Programming Languages: Functional Programming
Practicals 5. Program Calculation

Shin-Cheng Mu

Autumn, 2023

1. Consider the internally labelled binary tree:

data ITree a = Null | Node a (ITree a) (ITree a) .

(a) Define sumT ::1Tree Int — Int that computes the sum of labels in an [Tree.

Solution:

sumT :: [Tree Int — Int
sumT Null =0
sumT (Node z t u) = x + sumT t + sumT u .

(b) A baobab tree is a kind of tree with very thick trunks. An ltree Int is called a baobab
tree if every label in the tree is larger than the sum of the labels in its two subtrees. The
following function determines whether a tree is a baobab tree:

baobab :: [Tree Int — Bool
baobab Null = True
baobab (Node = t u) = baobab t N baobab u A
x> (sumT t + sumT u) .

What is the time complexity of baobab? Define a variation of baobab that runs in time
proportional to the size of the input tree by tupling.

Solution: Define:

baosum :: Tree Int — (Bool, Int)
baosum t = (baobab t,sumT t) .

such that baobab = fst - baosum.
With t:=Null, it is immediate that baosum Null = (True,0). Consider t:=Node z t u:




baosum (Node = t u)
= { definition of baosum }
(baobab (Node z t u), sumT (Node z ¢ u))
= { definitions of baobab and sumT }
(baobab t A baobab u A x> (sumT t + sumT u),
z+ sumT t + sumT u)
= {introducing local variables }
let (b,y) = (baobab t,sumT t)
(¢, 2) = (baobab u, sumT w)
in(bANchz>W+2),2+y+2)
= { definition of baosum }
let (b, y) = baosum t
(¢, 2) = baosum u
in(bANchz>(y+2),s+y+2) .

We have thus derived:

baosum Null = (True, 0)
baosum (Node = t u) =
let (b,y) = baosum t
(¢, 2) = baosum u
in(bANchz>(y+2),c+y+2) .

2. Recall the externally labelled binary tree:
data Etree a = Tip a | Bin (ETree a) (ETree a) .

The function size computes the size (number of labels) of a tree, while repl ¢ zs tries to
relabel the tips of ¢ using elements in zs. Note the use of take and drop in repl:

size (Tip_) =1
size (Bin t u) = size t + size u .

repl :: ETree a — List b — ETree b

repl (Tip ) s = Tip (head zs)

repl (Bin t w) zs = Bin (repl t (take n xs)) (repl u (drop n zs))
where n = size ¢ .

The function repl runs in time O(n?) where n is the size of the input tree. Can we do bet-
ter? Try discovering a linear-time algorithm that computes repl. Hint: try calculating the
following function:

repTail :: ETree a — List b — (ETree b, List b)
repTail s xs = (777,777) |
where n = size s ,

Page 2



where the function repTail returns a tree labelled by some prefix of zs, together with the
suffix of zs that is not yet used (how to specify that formally?).

You might need properties including;:
take m (take (m + n) xs) = take m zs ,
drop m (take (m + n) xs) = take n (drop m xs) ,
drop (m + n) zs = drop n (drop m zs) .

Solution: Define:

repTail :: ETree a — List b — (ETree b, List b)
repTail s xs = (repl s (take n xs), drop n xs)
where n = size s .

The case whens := Tip y is easy. Consider s := Bin t u (let nl = size t, n2 = size u,
and thus size (Bin t u) = nl + n2):

repTail (Bin t u) xs
= { definition of repTail }
(repl (Bin t u) (take (n1 4+ n2) zs), drop (nl + n2) xs)
= { definition of repl, let n1 = size t }
(Bin (repl t (take n1 (take (n1 4+ n2) xs)))
(repl u (drop nl (take (nl + n2) xs))), drop (nl + n2) xs)
= { property given }
(Bin (repl t (take nl zs))
(repl u (take n2 (drop nl xs))), drop n2 (drop nl xs))
= { factoring common sub-expressions }
let (', zs") = (repl t (take nl zs), drop nl zs)
(v, xs") = (repl u (take n2 xs"), drop n2 xs')
in (Bin t' v/, zs")
= { definition of repTail }
let (', zs") = repTail t xs
(u',zs") = repTail u zs'
in (Bin ¢’ v/, xs") .

Thus we have:

repTail (Tip ) zs = (Tip (head xs), tail zs)
repTail (Bin t u) zs = let (¢',zs") = repTail t xs
(u',2s") = repTail u s’
in (Bin t' v/, xs") .

Page 3



3. The function tags returns all labels of an internally labelled binary tree:

tags :: I Tree a — List a
tags Null =[]
tags (Node z t u) = tags t H [z] H tags u .

Try deriving a faster version of tags by calculating

tagsAcc :: ITree a — List a — List a
tagsAcc t ys = tags t H+ ys .

Solution: Apparently tagsAcc Null ys = ys. Consider the case t := Node x t u:

tagsAcc (Node z t u) ys
= tags (Node z t u) + ys
= (tags t # [z] H tags u) H ys
= { associativity of (#) }
tags t H (z : tags u H ys)
= tagsAcc t (x : tagsAcc u ys) .

We thus have

tagsAcc Null ys = ys
tagsAcc (Node x t u) ys = tagsAcc t (z : tagsAcc u ys) .

4. Recall the standard definition of factorial:

fact :: Nat — Nat
fact 0 =1
fact (1. n) =1, n X fact n .

This program implicitly uses space linear to n in the call stack.

1. Introduce factAcc n m = ... where m is an accumulating parameter.
2. Express fact in terms of factAcc.

3. Construct a space efficient implementation of factAcc.

Page 4



Solution: To exploit associativity of (x), we define:
factAce n m = m X fact n .

We recover fact by letting
fact n = factAccn 1 .

To construct factAcc we derive:
Case n:=0:

factAcc O m

= { definition of factAcc }
m X fact 0

= { definition of fact }
m .

Casen:=1, n:

factAce (14 n) m

= { definition of factAcc }
m X fact (14 n)

= { definition of fact }
m x ((14 n) X fact n)

= {(x) associative }
(m x (14 n)) X fact n

= { definition of factAcc }
factAce n (m x (14 n)) .

Thus,

factAcc 0 m=m
factAce (14 n) m = factAcc n (m x (14 n)) .

5. Define the following function expAcc:

expAcc :: Nat — Nat — Nat — Nat
expAccbnx=x x exp bn .

(a) Calculate a definition of expAcc that uses only O(log n) multiplications to compute b".
You may assume all the usual arithmetic properties about exponentials. Hint: consider
the cases when n is zero, non-zero even, and odd.

Page 5



Solution: In the calculation below we write exp b n as b™, to be concise.

Apparently expAcc b 0 z = z. For the case when n is even, that is n :=2 X n:

expAcc b (2 X n)

T X b2><n

= {since b™*" = (b™)" }
zx (6%

= { definition of ezpAcc, b> = b x b }
expAcc (b X b) nx .

For the case when n is odd, thatis n:=1 + n:

expAcc b (1+n) z

=1 X bl—i—n

= { definition of exp }
z X (bxb")

= { associativity of (x) }
(z x b) x b™

= { definition of ezpAcc }
expAcc bn (xz X b) .

We have derived:

expAcc b0 r=2x
expAcc b (2 x n) x = expAcc (bx b) nzx
expAcc b (1 4+ n) z = expAcc b n (x X b) .

In Haskell syntax, it is written:
expAcc b0z ==z

expAcc b n x| even n = expAcc (b x b) (n ‘div' 2) x
| odd n = expAcc b (n—1) (z xb) .

(b) The derived implementation of expAcc shall be tail-recursive. What imperative loop
does it correspond to?

Solution: To calculate BN:

b,n,z:=B,N,1;

don+0—if evenn — b,n:=bx b,n ‘div:2
| odd n—n,z:=n—1,2Xb
fi

od;

Y

Page 6



return x

The loop invariant is BN = 2 x b".

6. Recall the standard definition of Fibonacci:

fib :: Nat — Nat
fib 0 =0
fib1 =1

fib (14 (14 n)) = fib (14 n) + fib n .

Let us try to derive a linear-time, tail-recursive algorithm computing fib.

1. Given the definition ffib n z y = fib n x z + fib (1, n) X y, Express fib using [fib.

2. Derive a linear-time version of ffib.

Solution: fib n = ffib n 1 0.

To construct ffib, we calculate:
Case n :=0:

Hfib0zxy
= { definition of ffib }
fibOx x4+ fibl xy
= { definition of fib }
Oxz+1xy

Casen:=1, n:

fib(1yn)zy
= { definition of ffib }
fib (1 n) x z + fib (14 (1 n)) X y
= { definition of fib }
fib (14 n) x @+ (fib (1, n) + fib n) x y
= { arithmetics }
fib (Ly m) x (2 + )+ fibn x y
= { definition of ffib }
fibny (z+y) .

Therefore,

ffib 0 TYyY=1y
fib(Ain)zy=fibny(z+y) .

Page 7



