
Programming Languages: Functional
Programming
0. Introduction

Shin-Cheng Mu
Autumn 2023

National Taiwan University and Academia Sinica

1/28



So, what is this course about?

• Some people refer to this course as “programming
language theory”, that is, theories about the language and
tools we use to program.

• Why does it matter to us?

2/28



The Isle of Knights and Knaves



• On a remote isle there live two kinds of people:
• the knights always tell the truth, while
• the knaves always lie.
• Everyone on the isle is either a knight or a knave.

• You are at the entrance of a cave. Lengend has it that the
deep in the cave there buries a huge amount of gold... or
a dragon that may swallow you alive. You see an old man.
How do you form a question to know which is the case?

3/28



Warming Up

• With two islanders, A and B:
• A says: “ if you ask B whether he is a knight, he would say
‘Yes’.”.

• What can you infer about A and B?

4/28



Exhaustive Enumeration?

• What matters more is how you solved the problem.
• Most people would exhaustively enumerate all
possibilities.

• “Suppose that A is a knight...”

5/28



Equivalence

• Abbreviate “A is a knight” to A.
• As a convention (among certain circles), we write logical
equivalence, that is, “ if and only if”, or equality on
booleans, as ≡.

• Suppose that A said some sentence P. If A is a knight, P
must be True. Otherwise P must be False.

• Thus, “A said P” can be denoted by A ≡ P.

6/28



Warming Up…

• A ≡ A is always True.
• Indeed, any person would say he/she is a knight.

• “A says: ‘B is a knight’.”

• A ≡ B.
• A and B are of the same kind.

• A says: “ if you ask B whether he is a knight, he would say
‘Yes’.”.

A ≡ (B ≡ B)
≡ A ≡ True
≡ A.

• Thus we know that A is a knight. Nothing can be said about
B.

7/28



Warming Up…

• A ≡ A is always True.
• Indeed, any person would say he/she is a knight.

• “A says: ‘B is a knight’.”
• A ≡ B.
• A and B are of the same kind.

• A says: “ if you ask B whether he is a knight, he would say
‘Yes’.”.

A ≡ (B ≡ B)
≡ A ≡ True
≡ A.

• Thus we know that A is a knight. Nothing can be said about
B.

7/28



Warming Up…

• A ≡ A is always True.
• Indeed, any person would say he/she is a knight.

• “A says: ‘B is a knight’.”
• A ≡ B.
• A and B are of the same kind.

• A says: “ if you ask B whether he is a knight, he would say
‘Yes’.”.

A ≡ (B ≡ B)

≡ A ≡ True
≡ A.

• Thus we know that A is a knight. Nothing can be said about
B.

7/28



Warming Up…

• A ≡ A is always True.
• Indeed, any person would say he/she is a knight.

• “A says: ‘B is a knight’.”
• A ≡ B.
• A and B are of the same kind.

• A says: “ if you ask B whether he is a knight, he would say
‘Yes’.”.

A ≡ (B ≡ B)
≡ A ≡ True
≡ A.

• Thus we know that A is a knight. Nothing can be said about
B.

7/28



• A says: “B and I are of the same kind!”

A ≡ (A ≡ B)
≡ { ≡ is associative }
(A ≡ A) ≡ B

≡ True ≡ B
≡ B.

• Thus we know that B is a knight. Nothing can be said
about A.

• In fact, not many people know that ≡ is associative.

8/28



• A says: “B and I are of the same kind!”

A ≡ (A ≡ B)

≡ { ≡ is associative }
(A ≡ A) ≡ B

≡ True ≡ B
≡ B.

• Thus we know that B is a knight. Nothing can be said
about A.

• In fact, not many people know that ≡ is associative.

8/28



• A says: “B and I are of the same kind!”

A ≡ (A ≡ B)
≡ { ≡ is associative }
(A ≡ A) ≡ B

≡ True ≡ B
≡ B.

• Thus we know that B is a knight. Nothing can be said
about A.

• In fact, not many people know that ≡ is associative.

8/28



Back to the Cave…

• Goal: design a question Q such that A answers Yes iff.
there is gold in the cave.

• “A answers Yes to question Q” is also written A ≡ Q.
• Let G denote “there is gold in the cave.”
• “A answers Yes to Q iff. there is gold in the cave.”

(A ≡ Q) ≡ G
≡ (Q ≡ A) ≡ G
≡ Q ≡ (A ≡ G).

• So the question is “Is ‘You are a knight’ equivalent to
‘there is gold in the cave’?”

9/28



Back to the Cave…

• Goal: design a question Q such that A answers Yes iff.
there is gold in the cave.

• “A answers Yes to question Q” is also written A ≡ Q.

• Let G denote “there is gold in the cave.”
• “A answers Yes to Q iff. there is gold in the cave.”

(A ≡ Q) ≡ G
≡ (Q ≡ A) ≡ G
≡ Q ≡ (A ≡ G).

• So the question is “Is ‘You are a knight’ equivalent to
‘there is gold in the cave’?”

9/28



Back to the Cave…

• Goal: design a question Q such that A answers Yes iff.
there is gold in the cave.

• “A answers Yes to question Q” is also written A ≡ Q.
• Let G denote “there is gold in the cave.”

• “A answers Yes to Q iff. there is gold in the cave.”

(A ≡ Q) ≡ G
≡ (Q ≡ A) ≡ G
≡ Q ≡ (A ≡ G).

• So the question is “Is ‘You are a knight’ equivalent to
‘there is gold in the cave’?”

9/28



Back to the Cave…

• Goal: design a question Q such that A answers Yes iff.
there is gold in the cave.

• “A answers Yes to question Q” is also written A ≡ Q.
• Let G denote “there is gold in the cave.”
• “A answers Yes to Q iff. there is gold in the cave.”

(A ≡ Q) ≡ G
≡ (Q ≡ A) ≡ G
≡ Q ≡ (A ≡ G).

• So the question is “Is ‘You are a knight’ equivalent to
‘there is gold in the cave’?”

9/28



Back to the Cave…

• Goal: design a question Q such that A answers Yes iff.
there is gold in the cave.

• “A answers Yes to question Q” is also written A ≡ Q.
• Let G denote “there is gold in the cave.”
• “A answers Yes to Q iff. there is gold in the cave.”

(A ≡ Q) ≡ G

≡ (Q ≡ A) ≡ G
≡ Q ≡ (A ≡ G).

• So the question is “Is ‘You are a knight’ equivalent to
‘there is gold in the cave’?”

9/28



Back to the Cave…

• Goal: design a question Q such that A answers Yes iff.
there is gold in the cave.

• “A answers Yes to question Q” is also written A ≡ Q.
• Let G denote “there is gold in the cave.”
• “A answers Yes to Q iff. there is gold in the cave.”

(A ≡ Q) ≡ G
≡ (Q ≡ A) ≡ G

≡ Q ≡ (A ≡ G).
• So the question is “Is ‘You are a knight’ equivalent to
‘there is gold in the cave’?”

9/28



Back to the Cave…

• Goal: design a question Q such that A answers Yes iff.
there is gold in the cave.

• “A answers Yes to question Q” is also written A ≡ Q.
• Let G denote “there is gold in the cave.”
• “A answers Yes to Q iff. there is gold in the cave.”

(A ≡ Q) ≡ G
≡ (Q ≡ A) ≡ G
≡ Q ≡ (A ≡ G).

• So the question is “Is ‘You are a knight’ equivalent to
‘there is gold in the cave’?”

9/28



Back to the Cave…

• Goal: design a question Q such that A answers Yes iff.
there is gold in the cave.

• “A answers Yes to question Q” is also written A ≡ Q.
• Let G denote “there is gold in the cave.”
• “A answers Yes to Q iff. there is gold in the cave.”

(A ≡ Q) ≡ G
≡ (Q ≡ A) ≡ G
≡ Q ≡ (A ≡ G).

• So the question is “Is ‘You are a knight’ equivalent to
‘there is gold in the cave’?”

9/28



Abstraction



How Was the Problem Solved?

1. Turn the problem into mathematical formulae.
2. And then calculate, using the rules associated with the
operators.

• The first step, called “abstraction”, is harder.
• The second step is much easier, because we let the
symbols do the work!

• Well-designed symbols relieve us of the mental burden.
• Recall how you calculate, say 17 × 24?

• Why does that concern us?

10/28



A Programming Language is a Symbolic, Formal System

• Because a programming language is an abstract model,
and a collections of symbols and their related rules, to
relieve us of the mental burden of programming.

• Abstraction: a programming language models the real
world, while throws away some “unimportant parts”.

• A formal system: a collection of symbols, and some rules
to manipulate them.

• We hope that a programming language is well-designed,
such that it helps us to program.

11/28



Abstraction

• “What are the three most important factors in real
estate?”

• Location, location, and location.
• “What are the three most important factors in a
programming language?”

• Abstraction, abstraction, and abstraction — Paul Hudak.

• Abstration: the process of
• extracting the underlying essence of a mathematical
concept,

• removing any dependence on real world objects with
which it might originally have been connected, and

• generalizing it so that it has wider applications or
matching among other abstract descriptions of equivalent
phenomena.

12/28



Abstraction

• “What are the three most important factors in real
estate?”

• Location, location, and location.

• “What are the three most important factors in a
programming language?”

• Abstraction, abstraction, and abstraction — Paul Hudak.

• Abstration: the process of
• extracting the underlying essence of a mathematical
concept,

• removing any dependence on real world objects with
which it might originally have been connected, and

• generalizing it so that it has wider applications or
matching among other abstract descriptions of equivalent
phenomena.

12/28



Abstraction

• “What are the three most important factors in real
estate?”

• Location, location, and location.
• “What are the three most important factors in a
programming language?”

• Abstraction, abstraction, and abstraction — Paul Hudak.
• Abstration: the process of

• extracting the underlying essence of a mathematical
concept,

• removing any dependence on real world objects with
which it might originally have been connected, and

• generalizing it so that it has wider applications or
matching among other abstract descriptions of equivalent
phenomena.

12/28



Abstraction

• “What are the three most important factors in real
estate?”

• Location, location, and location.
• “What are the three most important factors in a
programming language?”

• Abstraction, abstraction, and abstraction — Paul Hudak.

• Abstration: the process of
• extracting the underlying essence of a mathematical
concept,

• removing any dependence on real world objects with
which it might originally have been connected, and

• generalizing it so that it has wider applications or
matching among other abstract descriptions of equivalent
phenomena.

12/28



Abstraction

• “What are the three most important factors in real
estate?”

• Location, location, and location.
• “What are the three most important factors in a
programming language?”

• Abstraction, abstraction, and abstraction — Paul Hudak.
• Abstration: the process of

• extracting the underlying essence of a mathematical
concept,

• removing any dependence on real world objects with
which it might originally have been connected, and

• generalizing it so that it has wider applications or
matching among other abstract descriptions of equivalent
phenomena.

12/28



Algebra

• “Mary had twice as many apples as John had. Mary found
that half of her apples are rotten and thus throws them
away. John ate one of his apples. Still, Mary has twice as
many apples as John has. How many apples did they
originally have?”

m = 2 ⋅ j,
m/2 = 2 ⋅ (j − 1).

13/28



Algebra

• “Mary had twice as many apples as John had. Mary found
that half of her apples are rotten and thus throws them
away. John ate one of his apples. Still, Mary has twice as
many apples as John has. How many apples did they
originally have?”

m = 2 ⋅ j,
m/2 = 2 ⋅ (j − 1).

13/28



Abstraction

• From “Mary had twice as many apples as John…” to
“m = 2 ⋅ j”:

• extracted: values, and their relationships.
• dropped: time, causality, …

• What if time and causality turn out to be important? We
need another abstraction.

• Perhaps a stronger logic/algebra.

14/28



Not One, but Many Logics

• Propositional logic.
• (First-order) predicate logic: for all, exists…
• Modal logic: describing time and order.
• Separation logic: sharing of resources.
• Descriptive logic: concepts, and relationship between
concepts.

• Each (or, some) logic corresponds to a type system in a
programming language.

15/28



Abstraction in Imperative Programming Languages

• Abstraction of control structures: for-loops, while-loops…
• Procedure abstraction.
• Data abstraction: user-defined datatypes, instead of bits
and bytes…

• What algebraic laws do they satisfy? Hmm... not many,
unfortunately.

16/28



Abstractions of Other Paradigms

• Object-oriented programming: everything is an object!
• Functional programming: everything is a function!
• Logic programming: “computation = controlled
deduction!” “algorithm = logic + control!”

17/28



A Language is an Abstraction

• A programming language is an abstract view toward
computation, with attention on aspects the designers care
about.

• To learn a language is to learn its view.
• Alan Perlis: “A language that doesn’t affect the way you
think about programming, is not worth knowing.”

• In this term I hope you will see something that affects the
way you think about programming.

18/28



Algebraic Manipulation



• What qualifies as a good abstraction?
• Our point of view: one that gives us more properties to
manipulate with.

19/28



Greek Alphabetical Numerals

α β γ δ ε ϛ ζ η θ ι κ λ μ ν ξ ο π ϙ
1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90
ρ σ τ υ φ χ ψ ω ϡ ͵α ͵β ͵γ

100 200 300 400 500 600 700 800 900 1000 2000 3000

• 11, 12, 13 are written ια, ιβ, ιγ.

• 21, 22, 23 are written κα, κβ, κγ.

• Natural in a way. Not very suitable for calculation.

• Why can we not denote 23 by βγ? What about 203 and 2003?

20/28



Maya Numerals

1 1 × 18 × 20 × 20 × 20 × 20 = 2880000

2 2 × 18 × 20 × 20 × 20 = 288000

15 6 × 18 × 20 × 20 = 43200

2 2 × 18 × 20 = 720

355 13 × 20 = 260

4555 19
total: 3212199

• Orders vertically stack, bottom to top. 20-base, apart from
the second order, since 18 × 20 = 360 is closer to the
number of days in a year.

• Relatively easy arithmetic calculation.
• Zero is represented by 0.

21/28



Maya Numerals

25 2 45 55

155 + 555 =

155555 = 15
151 55 206 206

• Orders vertically stack, bottom to top. 20-base, apart from
the second order, since 18 × 20 = 360 is closer to the
number of days in a year.

• Relatively easy arithmetic calculation.
• Zero is represented by 0.

21/28



Algebraic Properties of Programs?

The following two programs are equivalent.

• s = 0; m = 0;
for (i=0; i<=N; i++) s = a[i] + s;
for (i=0; i<=N; i++) m = a[i] + m;

• s = 0; m = 0;
for (i=0; i<=N; i++) {

s = a[i] + s;
m = a[i] + m;

}

Is that easily seen? Can we transform one to another? Does
the equivalence still hold if we replace the assignment by
other statements?

22/28



Maximum Segment Sum

• The specification: max { sum (i, j) ∶∶ 0 ≤ i ≤ j ≤ N }, where
sum (i, j) = a[i] + a[i + 1] + . . . + a[j − 1].

• What we want the program to do.
• One can imagine a program using three nested loops.

• The program:
s = 0; m = 0;
for (i=0; i<=N; i++) {

s = max(0, a[j]+s);
m = max(m, s);

}
• How to do it.

• They do not look like each other at all!
• Moral: programs that appear “simple” might not be that
simple after all!

23/28



“…the designer of the program had better regard the program
as a sophisticated formula. And we also know that there is
only one trustworthy way of designing a sophisticated formula,
viz., derivation by means of symbol manipulation. We have to
let the symbols do the work.”

— E.W.Dijkstra, The next forty years. 14 June 1989.

24/28



Programming, and Programming Languages

• Correctness: that the behaviour of a program is allowed
by the specification.

• Semantics: defining “behaviours” of a program.
• Programming: to code up a correct program!

• Thus the job of a programming language is to help the
programmer to program,

• either by making it easy to check that whether a program
is correct,

• or by ensuring that programmers may only construct
correct programs, that is, disallowing the very construction
of incorrect programs!

25/28



Programming, and Programming Languages

• Correctness: that the behaviour of a program is allowed
by the specification.

• Semantics: defining “behaviours” of a program.
• Programming: to code up a correct program!
• Thus the job of a programming language is to help the
programmer to program,

• either by making it easy to check that whether a program
is correct,

• or by ensuring that programmers may only construct
correct programs, that is, disallowing the very construction
of incorrect programs!

25/28



Plans for this Term



Plans for this Term

• We will start with learning a functional language, Haskell.
• We can learn something new since it is so different from
what you are used to.

• Much emphasis will be on
• How to construct programs in a disciplined manner.
• How to show that programs are correct.

• Haskell will be used as a tool to learn semantics.
• When the time comes, we will use a dependently typed
language, Agda, to talk about relationship between
programs and proofs.

26/28



Textbook and Homepage

• Unfortunately, there is not a completely suitable textbook.

• For the functional programming part, I am currently
working on a draft textbook! It is available on the course
website. Comments welcomed.

• There are a number of good Haskell tutorials.
• Course homepage: https://scmu.github.io/plfp/.
More info will be updated there.

27/28

https://scmu.github.io/plfp/


I wish you enjoy this course.

28/28


	The Isle of Knights and Knaves
	Abstraction
	Algebraic Manipulation
	Plans for this Term

