
PROGRAMMING LANGUAGES: FUNCTIONAL
PROGRAMMING
1. INTRODUCTION TO HASKELL: VALUE, FUNCTIONS,
AND TYPES

Shin-Cheng Mu
Autumn 2023

National Taiwan University and Academia Sinica

1 / 24



A QUICK INTRODUCTION TO HASKELL

• We will mostly learn some syntactical issues, but there are
some important messages too.

• Most of the materials today are adapted from the book
Introduction to Functional Programming using Haskell by
Richard Bird. Prentice Hall 1998.

• References to more Haskell materials are on the course
homepage.

2 / 24



COURSE MATERIALS AND TOOLS

• Course homepage: https://scmu.github.io/plfp/
• Announcements, slides, assignments, additional materials,
etc.

• We will be using the Glasgow Haskell Compiler (GHC).
• A Haskell compiler written in Haskell, with an interpreter
that both interprets and runs compiled code.

• See the course homepage for instructions for installation
and other info.

3 / 24

https://scmu.github.io/plfp/


FUNCTION DEFINITION

• A function definition consists of a type declaration, and
the definition of its body:

square :: Int→ Int
square x = x× x

smaller :: Int→ Int→ Int
smaller x y = if x ≤ y then x else y

• The GHCi interpreter evaluates expressions in the loaded
context:

? square 3768
14197824
? square (smaller 5 (3+ 4))
25

4 / 24



VALUES AND EVALUATION



EVALUATION

One possible sequence of evaluating (simplifying, or reducing)
square (3+ 4):

square (3+ 4)

= { definition of + }
square 7

= { definition of square }
7× 7

= { definition of × }
49

5 / 24



EVALUATION

One possible sequence of evaluating (simplifying, or reducing)
square (3+ 4):

square (3+ 4)
= { definition of + }

square 7

= { definition of square }
7× 7

= { definition of × }
49

5 / 24



EVALUATION

One possible sequence of evaluating (simplifying, or reducing)
square (3+ 4):

square (3+ 4)
= { definition of + }

square 7
= { definition of square }

7× 7

= { definition of × }
49

5 / 24



EVALUATION

One possible sequence of evaluating (simplifying, or reducing)
square (3+ 4):

square (3+ 4)
= { definition of + }

square 7
= { definition of square }

7× 7
= { definition of × }

49

5 / 24



ANOTHER EVALUATION SEQUENCE

• Another possible reduction sequence:
square (3+ 4)

= { definition of square }
(3+ 4)× (3+ 4)

= { definition of + }
7× (3+ 4)

= { definition of + }
7× 7

= { definition of × }
49

• In this sequence the rule for square is applied first. The
final result stays the same.

• Do different evaluations orders always yield the same
thing?

6 / 24



ANOTHER EVALUATION SEQUENCE

• Another possible reduction sequence:
square (3+ 4)

= { definition of square }
(3+ 4)× (3+ 4)

= { definition of + }
7× (3+ 4)

= { definition of + }
7× 7

= { definition of × }
49

• In this sequence the rule for square is applied first. The
final result stays the same.

• Do different evaluations orders always yield the same
thing?

6 / 24



ANOTHER EVALUATION SEQUENCE

• Another possible reduction sequence:
square (3+ 4)

= { definition of square }
(3+ 4)× (3+ 4)

= { definition of + }
7× (3+ 4)

= { definition of + }
7× 7

= { definition of × }
49

• In this sequence the rule for square is applied first. The
final result stays the same.

• Do different evaluations orders always yield the same
thing?

6 / 24



ANOTHER EVALUATION SEQUENCE

• Another possible reduction sequence:
square (3+ 4)

= { definition of square }
(3+ 4)× (3+ 4)

= { definition of + }
7× (3+ 4)

= { definition of + }
7× 7

= { definition of × }
49

• In this sequence the rule for square is applied first. The
final result stays the same.

• Do different evaluations orders always yield the same
thing?

6 / 24



ANOTHER EVALUATION SEQUENCE

• Another possible reduction sequence:
square (3+ 4)

= { definition of square }
(3+ 4)× (3+ 4)

= { definition of + }
7× (3+ 4)

= { definition of + }
7× 7

= { definition of × }
49

• In this sequence the rule for square is applied first. The
final result stays the same.

• Do different evaluations orders always yield the same
thing?

6 / 24



A NON-TERMINATING REDUCTION

• Consider the following program:
three :: Int→ Int
three x = 3
infinity :: Int
infinity = infinity+ 1

• Try evaluating three infinity. If we simplify infinity first:
three infinity

= { definition of infinity }
three (infinity+ 1)

= three ((infinity+ 1) + 1) . . .
• If we start with simplifying three:

three infinity
= { definition of three }

3
7 / 24



EVALUATION ORDER

• There can be many other evaluation orders. As we have
seen, some terminates while some do not.

• normal form: an expression that cannot be reduced
anymore.

• 49 is in normal form, while 7× 7 is not.
• Some expressions do not have a normal form. E.g. infinity.

• A corollary of the Church–Rosser theorem: an expression
has at most one normal form.

• If two evaluation sequences both terminate, they reach the
same normal form.

8 / 24



EVALUATION ORDER

• Applicative order evaluation: starting with the innermost
reducible expression (a redex).

• Normal order evaluation: starting with the outermost
redex.

• If an expression has a normal form, normal order
evaluation delivers it. Hence the name.

• For now you can imagine that Haskell uses normal order
evaluation. A way to implement normal order evaluation
is called lazy evaluation.

9 / 24



FUNCTIONS



MATHEMATICAL FUNCTIONS

• Mathematically, a function is a mapping between
arguments and results.

• A function f :: A→ B maps each element in A to a unique
element in B.

• In contrast, C “functions” are not mathematical functions:
• int y = 1; int f (x:int) { return ((y++) *
x); }

• Functions in Haskell have no such side-effects:
(unconstrained) assignments, IO, etc.

• Why removing these useful features? We will talk about
that later in this course.

10 / 24



CURRIED FUNCTIONS

• Consider again the function smaller:

smaller :: Int→ Int→ Int
smaller x y = if x ≤ y then x else y

• We sometimes informally call it a function “taking two
arguments”.

• Usage: smaller 3 4.
• Strictly speaking, however, smaller is a function returning
a function. The type should be bracketed as
Int→ (Int→ Int).

11 / 24



PRECEDENCE AND ASSOCIATION

• In a sense, all Haskell functions takes exactly one
argument.

• Such functions are often called curried.

• Type: a→ b→ c = a→ (b→ c), not (a→ b) → c.
• Application: f x y = (f x) y, not f (x y).

• smaller 3 4 means (smaller 3) 4.
• square square 3 means (square square) 3, which results in
a type error.

• Function application binds tighter than infix operators.
E.g. square 3+ 4 means (square 3) + 4.

12 / 24



WHY CURRYING?

• It exposes more chances to reuse a function, since it can
be partially applied.

twice :: (a→ a) → (a→ a)
twice f x = f (f x)
quad :: Int→ Int
quad = twice square

• Try evaluating quad 3:

quad 3
= twice square 3
= square (square 3)
= . . .

13 / 24



SECTIONING

• Infix operators are curried too. The operator (+) may have
type Int→ Int→ Int.

• Infix operator can be partially applied too.

(x ⊕) y = x⊕ y
(⊕ y) x = x⊕ y

• (1 +) :: Int→ Int increments its argument by one.
• (1.0 /) :: Float→ Float is the “reciprocal” function.
• (/ 2.0) :: Float→ Float is the “halving” function.

14 / 24



INFIX AND PREFIX

• To use an infix operator in prefix position, surrounded it in
parentheses. For example, (+) 3 4 is equivalent to 3+ 4.

• Surround an ordinary function by back-quotes (not
quotes!) to put it in infix position. E.g. 3 ‘mod‘ 4 is the
same as mod 3 4.

15 / 24



FUNCTION COMPOSITION

• Functions composition:

(·) :: (b→ c) → (a→ b) → (a→ c)
(f · g) x = f (g x)

• E.g. another way to write quad:

quad :: Int→ Int
quad = square · square

• Some important properties:
• id · f = f = f · id, where id x = x.
• (f · g) · h = f · (g · h).

16 / 24



GUARDED EQUATIONS

• Recall the definition:
smaller :: Int→ Int→ Int
smaller x y = if x ≤ y then x else y

• We can also write:
smaller :: Int→ Int→ Int
smaller x y | x ≤ y = x

| x > y = y
• Helpful when there are many choices:

signum :: Int→ Int
signum x | x > 0 = 1

| x = = 0 = 0
| x < 0 = −1

17 / 24



λ EXPRESSIONS

• Since functions are first-class constructs, we can also
construct functions in expressions.

• A λ expression denotes an anonymous function.
• λx→ e: a function with argument x and body e.
• λx→ λy→ e abbreviates to λx y→ e.
• In ASCII, we write λ as \

• Yet another way to define smaller:

smaller :: Int→ Int→ Int
smaller = λx y→ if x ≤ y then x else y

• Why λs? Sometimes we may want to quickly define a
function and use it only once.

• In fact, λ is a more primitive concept.

18 / 24



LOCAL DEFINITIONS

There are two ways to define local bindings in Haskell.

• let-expression:
f :: Float→ Float→ Float
f x y = let a = (x+ y)/2

b = (x+ y)/3
in (a+ 1)× (b+ 2)

• where-clause:
f :: Int→ Int→ Int
f x y | x ≤ 10 = x+ a

| x > 10 = x− a
where a = square (y+ 1)

• let can be used in expressions (e.g. 1+ (let..in..)), while
where qualifies multiple guarded equations.

19 / 24



TYPES



TYPES

• The universe of values is partitioned into collections,
called types.

• Some basic types: Int, Float, Bool, Char…
• Type “constructors”: functions, lists, trees …to be
introduced later.

• Operations on values of a certain type might not make
sense for other types. For example: square square 3.

• Strong typing: the type of a well-formed expression can
be deducted from the constituents of the expression.

• It helps you to detect errors.
• More importantly, programmers may consider the types for
the values being defined before considering the definition
themselves, leading to clear and well-structured programs.

20 / 24



POLYMORPHIC TYPES

• Suppose square :: Int→ Int and sqrt :: Int→ Float.
• square · square :: Int→ Int
• sqrt · square :: Int→ Float

• The (·) operator has different types in the two
expressions:

• (·) :: (Int→ Int) → (Int→ Int) → (Int→ Int)
• (·) :: (Int→ Float) → (Int→ Int) → (Int→ Float)

• To allow (·) to be used in many situations, we introduce
type variables and let its type be:
(b→ c) → (a→ b) → (a→ c).

21 / 24



SUMMARY SO FAR

• Functions are essential building blocks in a Haskell
program. They can be applied, composed, passed as
arguments, and returned as results.

• Types sometimes guide you through the design of a
program.

• Equational reasoning: let the symbols do the work!

22 / 24



RECOMMANDED TEXTBOOKS

• Introduction to Functional Programming using Haskell.
My recommended book. Covers equational reasoning very
well.

• Programming in Haskell. A thin but complete textbook.

23 / 24



ONLINE HASKELL TUTORIALS

• Learn You a Haskell for Great Good! , a nice tutorial with
cute drawings!

• Yet Another Haskell Tutorial.
• A Gentle Introduction to Haskell by Paul Hudak, John
Peterson, and Joseph H. Fasel: a bit old, but still worth a
read.

• Real World Haskell. Freely available online. It assumes
some basic knowledge of Haskell, however.

24 / 24


	Values and Evaluation
	Functions
	Using Functions
	Sectioning
	Definitions

	Types

