , xs) :map (second (x :)) (select xs) .

(c) An alternative specification of delete is

delete xs = map (del xs) [0 . . length xs − 1]
where del xs i = take i xs ++ drop (1 + i) xs ,

Page 5

(here we take advantage of the fact that [0 . . n] returns [] when n is negative). From
this specification, derive the inductive definition of delete given above. Hint: you may
need the following property:

[0 . . n] = 0 :map (1+) [0 . . n − 1], if n ⩾ 0, (1)

and the map-fusion law (2) given below.

Solution:

delete (x : xs)
= { definition of delete }
map (del (x : xs)) [0 . . length (x : xs)− 1]

= { defintion of length , arithmetics }
map (del (x : xs)) [0 . . length xs]

= { length xs ⩾ 0, by (1) }
map (del (x : xs)) (0 :map (1+) [0 . . length xs − 1])

= { definition of map }
del (x : xs) 0 :map (del (x : xs)) (map (1+) [0 . . length xs − 1])

= { map fusion (2) }
del (x : xs) 0 :map (del (x : xs) · (1+)) [0 . . length xs − 1]

Now we pause for a while to inspect del (x : xs). Apparently, del (x : xs) 0 = xs .
For del (x : xs) · (1+) we calculate:

(del (x : xs) · (1+)) i
= { definition of (·) }
del (x : xs) (1+ i)

= { definition of del }
take (1+ i) (x : xs) ++ drop (1+ (1+ i)) (x : xs)

= { definitions of take and drop }
x : take i xs ++ drop (1+ i) xs

= { definition of del }
x : del xs i

= { definition of (·) }
((x :) · del xs) i .

We resume the calculation:

del (x : xs) 0 :map (del (x : xs) · (1+)) [0 . . length xs − 1]
= { calculation above }
xs :map ((x :) · del xs) [0 . . length xs − 1]

= { map fusion (2) }
xs :map (x :) (map (del xs) [0 . . length xs − 1])

= { definition of delete }
xs :map (x :) (delete xs) .

We have thus derived the first, inductive definition of delete .

Page 6

4. Prove the following map-fusion law:

map f ·map g = map (f · g) . (2)

Solution: To find out how to conduct induction:

map f ·map g = map (f · g)
≡ { extensional equality }
(∀xs : (map f ·map g) xs = map (f · g) xs)

≡ { definition of (·) }
(∀xs :map f (map g xs) = map (f · g) xs) .

We prove the proposition by induction on xs .

Case xs := []. Omitted.

Case xs := x : xs .

map f (map g (x : xs))
= { definition of map, twice }
f (g x) :map f (map g xs)

= { induction }
f (g x) :map (f · g) xs

= { definition of (·) }
(f · g) x :map (f · g) xs

= { definition of map }
map (f · g) (x : xs) .

5. Assume that multiplication (×) is a constant-time operation. One possible definition for
exp m n = mn could be:

exp :: Nat → Nat → Nat
exp m 0 = 1
exp m (1+ n) = m × exp m n .

Therefore, to compute exp m n , multiplication is called n times: m×m ...m×1. Can we do
better? Yet another way to represent a natural number is to use the binary representation.

(a) The function binary :: Nat → List Bool returns the reversed binary representation of a
natural number. For example:

binary 0 = [] ,
binary 1 = [T] ,

Page 7

binary 2 = [F,T] ,
binary 3 = [T,T] ,
binary 4 = [F,F,T] ,

where T and F abbreviates True and False. Given the following functions:

even :: Nat → Bool, returning true iff the input is even,

odd :: Nat → Bool, returning true iff the input is odd, and

div :: Nat → Nat → Nat , for integral division,

define binary . You may just present the code.
Hint One possible implementation discriminates between 3 cases – the input is 0, the
input is odd, and the input is even.

Solution:

binary 0 = []
binary n | even n = F : binary (n ‘div ‘ 2)

| odd n = T : binary (n ‘div ‘ 2) .

(b) Briefly explain in words whether your implementation of binary terminates for all input
in Nat, and why.

Solution: All non-zero natural numbers strictly decreases when being divided by
2, and thus we eventually reaches the base case for 0.

(c) Define a function decimal :: List Bool → Nat that takes the reversed binary represen-
tation and returns the corresponding natural number. E.g. decimal [T,T,F,T] = 11.
You may just present the code.

Solution:

decimal [] = 0
decimal (c : cs) = if c then 1 + 2× decimal cs else 2× decimal cs .

Or equivalently,

decimal [] = 0
decimal (False : cs) = 2× decimal cs
decimal (True : cs) = 1 + 2× decimal cs .

(d) Let roll m = exp m · decimal . Assuming we have proved that exp m n satisfies all
arithmetic laws for mn. Construct (with algebraic calculation) a definition of roll that
does not make calls to exp or decimal .

Page 8

Solution: Let’s calculate roll m xs = exp m (decimal xs) by distinguishing be-
tween the three cases of xs:
Case xs := []:

roll m []
= exp m (decimal [])
= { definition of decimal }

exp m 0
= { definition of exp }

1 .

Case xs := False : xs :

roll m (False : xs)
= { definition of roll }
exp m (decimal (False : xs))

= { definition of decimal }
exp m (2× decimal xs)

= { arithmetic: m2n = (m2)n }
exp (m ×m) (decimal xs)

= { definition of roll }
roll (m ×m) xs .

Case xs := True : xs :

roll m (True : xs)
= { definition of roll }
exp m (decimal (True : xs))

= { definition of decimal }
exp m (1 + 2× decimal xs)

= { definition of exp }
m × exp m (2× decimal xs)

= { arithmetic: m2n = (m2)n }
m × exp (m ×m) (decimal xs)

= { definition of roll }
m × roll (m ×m) xs .

We have thus constructed:

roll m [] = 1
roll m (False : cs) = roll (m ×m) xs
roll m (True : cs) = m × roll (m ×m) xs .

Page 9

Remark If the fusion succeeds, we have derived a program computingmn:

fastexp m = roll m · binary .

The algorithm runs in time proportional to the length of the list generated by binary , which
is O(log2 n).

6. The following problem concerns calculating the sum
∑n

i=0(xi × yi). Let geo be defined by:

geo y = 1 :map (y×) (geo y) ,
horner y xs = sum (map mul (zip xs (geo y))) ,

where mul (a, b) = a × b. Let xs = [x0, x1, x2 ... xn], horner y xs computes the sum
x0 + x1 × y + x2 × y2 + · · · + xn × yn. (Remark: for those who familiar with currying,
mul = uncurry (×).)

(a) Show that mul · second (y×) = (y×) ·mul .

Solution:

mul (second (y×) (x , z))
= { definition of second }
mul (x , y × z)

= { definition of mul }
x × (y × z)

= { arithmetics }
y × (x × z)

= { definition of mul }
y ×mul (x , z) .

(b) Let n = length xs . Asymptotically (that is, in terms of the big-O notation), how many
multiplications (×) one must perform to compute horner y xs?

Solution: We need O(n2) multiplications.

(c) Prove that sum ·map (y×) = (y×) · sum .

Solution: The aim is equivalent to prove that sum (map (y×) xs) = y × sum xs
for all xs . The case for xs := [] is immediate. We consider the case for x := x : xs .

sum (map (y×) (x : xs))
= { definition of map }
sum (y × x :map (y×) xs)

= { definition of sum }

Page 10

y × x + sum (map (y×) xs)
= { induction }
y × x + y × sum xs

= { arithmetics }
y × (x + sum xs)

= { definition of sum }
y × sum (x : xs) .

(d) Construct an inductive definition of horner that uses onlyO(n)multiplications to com-
pute horner y xs . Hint: you will need a number of properties proved in the previous
problems in this exercise, and perhaps some more properties.

Solution: We construct an inductive definition of horner by case analysis.
Case xs := []. It is immediate that horner y [] = 0. Details omitted.
Case xs := x : xs :

horner y (x : xs)
= { definition of horner }
sum (map mul (zip (x : xs) (geo y)))

= { definition of geo }
sum (map mul (zip (x : xs) (1 :map (y×) (geo y))))

= { definition of zip }
sum (map mul ((x , 1) : zip xs (map (y×) (geo y))))

= { definitions of map, mul , and sum }
x + sum (map mul (zip xs (map (y×) (geo y))))

= { since zip xs (map f ys) = map (second f) (zip xs ys) }
x + sum (map mul (map (second (y×)) (zip xs (geo y))))

= { map fusion }
x + sum (map (mul · second (y×)) (zip xs (geo y)))

= { since mul · second (y×) = (y×) ·mul , map fusion }
x + sum (map (y×) (map mul (zip xs (geo y))))

= { since sum ·map (y×) = (y×) · sum }
x + y × sum (map mul (zip xs (geo y)))

= { definition of horner }
x + y × horner y xs .

Thus we conclude that

horner y [] = 0
horner y (x : xs) = x + y × horner y xs .

Page 11

