
Programming Languages: Functional Programming
Practicals 5. Program Calculation

Shin-Cheng Mu

Autumn, 2023

1. Consider the internally labelled binary tree:

data ITree a = Null | Node a (ITree a) (ITree a) .

(a) Define sumT :: ITree Int → Int that computes the sum of labels in an ITree.

Solution:

sumT :: ITree Int → Int
sumT Null = 0
sumT (Node x t u) = x + sumT t + sumT u .

(b) A baobab tree is a kind of tree with very thick trunks. An Itree Int is called a baobab
tree if every label in the tree is larger than the sum of the labels in its two subtrees. The
following function determines whether a tree is a baobab tree:

baobab :: ITree Int → Bool
baobab Null = True
baobab (Node x t u) = baobab t ∧ baobab u ∧

x > (sumT t + sumT u) .

What is the time complexity of baobab? Define a variation of baobab that runs in time
proportional to the size of the input tree by tupling.

Solution: Define:

baosum :: Tree Int → (Bool, Int)
baosum t = (baobab t , sumT t) .

such that baobab = fst · baosum .
With t :=Null, it is immediate that baosum Null = (True, 0). Consider t :=Node x t u :

1

baosum (Node x t u)
= { definition of baosum }
(baobab (Node x t u), sumT (Node x t u))

= { definitions of baobab and sumT }
(baobab t ∧ baobab u ∧ x > (sumT t + sumT u),
x + sumT t + sumT u)

= { introducing local variables }
let (b, y) = (baobab t , sumT t)

(c, z) = (baobab u, sumT u)
in (b ∧ c ∧ x > (y + z), x + y + z)

= { definition of baosum }
let (b, y) = baosum t

(c, z) = baosum u
in (b ∧ c ∧ x > (y + z), x + y + z) .

We have thus derived:

baosum Null = (True, 0)
baosum (Node x t u) =

let (b, y) = baosum t
(c, z) = baosum u

in (b ∧ c ∧ x > (y + z), x + y + z) .

2. Recall the externally labelled binary tree:

data Etree a = Tip a | Bin (ETree a) (ETree a) .

The function size computes the size (number of labels) of a tree, while repl t xs tries to
relabel the tips of t using elements in xs . Note the use of take and drop in repl :

size (Tip) = 1
size (Bin t u) = size t + size u .

repl :: ETree a → List b → ETree b
repl (Tip) xs = Tip (head xs)
repl (Bin t u) xs = Bin (repl t (take n xs)) (repl u (drop n xs))

where n = size t .

The function repl runs in time O(n2) where n is the size of the input tree. Can we do bet-
ter? Try discovering a linear-time algorithm that computes repl . Hint: try calculating the
following function:

repTail :: ETree a → List b → (ETree b, List b)
repTail s xs = (???, ???) ,

where n = size s ,

Page 2

where the function repTail returns a tree labelled by some prefix of xs , together with the
suffix of xs that is not yet used (how to specify that formally?).

You might need properties including:

take m (take (m + n) xs) = take m xs ,

drop m (take (m + n) xs) = take n (drop m xs) ,

drop (m + n) xs = drop n (drop m xs) .

Solution: Define:

repTail :: ETree a → List b → (ETree b, List b)
repTail s xs = (repl s (take n xs), drop n xs) ,
where n = size s .

The case whens := Tip y is easy. Consider s := Bin t u (let n1 = size t , n2 = size u ,
and thus size (Bin t u) = n1 + n2):

repTail (Bin t u) xs
= { definition of repTail }
(repl (Bin t u) (take (n1 + n2) xs), drop (n1 + n2) xs)

= { definition of repl , let n1 = size t }
(Bin (repl t (take n1 (take (n1 + n2) xs)))

(repl u (drop n1 (take (n1 + n2) xs))), drop (n1 + n2) xs)
= { property given }
(Bin (repl t (take n1 xs))

(repl u (take n2 (drop n1 xs))), drop n2 (drop n1 xs))
= { factoring common sub-expressions }
let (t ′, xs ′) = (repl t (take n1 xs), drop n1 xs)

(u ′, xs ′′) = (repl u (take n2 xs ′), drop n2 xs ′)
in (Bin t ′ u ′, xs ′′)

= { definition of repTail }
let (t ′, xs ′) = repTail t xs

(u ′, xs ′′) = repTail u xs ′

in (Bin t ′ u ′, xs ′′) .

Thus we have:

repTail (Tip) xs = (Tip (head xs), tail xs)
repTail (Bin t u) xs = let (t ′, xs ′) = repTail t xs

(u ′, xs ′′) = repTail u xs ′

in (Bin t ′ u ′, xs ′′) .

Page 3

3. The function tags returns all labels of an internally labelled binary tree:

tags :: ITree a → List a
tags Null = []
tags (Node x t u) = tags t ++ [x] ++ tags u .

Try deriving a faster version of tags by calculating

tagsAcc :: ITree a → List a → List a
tagsAcc t ys = tags t ++ ys .

Solution: Apparently tagsAcc Null ys = ys . Consider the case t := Node x t u :

tagsAcc (Node x t u) ys
= tags (Node x t u) ++ ys
= (tags t ++ [x] ++ tags u) ++ ys
= { associativity of (++) }

tags t ++ (x : tags u ++ ys)
= tagsAcc t (x : tagsAcc u ys) .

We thus have

tagsAcc Null ys = ys
tagsAcc (Node x t u) ys = tagsAcc t (x : tagsAcc u ys) .

4. Recall the standard definition of factorial:

fact :: Nat → Nat
fact 0 = 1
fact (1+ n) = 1+ n × fact n .

This program implicitly uses space linear to n in the call stack.

1. Introduce factAcc n m = ... where m is an accumulating parameter.

2. Express fact in terms of factAcc.

3. Construct a space efficient implementation of factAcc.

Page 4

Solution: To exploit associativity of (×), we define:

factAcc n m = m × fact n .

We recover fact by letting

fact n = factAcc n 1 .

To construct factAcc we derive:
Case n := 0:

factAcc 0 m
= { definition of factAcc }
m × fact 0

= { definition of fact }
m .

Case n := 1+ n :

factAcc (1+ n) m
= { definition of factAcc }
m × fact (1+ n)

= { definition of fact }
m × ((1+ n)× fact n)

= { (×) associative }
(m × (1+ n))× fact n

= { definition of factAcc }
factAcc n (m × (1+ n)) .

Thus,

factAcc 0 m = m
factAcc (1+ n) m = factAcc n (m × (1+ n)) .

5. Define the following function expAcc:

expAcc :: Nat → Nat → Nat → Nat
expAcc b n x = x × exp b n .

(a) Calculate a definition of expAcc that uses only O(log n)multiplications to compute bn.
You may assume all the usual arithmetic properties about exponentials. Hint: consider
the cases when n is zero, non-zero even, and odd.

Page 5

Solution: In the calculation below we write exp b n as bn, to be concise.
Apparently expAcc b 0 x = x . For the case when n is even, that is n := 2× n :

expAcc b (2× n) x
= x × b2×n

= { since bm×n = (bm)n }
x × (b2)n

= { definition of expAcc, b2 = b × b }
expAcc (b × b) n x .

For the case when n is odd, that is n := 1 + n :

expAcc b (1 + n) x
= x × b1+n

= { definition of exp }
x × (b × bn)

= { associativity of (×) }
(x × b)× bn

= { definition of expAcc }
expAcc b n (x × b) .

We have derived:

expAcc b 0 x = x
expAcc b (2× n) x = expAcc (b × b) n x
expAcc b (1 + n) x = expAcc b n (x × b) .

In Haskell syntax, it is written:

expAcc b 0 x = x
expAcc b n x | even n = expAcc (b × b) (n ‘div ‘ 2) x

| odd n = expAcc b (n − 1) (x × b) .

(b) The derived implementation of expAcc shall be tail-recursive. What imperative loop
does it correspond to?

Solution: To calculate BN:

b, n, x := B,N, 1;
do n ̸= = 0 → if even n → b, n := b × b, n ‘div ‘ 2

| odd n → n, x := n − 1, x × b
fi

od;

Page 6

return x

The loop invariant is BN = x × bn .

6. Recall the standard definition of Fibonacci:

fib :: Nat → Nat
fib 0 = 0
fib 1 = 1
fib (1+ (1+ n)) = fib (1+ n) + fib n .

Let us try to derive a linear-time, tail-recursive algorithm computing fib.

1. Given the definitionffib n x y = fib n × x + fib (1+ n)× y , Express fib using ffib.

2. Derive a linear-time version offfib.

Solution: fib n = ffib n 1 0.

To construct ffib, we calculate:
Case n := 0:

ffib 0 x y
= { definition offfib }

fib 0× x + fib 1× y
= { definition of fib }

0× x + 1× y
= y .

Case n := 1+ n :

ffib (1+ n) x y
= { definition offfib }
fib (1+ n)× x + fib (1+ (1+ n))× y

= { definition of fib }
fib (1+ n)× x + (fib (1+ n) + fib n)× y

= { arithmetics }
fib (1+ n)× (x + y) + fib n × y

= { definition offfib }
ffib n y (x + y) .

Therefore,

ffib 0 x y = y
ffib (1+ n) x y = ffib n y (x + y) .

Page 7

