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A QUICK REVIEW

• Functions are the basic building blocks. They may be
passed as arguments, may return functions, and can be
composed together.

• While one issues commands in an imperative language, in
functional programming we specify values, and computers
try to reduce the values to their normal forms.

• Formal reasoning: reasoning with the form (syntax) rather
than the semantics. Let the symbols do the work!

• ‘Wholemeal’ programming: think of aggregate data as a
whole, and process them as a whole.
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A QUICK REVIEW

• Once you describe the values as algebraic datatypes, most
programs write themselves through structural recursion.

• Programs and their proofs are closely related. They share
similar structure, by induction over input data.

• Properties of programs can be reasoned about in
equations, just like high school algebra.
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SOME COMMENTS ON EFFICIENCY



DATA REPRESENTATION

• So far we have (surprisingly) been talking about
mathematics without much concern regarding efficiency.
Time for a change.

• Take lists for example. Recall the definition:
data List a = [ ] | a : List a.

• Our representation of lists is biased. The left most
element can be fetched immediately.

• Thus. (:), head, and tail are constant-time operations,
while init and last takes linear-time.

• In most implementations, the list is represented as a
linked-list.
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LIST CONCATENATION TAKES LINEAR TIME

• Recall (++):

[ ] ++ ys =

ys

(x : xs)++ ys =

x : (xs++ ys)

• Consider [1, 2, 3] ++[4, 5]:

(1 : 2 : 3 : [ ])++(4 : 5 : [ ])
= 1 : ((2 : 3 : [ ])++(4 : 5 : [ ]))
= 1 : 2 : ((3 : [ ])++(4 : 5 : [ ]))
= 1 : 2 : 3 : ([ ] ++(4 : 5 : [ ]))
= 1 : 2 : 3 : 4 : 5 : [ ]

• (++) runs in time proportional to the length of its left
argument.
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FULL PERSISTENCY

• Compound data structures, like simple values, are just
values, and thus must be fully persistent.

• That is, in the following code:

let xs = [1, 2, 3]
ys = [4, 5]
zs = xs++ ys

in . . .body . . .
• The body may have access to all three values. Thus ++
cannot perform a destructive update.
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LINKED V.S. BLOCK DATA STRUCTURES

• Trees are usually represented in a similar manner, through
links.

• Fully persistency is easier to achieve for such linked data
structures.

• Accessing arbitrary elements, however, usually takes
linear time.

• In imperative languages, constant-time random access is
usually achieved by allocating lists (usually called arrays
in this case) in a consecutive block of memory.
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LINKED V.S. BLOCK DATA STRUCTURES

• Consider the following code, where xs is an array
(implemented as a block), and ys is like xs, apart from its
10th element:

let xs = [1..100]
ys = update xs 10 20

in . . .body . . .
• To allow access to both xs and ys in body, the update
operation has to duplicate the entire array.

• Thus people have invented some smart data structure to
do so, in around O(log n) time.

• On the other hand, update may simply overwrite xs if we
can somehow make sure that nobody other than ys uses
xs.

• Both are advanced topics, however.
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ANOTHER LINEAR-TIME OPERATION

• Taking all but the last element of a list:

init [x] =

[ ]

init (x : xs) =

x : init xs

• Consider init [1, 2, 3, 4]:

init (1 : 2 : 3 : 4 : [ ])

= 1 : init (2 : 3 : 4 : [ ])

= 1 : 2 : init (3 : 4 : [ ])

= 1 : 2 : 3 : init (4 : [ ])

= 1 : 2 : 3 : [ ]
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SUM, MAP, ETC

• Functions like sum, maximum, etc. needs to traverse
through the list once to produce a result. So their running
time is definitely O(n).

• If f takes time O(t), map f takes time O(n× t) to complete.
Similarly with filter p.

• In a lazy setting, map f produces its first result in O(t) time.
We won’t need lazy features for now, however.
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A FIRST TASTE OF PROGRAM
CALCULATION



SUM OF SQUARES

• Given a sequence a1,a2,…,an, compute a21 + a22 + . . .+ a2n.
Specification: sumsq = sum ·map square.

• The spec. builds an intermediate list. Can we eliminate it?
• The input is either empty or not. When it is empty:

sumsq [ ]

= { definition of sumsq }
(sum ·map square) [ ]

= { function composition }
sum (map square [ ])

= { definition of map }
sum [ ]

= { definition of sum }
0
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SUM OF SQUARES, THE INDUCTIVE CASE

• Consider the case when the input is not empty:

sumsq (x : xs)

= { definition of sumsq }
sum (map square (x : xs))

= { definition of map }
sum (square x : map square xs)

= { definition of sum }
square x+ sum (map square xs)

= { definition of sumsq }
square x+ sumsq xs
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ALTERNATIVE DEFINITION FOR sumsq

• From sumsq = sum ·map square, we have proved that

sumsq [ ] = 0
sumsq (x : xs) = square x+ sumsq xs

• Equivalently, we have shown that sum ·map square is a
solution of

f [ ] = 0
f (x : xs) = square x+ f xs

• However, the solution of the equations above is unique.
• Thus we can take it as another definition of sumsq.
Denotationally it is the same function; operationally, it is
(slightly) quicker.

• Exercise: try calculating an inductive definition of count.
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HOW FAR CAN WE GET?

• Specification of maximum segment sum:

mss :: List Int→ Int
mss = maximum ·map sum · segments
segments :: List a→ List (List a)
segments = concat ·map inits · tails

• From the specification we can calculate a linear time
algorithm.
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REMARK: WHY FUNCTIONAL PROGRAMMING?

• Time to muse on the merits of functional programming.
Why functional programming?

• Algebraic datatype? List comprehension? Lazy evaluation?
Garbage collection? These are just language features that
can be migrated.

• No side effects.1 But why taking away a language feature?
• By being pure, we have a simpler semantics in which we
are allowed to construct and reason about programs.

• In an imperative language we do not even have
f 4+ f 4 = 2× f 4.

• Ease of reasoning. That’s the main benefit we get.

1Unless introduced in a disciplined way.
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