Programming Languages: Functional Programming Practicals 6. Folds, and Fold-Fusion (Supplementary Material)

Shin-Cheng Mu

Autumn 2023

1. Express the following functions by *foldr*:

- 1. all $p :: \text{List } a \to \text{Bool}$, where $p :: a \to \text{Bool}$.
- 2. elem $z :: \text{List } a \to \text{Bool}$, where z :: a.
- 3. $concat :: \text{List } (\text{List } a) \to \text{List } a.$
- 4. *filter* $p :: \text{List } a \to \text{List } a$, where $p :: a \to \text{Bool}$.
- 5. $takeWhile \ p :: List \ a \to List \ a$, where $p :: a \to Bool$.
- 6. $id :: \text{List } a \to \text{List } a$.

In case you haven't seen them, $all \ p \ xs$ is True iff. all elements in xs satisfy p, and $elem \ z \ xs$ is True iff. x is a member of xs.

- 2. Given $p :: a \to Bool$, can *dropWhile* $p :: List a \to List a$ be written as a *foldr*?
- 3. Express the following functions by *foldr*:
 - 1. *inits* :: List $a \to \text{List}$ (List a).
 - 2. *tails* :: List $a \to \text{List}$ (List a).
 - 3. perms :: List $a \to \text{List } (\text{List } a)$.
 - 4. sublists :: List $a \to \text{List } (\text{List } a)$.
 - 5. splits :: List $a \to \text{List}$ (List a, List a).
- 4. Prove the *foldr*-fusion theorem. To recite the theorem: given $f :: a \to b \to b, e :: b, h :: b \to c$ and $g :: a \to c \to c$, we have

 $h \cdot foldr f e = foldr g (h e)$,

if h(f x y) = g x (h y) for all x and y.

- 5. Prove the *map*-fusion rule map $f \cdot map \ g = map \ (f \cdot g)$ by *foldr*-fusion.
- 6. Prove that $sum \cdot concat = sum \cdot map \ sum$ by *foldr*-fusion, twice. Compare the proof with you previous proof in earlier parts of this course.
- 7. The *map* fusion theorem is an instance of the *foldr-map* fusion theorem: *foldr* $f e \cdot map g = foldr (f \cdot g) e$.
 - (a) Prove the theorem.
 - (b) Express $sum \cdot map (2\times)$ as a foldr.
 - (c) Show that $(2 \times) \cdot sum$ reduces to the same *foldr* as the one above.
- 8. Prove that $map \ f \ (xs \ + \ ys) = map \ f \ xs \ + \ map \ f \ ys$ by *foldr*-fusion. Hint: this is equivalent to $map \ f \ \cdot (+ \ ys) = (+ \ map \ f \ ys) \cdot map \ f$. You may need to do (any kinds of) fusion twice.
- 9. Prove that $length \cdot concat = sum \cdot map \ length$ by fusion.
- 10. Let scanr $f e = map (foldr f e) \cdot tails$. Construct, by foldr-fusion, an implementation of scanr whose number of calls to f is proportional to the length of the input list.
- 11. Recall the function $binary :: Nat \rightarrow [Nat]$ that returns the *reversed* binary representation of a natural number, for example $binary \ 4 = [0, 0, 1]$. Also, we talked about a function $decimal :: [Nat] \rightarrow Nat$ that converts the representation back to a natural number.
 - (a) This time, express *decimal* using a *foldr*.
 - (b) Recall the function $exp \ m \ n = m^n$. Use foldr-fusion to construct step and base such that

 $exp \ m \cdot decimal = foldr \ step \ base$.

If the fusion succeeds, we have derived a hylomorphism computing m^n :

fastexp $m = foldr step base \cdot binary$.

- 12. Express reverse :: List $a \to \text{List } a$ by a foldr. Let $revcat = (+) \cdot reverse$. Express revcat as a foldr.
- 13. Fold on natural numbers.
 - (a) The predicate $even :: Nat \rightarrow Bool yields$ True iff. the input is an even number. Define even in terms of foldN.
 - (b) Express the identity function on natural numbers id n = n in terms of foldN.
- 14. Fuse *even* into (+n). This way we get a function that checks whether a natural number is even after adding n.

15. The famous Fibonacci number is defined by:

$$\begin{array}{ll} fib \ 0 & = 0 \\ fib \ 1 & = 1 \\ fib \ (2+n) = fib \ (1+n) + fib \ n \ . \end{array}$$

The definition above, when taken directly as an algorithm, is rather slow. Define $fib2 \ n = (fib \ (1+n), fib \ n)$. Derive an O(n) implementation of fib2 by fusing it with $id :: Nat \to Nat$.

16. What are the fold fusion theorems for ETree and ITree?