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TOTAL FUNCTIONAL PROGRAMMING

• The next few lectures concerns inductive definitions and
proofs of datatypes and programs.

• While Haskell provides allows one to define
nonterminating functions, infinite data structures, for now
we will only consider its total, finite fragment.

• That is, we temporarily
• consider only finite data structures,
• demand that functions terminate for all value in its input
type, and

• provide guidelines to construct such functions.

• Infinite datatypes and non-termination will be discussed
later in this course.
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INDUCTION ON NATURAL NUMBERS



THE SO-CALLED “MATHEMATICAL INDUCTION”

• Let P be a predicate on natural numbers.
• We’ve all learnt this principle of proof by induction: to
prove that P holds for all natural numbers, it is sufficient
to show that

• P 0 holds;
• P (1+ n) holds provided that Pn does.
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PROOF BY INDUCTION ON NATURAL NUMBERS

• We can see the above inductive principle as a result of
seeing natural numbers as defined by the datatype 1

data Nat = 0 | 1+ Nat .

• That is, any natural number is either 0, or 1+ n where n is
a natural number.

• In this lecture, 1+ is written in bold font to emphasise that
it is a data constructor (as opposed to the function (+), to
be defined later, applied to a number 1).

1Not a real Haskell definition.
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A PROOF GENERATOR

Given P 0 and Pn⇒ P (1+ n), how does one prove, for
example, P 3?

P (1+ (1+ (1+ 0)))
⇐ { P (1+ n) ⇐ Pn }

P (1+ (1+ 0))
⇐ { P (1+ n) ⇐ Pn }

P (1+ 0)
⇐ { P (1+ n) ⇐ Pn }

P 0 .

Having done math. induction can be seen as having designed
a program that generates a proof — given any n :: Nat we can
generate a proof of Pn in the manner above.
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INDUCTIVELY DEFINED FUNCTIONS

• Since the type Nat is defined by two cases, it is natural to
define functions on Nat following the structure:

exp :: Nat→ Nat→ Nat
exp b 0 = 1
exp b (1+ n) = b× exp b n .

• Even addition can be defined inductively

(+) :: Nat→ Nat→ Nat
0+ n = n
(1+ m) + n = 1+ (m+ n) .

• Exercise: define (×)?
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A VALUE GENERATOR

Given the definition of exp, how does one compute exp b 3?

exp b (1+ (1+ (1+ 0)))
= { definition of exp }

b× exp b (1+ (1+ 0))
= { definition of exp }

b× b× exp b (1+ 0)
= { definition of exp }

b× b× b× exp b 0
= { definition of exp }

b× b× b× 1 .

It is a program that generates a value, for any n :: Nat.
Compare with the proof of P above.
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MORAL: PROVING IS PROGRAMMING

An inductive proof is a program that generates a proof for any
given natural number.

An inductive program follows the same structure of an
inductive proof.

Proving and programming are very similar activities.
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WITHOUT THE n+ k PATTERN

• Unfortunately, newer versions of Haskell abandoned the
“n+ k pattern” used in the previous slides:

exp :: Int→ Int→ Int
exp b 0 = 1
exp b n = b× exp b (n− 1) .

• Nat is defined to be Int in MiniPrelude.hs. Without
MiniPrelude.hs you should use Int.

• For the purpose of this course, the pattern 1+ n reveals
the correspondence between Nat and lists, and matches
our proof style. Thus we will use it in the lecture.

• Remember to remove them in your code.
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PROOF BY INDUCTION

• To prove properties about Nat, we follow the structure as
well.

• E.g. to prove that exp b (m+ n) = exp b m× exp b n.
• One possibility is to preform induction on m. That is,
prove Pm for all m :: Nat, where
Pm ≡ (∀n :: exp b (m+ n) = exp b m× exp b n).
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PROOF BY INDUCTION

Recall Pm ≡ (∀n :: exp b (m+ n) = exp b m× exp b n).

Case m := 0. For all n, we reason:
exp b (0+ n)

= { defn. of (+) }
exp b n

= { defn. of (×) }
1× exp b n

= { defn. of exp }
exp b 0× exp b n .

We have thus proved P 0.
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PROOF BY INDUCTION

Recall Pm ≡ (∀n :: exp b (m+ n) = exp b m× exp b n).

Case m := 1+ m. For all n, we reason:

exp b ((1+ m) + n)

= { defn. of (+) }
exp b (1+ (m+ n))

= { defn. of exp }
b× exp b (m+ n)

= { induction }
b× (exp b m× exp b n)

= { (×) associative }
(b× exp b m)× exp b n

= { defn. of exp }
exp b (1+ m)× exp b n .

We have thus proved P (1+ m), given P m.
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STRUCTURE PROOFS BY PROGRAMS

• The inductive proof could be carried out smoothly,
because both (+) and exp are defined inductively on its
lefthand argument (of type Nat).

• The structure of the proof follows the structure of the
program, which in turns follows the structure of the
datatype the program is defined on.
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LISTS AND NATURAL NUMBERS

• We have yet to prove that (×) is associative.
• The proof is quite similar to the proof for associativity of
(++), which we will talk about later.

• In fact, Nat and lists are closely related in structure.
• Most of us are used to think of numbers as atomic and
lists as structured data. Neither is necessarily true.

• For the rest of the course we will demonstrate induction
using lists, while taking the properties for Nat as given.
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AN INDUCTIVELY DEFINED SET?

• For a set to be “inductively defined”, we usually mean that
it is the smallest fixed-point of some function.

• What does that maen?
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FIXED-POINT AND PREFIXED-POINT

• A fixed-point of a function f is a value x such that f x = x.
• Theorem. f has fixed-point(s) if f is a monotonic function
defined on a complete lattice.

• In general, given f there may be more than one fixed-point.
• A prefixed-point of f is a value x such that f x ≤ x.

• Apparently, all fixed-points are also prefixed-points.

• Theorem. the smallest prefixed-point is also the smallest
fixed-point.
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EXAMPLE: Nat

• Recall the usual definition: Nat is defined by the following
rules:
1. 0 is in Nat;
2. if n is in Nat, so is 1+ n;
3. there is no other Nat.

• If we define a function F from sets to sets:
F X = {0} ∪ {1+ n | n ∈ X}, 1. and 2. above means that
FNat ⊆ Nat. That is, Nat is a prefixed-point of F.

• 3. means that we want the smallest such prefixed-point.
• Thus Nat is also the least (smallest) fixed-point of F.
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LEAST PREFIXED-POINT

Formally, let F X = {0} ∪ {1+ n | n ∈ X}, Nat is a set such that

FNat ⊆ Nat , (1)
(∀X : F X ⊆ X ⇒ Nat ⊆ X) , (2)

where (1) says that Nat is a prefixed-point of F, and (2) it is the
least among all prefixed-points of F.
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MATHEMATICAL INDUCTION, FORMALLY

• Given property P, we also denote by P the set of elements
that satisfy P.

• That P 0 and Pn⇒ P (1+n) is equivalent to {0} ⊆ P and
{1+ n | n ∈ P} ⊆ P,

• which is equivalent to F P ⊆ P. That is, P is a
prefixed-point!

• By (2) we have Nat ⊆ P. That is, all Nat satisfy P!
• This is “why mathematical induction is correct.”
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COINDUCTION?

There is a dual technique called coinduction where, instead of
least prefixed-points, we talk about greatest postfixed points.
That is, largest x such that x ≤ f x.

With such construction we can talk about infinite data
structures.
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INDUCTION ON LISTS



INDUCTIVELY DEFINED LISTS

• Recall that a (finite) list can be seen as a datatype defined
by: 2

data List a = [ ] | a : List a .

• Every list is built from the base case [ ], with elements
added by (:) one by one: [1, 2, 3] = 1 : (2 : (3 : [ ])).

2Not a real Haskell definition.
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ALL LISTS TODAY ARE FINITE

But what about infinite lists?

• For now let’s consider finite lists only, as having infinite
lists make the semantics much more complicated. 3

• In fact, all functions we talk about today are total
functions. No ⊥ involved.

3What does that mean? We will talk about it later.
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SET-THEORETICALLY SPEAKING...

The type List a is the smallest set such that

1. [ ] is in List a;
2. if xs is in List a and x is in a, x : xs is in List a as well.
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INDUCTIVELY DEFINED FUNCTIONS ON LISTS

• Many functions on lists can be defined according to how a
list is defined:

sum :: List Int→ Int
sum [ ] = 0
sum (x : xs) = x+ sum xs .

map :: (a→ b) → List a→ List b
map f [ ] = [ ]

map f (x : xs) = f x : map f xs .
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LIST APPEND

• The function (++) appends two lists into one

(++) :: List a→ List a→ List a
[ ] ++ ys = ys
(x : xs)++ ys = x : (xs++ ys) .

• Compare the definition with that of (+)!
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PROOF BY STRUCTURAL INDUCTION ON LISTS

• Recall that every finite list is built from the base case [ ],
with elements added by (:) one by one.

• To prove that some property P holds for all finite lists, we
show that
1. P [ ] holds;
2. forall x and xs, P (x : xs) holds provided that P xs holds.
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FOR A PARTICULAR LIST...

Given P [ ] and P xs⇒ P (x : xs), for all x and xs, how does one
prove, for example, P [1, 2, 3]?

P (1 : 2 : 3 : [ ])
⇐ { P (x : xs) ⇐ P xs }

P (2 : 3 : [ ])
⇐ { P (x : xs) ⇐ P xs }

P (3 : [ ])
⇐ { P (x : xs) ⇐ P xs }

P [ ] .
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APPENDING IS ASSOCIATIVE

To prove that xs++(ys++ zs) = (xs++ ys)++ zs.

Let P xs = (∀ys, zs :: xs++(ys++ zs) = (xs++ ys)++ zs), we
prove P by induction on xs.

Case xs := [ ]. For all ys and zs, we reason:

[ ] ++(ys++ zs)
= { defn. of (++) }

ys++ zs
= { defn. of (++) }

([ ] ++ ys)++ zs .

We have thus proved P [].
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APPENDING IS ASSOCIATIVE

Case xs := x : xs. For all ys and zs, we reason:

(x : xs)++(ys++ zs)
= { defn. of (++) }

x : (xs++(ys++ zs))
= { induction }

x : ((xs++ ys)++ zs)
= { defn. of (++) }

(x : (xs++ ys))++ zs
= { defn. of (++) }

((x : xs)++ ys)++ zs .

We have thus proved P (x : xs), given P xs.
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DO WE HAVE TO BE SO FORMAL?

• In our style of proof, every step is given a reason. Do we
need to be so pedantic?

• Being formal helps you to do the proof:
• In the proof of exp b (m+ n) = exp b m× exp b n, we
expect that we will use induction to somewhere. Therefore
the first part of the proof is to generate exp b (m+ n).

• In the proof of associativity, we were working toward
generating xs++(ys++ zs).

• By being formal we can work on the form, not the
meaning. Like how we solved the knight/knave problem

• Being formal actually makes the proof easier!
• Make the symbols do the work.
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LENGTH

• The function length defined inductively:

length :: List a→ Nat
length [ ] = 0
length (x : xs) = 1+ (length xs) .

• Exercise: prove that length distributes into (++):

length (xs++ ys) = length xs+ length ys
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CONCATENATION

• While (++) repeatedly applies (:), the function concat
repeatedly calls (++):

concat :: List (List a) → List a
concat [ ] = [ ]

concat (xs : xss) = xs++ concat xss .
• Compare with sum.
• Exercise: prove sum · concat = sum ·map sum.
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DEFINITION BY INDUCTION/RECURSION

• Rather than giving commands, in functional programming
we specify values; instead of performing repeated actions,
we define values on inductively defined structures.

• Thus induction (or in general, recursion) is the only
“control structure” we have. (We do identify and abstract
over plenty of patterns of recursion, though.)

• To inductively define a function f on lists, we specify a
value for the base case (f [ ]) and, assuming that f xs has
been computed, consider how to construct f (x : xs) out of
f xs.
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FILTER

• filter p xs keeps only those elements in xs that satisfy p.

filter :: (a→ Bool) → List a→ List a
filter p [ ] = [ ]

filter p (x : xs) | p x = x : filter p xs
| otherwise = filter p xs .
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TAKE AND DROP

• Recall take and drop, which we used in the previous
exercise.

take :: Nat→ List a→ List a
take 0 xs = [ ]

take (1+ n) [ ] = [ ]

take (1+ n) (x : xs) = x : take n xs .

drop :: Nat→ List a→ List a
drop 0 xs = xs
drop (1+ n) [ ] = [ ]

drop (1+ n) (x : xs) = drop n xs .
• Prove: take n xs++drop n xs = xs, for all n and xs.
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TAKEWHILE AND DROPWHILE

• takeWhile p xs yields the longest prefix of xs such that p
holds for each element.

takeWhile :: (a→ Bool) → List a→ List a
takeWhile p [ ] = [ ]

takeWhile p (x : xs) | p x = x : takeWhile p xs
| otherwise = [ ] .

• dropWhile p xs drops the prefix from xs.

dropWhile :: (a→ Bool) → List a→ List a
dropWhile p [ ] = [ ]

dropWhile p (x : xs) | p x = dropWhile p xs
| otherwise = x : xs .

• Prove: takeWhile p xs++dropWhile p xs = xs.
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LIST REVERSAL

• reverse [1, 2, 3, 4] = [4, 3, 2, 1].

reverse :: List a→ List a
reverse [ ] = [ ]

reverse (x : xs) = reverse xs++[x] .
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ALL PREFIXES AND SUFFIXES

• inits [1, 2, 3] = [[ ], [1], [1, 2], [1, 2, 3]]

inits :: List a→ List (List a)
inits [ ] = [[ ]]

inits (x : xs) = [ ] : map (x :) (inits xs) .
• tails [1, 2, 3] = [[1, 2, 3], [2, 3], [3], [ ]]

tails :: List a→ List (List a)
tails [ ] = [[ ]]

tails (x : xs) = (x : xs) : tails xs .
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TOTALITY

• Structure of our definitions so far:
f [ ] = . . .

f (x : xs) = . . . f xs . . .
• Both the empty and the non-empty cases are covered,
guaranteeing there is a matching clause for all inputs.

• The recursive call is made on a “smaller” argument,
guranteeing termination.

• Together they guarantee that every input is mapped to
some output. Thus they define total functions on lists.
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VARIATIONS WITH THE BASE CASE

• Some functions discriminate between several base cases.
E.g.

fib :: Nat→ Nat
fib 0 = 0
fib 1 = 1
fib (2+ n) = fib (1+n) + fib n .
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• Some functions make more sense when it is defined only
on non-empty lists:

f [x] = . . .

f (x : xs) = . . .

• What about totality?
• They are in fact functions defined on a different datatype:

data List+ a = Singleton a | a : List+ a .

• We do not want to define map, filter again for List+ a. Thus
we reuse List a and pretend that we were talking about
List+ a.

• It’s the same with Nat. We embedded Nat into Int.
• Ideally we’d like to have some form of subtyping. But that
makes the type system more complex.

41 / 52



LEXICOGRAPHIC INDUCTION

• It also occurs often that we perform lexicographic
induction on multiple arguments: some arguments
decrease in size, while others stay the same.

• E.g. the function merge merges two sorted lists into one
sorted list:
merge :: List Int→ List Int→ List Int
merge [ ] [ ] = [ ]

merge [ ] (y : ys) = y : ys
merge (x : xs) [ ] = x : xs
merge (x : xs) (y : ys) | x ≤ y = x : merge xs (y : ys)

| otherwise = y : merge (x : xs) ys .
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ZIP

Another example:

zip :: List a→ List b→ List (a,b)
zip [ ] [ ] = [ ]

zip [ ] (y : ys) = [ ]

zip (x : xs) [ ] = [ ]

zip (x : xs) (y : ys) = (x, y) : zip xs ys .
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NON-STRUCTURAL INDUCTION

• In most of the programs we’ve seen so far, the recursive
call are made on direct sub-components of the input (e.g.
f (x : xs) = ..f xs..). This is called structural induction.

• It is relatively easy for compilers to recognise structural
induction and determine that a program terminates.

• In fact, we can be sure that a program terminates if the
arguments get “smaller” under some (well-founded)
ordering.
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MERGESORT

• In the implemenation of mergesort below, for example,
the arguments always get smaller in size.

msort :: List Int→ List Int
msort [ ] = [ ]

msort [x] = [x]
msort xs = merge (msort ys) (msort zs) ,
where n = length xs ‘div‘ 2

ys = take n xs
zs = drop n xs .

• What if we omit the case for [x]?

• If all cases are covered, and all recursive calls are applied
to smaller arguments, the program defines a total
function.
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A NON-TERMINATING DEFINITION

• Example of a function, where the argument to the
recursive does not reduce in size:

f :: Int→ Int
f 0 = 0
f n = f n .

• Certainly f is not a total function. Do such definitions
“mean” something? We will talk about these later.
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USER DEFINED INDUCTIVE DATATYPES



INTERNALLY LABELLED BINARY TREES

• This is a possible definition of internally labelled binary
trees:

data Tree a = Null | Node a (Tree a) (Tree a) ,

• on which we may inductively define functions:

sumT :: Tree Nat→ Nat
sumT Null = 0
sumT (Node x t u) = x+ sumT t+ sumT u .
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Exercise: given (↓) :: Nat→ Nat→ Nat, which yields the
smaller one of its arguments, define the following functions

1. minT :: Tree Nat→ Nat, which computes the minimal
element in a tree.

2. mapT :: (a→ b) → Tree a→ Tree b, which applies the
functional argument to each element in a tree.

3. Can you define (↓) inductively on Nat? 4

4In the standard Haskell library, (↓) is called min.
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INDUCTION PRINCIPLE FOR Tree

• What is the induction principle for Tree?
• To prove that a predicate P on Tree holds for every tree, it
is sufficient to show that

1. P Null holds, and;
2. for every x, t, and u, if P t and P u holds, P (Node x t u)
holds.

• Exercise: prove that for all n and t,
minT (mapT (n+) t) = n+minT t. That is,
minT ·mapT (n+) = (n+) ·minT.
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INDUCTION PRINCIPLE FOR OTHER TYPES

• Recall that data Bool = False | True. Do we have an
induction principle for Bool?

• To prove a predicate P on Bool holds for all booleans, it is
sufficient to show that

1. P False holds, and
2. P True holds.

• Well, of course.
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• What about (A× B)? How to prove that a predicate P on
(A× B) is always true?

• One may prove some property P1 on A and some property
P2 on B, which together imply P.

• That does not say much. But the “induction principle” for
products allows us to extract, from a proof of P, the proofs
P1 and P2.
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• Every inductively defined datatype comes with its
induction principle.

• We will come back to this point later.
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