
Programming Languages: Functional Programming
Practicals 5. Program Calculation

Shin-Cheng Mu

Autumn, 2023

1. Consider the internally labelled binary tree:

data ITree a = Null | Node a (ITree a) (ITree a) .

(a) Define sumT :: ITree Int → Int that computes the sum of labels in an ITree.

(b) A baobab tree is a kind of tree with very thick trunks. An Itree Int is called a baobab
tree if every label in the tree is larger than the sum of the labels in its two subtrees. The
following function determines whether a tree is a baobab tree:

baobab :: ITree Int → Bool
baobab Null = True
baobab (Node x t u) = baobab t ∧ baobab u ∧

x > (sumT t + sumT u) .

What is the time complexity of baobab? Define a variation of baobab that runs in time
proportional to the size of the input tree by tupling.

2. Recall the externally labelled binary tree:

data Etree a = Tip a | Bin (ETree a) (ETree a) .

The function size computes the size (number of labels) of a tree, while repl t xs tries to
relabel the tips of t using elements in xs . Note the use of take and drop in repl :

size (Tip) = 1
size (Bin t u) = size t + size u .

repl :: ETree a → List b → ETree b
repl (Tip) xs = Tip (head xs)
repl (Bin t u) xs = Bin (repl t (take n xs)) (repl u (drop n xs))

where n = size t .

The function repl runs in time O(n2) where n is the size of the input tree. Can we do bet-
ter? Try discovering a linear-time algorithm that computes repl . Hint: try calculating the
following function:

1

repTail :: ETree a → List b → (ETree b, List b)
repTail s xs = (???, ???) ,

where n = size s ,

where the function repTail returns a tree labelled by some prefix of xs , together with the
suffix of xs that is not yet used (how to specify that formally?).

You might need properties including:

take m (take (m + n) xs) = take m xs ,

drop m (take (m + n) xs) = take n (drop m xs) ,

drop (m + n) xs = drop n (drop m xs) .

3. The function tags returns all labels of an internally labelled binary tree:

tags :: ITree a → List a
tags Null = []
tags (Node x t u) = tags t ++ [x] ++ tags u .

Try deriving a faster version of tags by calculating

tagsAcc :: ITree a → List a → List a
tagsAcc t ys = tags t ++ ys .

4. Recall the standard definition of factorial:

fact :: Nat → Nat
fact 0 = 1
fact (1+ n) = 1+ n × fact n .

This program implicitly uses space linear to n in the call stack.

1. Introduce factAcc n m = ... where m is an accumulating parameter.

2. Express fact in terms of factAcc.

3. Construct a space efficient implementation of factAcc.

5. Define the following function expAcc:

expAcc :: Nat → Nat → Nat → Nat
expAcc b n x = x × exp b n .

(a) Calculate a definition of expAcc that uses only O(log n)multiplications to compute bn.
You may assume all the usual arithmetic properties about exponentials. Hint: consider
the cases when n is zero, non-zero even, and odd.

Page 2

(b) The derived implementation of expAcc shall be tail-recursive. What imperative loop
does it correspond to?

6. Recall the standard definition of Fibonacci:

fib :: Nat → Nat
fib 0 = 0
fib 1 = 1
fib (1+ (1+ n)) = fib (1+ n) + fib n .

Let us try to derive a linear-time, tail-recursive algorithm computing fib.

1. Given the definitionffib n x y = fib n × x + fib (1+ n)× y , Express fib using ffib.

2. Derive a linear-time version offfib.

Page 3

