
Programming Languages: Functional Programming
Practicals 6. Folds, and Fold-Fusion

(Supplementary Material)

Shin-Cheng Mu

Autumn 2023

1. Express the following functions by foldr :

1. all p :: List a → Bool, where p :: a → Bool.

2. elem z :: List a → Bool, where z :: a .

3. concat :: List (List a) → List a .

4. filter p :: List a → List a , where p :: a → Bool.

5. takeWhile p :: List a → List a , where p :: a → Bool.

6. id :: List a → List a .

In case you haven’t seen them, all p xs is True iff. all elements in xs satisfy p, and elem z xs
is True iff. x is a member of xs .

2. Given p :: a → Bool, can dropWhile p :: List a → List a be written as a foldr?

3. Express the following functions by foldr :

1. inits :: List a → List (List a).

2. tails :: List a → List (List a).

3. perms :: List a → List (List a).

4. sublists :: List a → List (List a).

5. splits :: List a → List (List a, List a).

4. Prove the foldr -fusion theorem. To recite the theorem: given f ::a → b → b, e ::b, h ::b → c
and g :: a → c → c, we have

h · foldr f e = foldr g (h e) ,

if h (f x y) = g x (h y) for all x and y .

1



5. Prove the map-fusion rule map f ·map g = map (f · g) by foldr -fusion.

6. Prove that sum · concat = sum ·map sum by foldr -fusion, twice. Compare the proof with
you previous proof in earlier parts of this course.

7. Themap fusion theorem is an instance of the foldr -map fusion theorem: foldr f e ·map g =
foldr (f · g) e .
(a) Prove the theorem.

(b) Express sum ·map (2×) as a foldr .

(c) Show that (2×) · sum reduces to the same foldr as the one above.

8. Prove that map f (xs ++ ys) = map f xs ++ map f ys by foldr -fusion. Hint: this is
equivalent to map f · (++ ys) = (++ map f ys) ·map f . You may need to do (any kinds of)
fusion twice.

9. Prove that length · concat = sum ·map length by fusion.

10. Let scanr f e = map (foldr f e) · tails . Construct, by foldr -fusion, an implementation of
scanr whose number of calls to f is proportional to the length of the input list.

11. Recall the function binary :: Nat → [Nat ] that returns the reversed binary representation
of a natural number, for example binary 4 = [0, 0, 1]. Also, we talked about a function
decimal :: [Nat ] → Nat that converts the representation back to a natural number.

(a) This time, express decimal using a foldr .

(b) Recall the function exp m n =mn. Use foldr -fusion to construct step and base such
that

exp m · decimal = foldr step base .

If the fusion succeeds, we have derived a hylomorphism computingmn:

fastexp m = foldr step base · binary .

12. Express reverse :: List a → List a by a foldr . Let revcat = (++) · reverse . Express revcat as a
foldr .

13. Fold on natural numbers.

(a) The predicate even :: Nat → Bool yields True iff. the input is an even number. Define
even in terms of foldN .

(b) Express the identity function on natural numbers id n = n in terms of foldN .

14. Fuse even into (+n). This way we get a function that checks whether a natural number is
even after adding n .

Page 2



15. The famous Fibonacci number is defined by:

fib 0 = 0
fib 1 = 1
fib (2 + n) = fib (1 + n) + fib n .

The definition above, when taken directly as an algorithm, is rather slow. Define fib2 n =
(fib (1+n), fib n). Derive anO(n) implementation of fib2 by fusing it with id ::Nat → Nat.

16. What are the fold fusion theorems for ETree and ITree?

Page 3


