PROGRAMMING LANGUAGES: FUNCTIONAL
PROGRAMMING

5. PROGRAM CALCULATION: WORK LESS BY
PROMISING MORE

Shin-Cheng Mu
Autumn 2023

National Taiwan University and Academia Sinica

1/24

CORRECT BY CONSTRUCTION

Dijkstra: “The only effective way to raise the confidence
level of a program significantly is to give a convincing
proof of its correctness. But one should not first make
the program and then prove its correctness, because
then the requirement of providing the proof would only
increase the poor programmer’s burden. On the con-
trary: the programmer should ..”

“.[let] correctness proof and program grow hand in
hand: with the choice of the structure of the correct-
ness proof one designs a program for which this proof
is applicable”

2/24

DERIVING PROGRAMS FROM SPECIFICATIONS

- In functional program derivation, the specification itself is
a function, albeit probably not an efficient one.

- From the specification we construct a function that equals
the specification.

- The calculation is the proof.

- In the previous class to proceed by expanding and
reducing the definitions, until we obtain an inductive
definition of the specification.

- But that does not work all the time.

- In this lecture we review some techniques that might work
for more cases.

3/24

TUPLING

STEEP LISTS

- A steep list is a list in which every element is larger than
the sum of those to its right:

steep :: List Int — Bool
steep] = True
steep (x : XS) = steep XS A X > sum xs.

- The definition above, if executed directly, is an O(n?)
program. Can we do better?

- Just now we learned to construct a generalised function
which takes more input. This time, we try the dual
technique: to construct a function returning more results.

4124

GENERALISE BY RETURNING MORE

- Recall that fst (a,b) = a and snd (a, b) = b.
- Itis hard to quickly compute steep alone. But if we define

steepsum xs = (steep xs,sum xs),

- and manage to synthesise a quick definition of steepsum,
we can implement steep by steep = fst - steepsum.

- We again proceed by case analysis. Trivially,

steepsum [] = (True, 0).

5/24

DERIVING FOR THE NON-EMPTY CASE

For the case for non-empty inputs:

steepsum (X : xs)

6/24

DERIVING FOR THE NON-EMPTY CASE

For the case for non-empty inputs:

steepsum (X : xs)
= { definition of steepsum }
(steep (x : xs),sum (x : xs))

6/24

DERIVING FOR THE NON-EMPTY CASE

For the case for non-empty inputs:

steepsum (X : xs)

= { definition of steepsum }
(steep (x : xs),sum (x : xs))

= { definitions of steep and sum }
(Steep xs A X > SUm xs,Xx + sum xs)

6/24

DERIVING FOR THE NON-EMPTY CASE

For the case for non-empty inputs:

steepsum (X : xs)

= { definition of steepsum }
(steep (x : xs),sum (x : xs))

= { definitions of steep and sum }
(Steep xs A X > SUm xs,Xx + sum xs)

= { extracting sub-expressions involving xs }
let (b,y) = (steep xs,sum xs)
in(bAXx>yx+y)

6/24

DERIVING FOR THE NON-EMPTY CASE

For the case for non-empty inputs:

steepsum (X : xs)

= { definition of steepsum }
(steep (x : xs),sum (x : xs))

= { definitions of steep and sum }
(Steep xs A X > SUm xs,Xx + sum xs)

= { extracting sub-expressions involving xs }
let (b,y) = (steep xs,sum xs)
in(bAXx>yx+y)

= { definition of steepsum }
let (b,y) = steepsum xs
in(bAX>y,x+y).

6/24

SYNTHESISED PROGRAM

- We have thus come up with a O(n) time program:

Steep = fst - steepsum

steepsum [] = (True, 0)

steepsum (x : xs) = let (b,y) = steepsum xs
in(bAX>y,x+V),

- Again we observe the phenomena that a more general
function is easier to implement.

7124

ACCUMULATING PARAMETERS

REVERSING A LIST

- The function reverse is defined by:

reverse [] =]
reverse (x : xs) = reverse xs +|[x].
- Eg reverse [1,2,3,4] = ((([]++[4]) H[3]) H[2]) H[1] =
[4,3,2,1].

- But how about its time complexity? Since (++) is O(n), it
takes O(n?) time to revert a list this way.

- Can we make it faster?

8 /24

INTRODUCING AN ACCUMULATING PARAMETER

- Let us consider a generalisation of reverse. Define:

revcat [a] — [a] — [qa]
revcat xs ys = reverse xs 4+ ys.

- If we can construct a fast implementation of revcat, we
can implement reverse by:

reverse xs = revcat xs [].

9/ 24

REVERSING A LIST, BASE CASE

Let us use our old trick. Consider the case when xs is []:

revcat [] ys

10/ 24

REVERSING A LIST, BASE CASE

Let us use our old trick. Consider the case when xs is []:

revcat [] ys
= { definition of revcat }
reverse [| +ys

10/ 24

REVERSING A LIST, BASE CASE

Let us use our old trick. Consider the case when xs is []:

revcat [] ys

= { definition of revcat }
reverse [| +ys

= { definition of reverse }
[1++ys

10/ 24

REVERSING A LIST, BASE CASE

Let us use our old trick. Consider the case when xs is []:

revcat [] ys

= { definition of revcat }
reverse [| +ys

= { definition of reverse }
[1++ys

= { definition of (4+4) }
ys.

10/ 24

REVERSING A LIST, INDUCTIVE CASE

Case x : xs:
revcat (x : xs) ys

1/ 24

REVERSING A LIST, INDUCTIVE CASE

Case X : xs:

revcat (x : xs) ys
= { definition of revcat }
reverse (X : xs) +ys

1/ 24

REVERSING A LIST, INDUCTIVE CASE

Case X : xs:

revcat (x : xs) ys

= { definition of revcat }
reverse (X : xs) +ys

= { definition of reverse }
(reverse xs +[x]) ++ys

1/ 24

REVERSING A LIST, INDUCTIVE CASE

Case x : xs:

revcat (x : xs) ys

= { definition of revcat }
reverse (X : xs) +ys

= { definition of reverse }
(reverse xs +[x]) ++ys

= { since (xs+ys) ++2z5 = XS +H-(ys +zs) }
reverse xs +-([x] +ys)

1/ 24

REVERSING A LIST, INDUCTIVE CASE

Case X : xs:

revcat (x : xs) ys
= { definition of revcat }
reverse (X : xs) +ys
= { definition of reverse }
(reverse xs +[x]) ++ys
= { since (xs+ys) ++2z5 = XS +H-(ys +zs) }
reverse xs +-([x] +ys)
= { definition of revcat }
revcat xs (X : ys).

1/ 24

LINEAR-TIME LIST REVERSAL

- We have therefore constructed an implementation of
revcat which runs in linear time!
revcat [] ys =Ys
revcat (x : xs) ys = revcat xs (x : ys).

- A generalisation of reverse is easier to implement than
reverse itself? How come?

- If you try to understand revcat operationally, it is not
difficult to see how it works.

- The partially reverted list is accumulated in ys.
- The initial value of ys is set by reverse xs = revcat xs [].
- Hmm... it is like a loop, isn't it?

12/24

TRACING REVERSE

reverse [1,2,3, 4]
= revcat [1,2,3,4] []
= revcat [2,3,4] [1]
= revcat [3,4] [2,1]
= revcat [4] [3,2,1]
= revcat [] [4,3,2,1]

[4,3,2,1]

reverse xs = revcat xs (]
revcat] ys =ys
revcat (x : xs) ys = revcat xs (X : ys)

xs,ys « XS,[];
while xs # [] do

XS,ys <« (tail xs),(head xs :ys);
return ys

13/24

TAIL RECURSION

- Tail recursion: a special case of recursion in which the last
operation is the recursive call.

fx1 ... x, = {base case}
fxi..oxn =X ... X,

- To implement general recursion, we need to keep a stack
of return addresses. For tail recursion, we do not need
such a stack.

- Tail recursive definitions are like loops. Each x; is updated
to X! in the next iteration of the loop.

- The first call to f sets up the initial values of each x;.

14 [24

ACCUMULATING PARAMETERS

- To efficiently perform a computation (e.g. reverse xs), we
introduce a generalisation with an extra parameter, e.g.:

revcat Xs ys = reverse xs +Vs.

- Try to derive an efficient implementation of the
generalised function. The extra parameter is usually used
to “accumulate” some results, hence the name.

- To make the accumulation work, we usually need some
kind of associativity.

- A technique useful for, but not limited to, constructing
tail-recursive definition of functions.

15/ 24

ACCUMULATING PARAMETER: ANOTHER EXAMPLE

- Recall the “sum of squares” problem:
sumsq [] =0
sumsq (x : Xs) = square x + sumsq xs.

- The program still takes linear space (for the stack of
return addresses). Let us construct a tail recursive
auxiliary function.

- Introduce ssp xs n =
- Initialisation: sumsqg xs =

-+ Construct ssp:

16/ 24

ACCUMULATING PARAMETER: ANOTHER EXAMPLE

- Recall the “sum of squares” problem:
sumsq [] =0
sumsq (x : Xs) = square x + sumsq xs.
- The program still takes linear space (for the stack of

return addresses). Let us construct a tail recursive
auxiliary function.

- Introduce ssp Xs n = sumsq xs -+ n.
- Initialisation: sumsqg xs =

-+ Construct ssp:

16/ 24

ACCUMULATING PARAMETER: ANOTHER EXAMPLE

- Recall the “sum of squares” problem:
sumsq [] =0
sumsq (x : Xs) = square x + sumsq xs.

- The program still takes linear space (for the stack of
return addresses). Let us construct a tail recursive
auxiliary function.

- Introduce ssp Xs n = sumsq xs -+ n.
- Initialisation: sumsqg xs = ssp xs 0.
-+ Construct ssp:

16/ 24

ACCUMULATING PARAMETER: ANOTHER EXAMPLE

- Recall the “sum of squares” problem:

sumsq [] =0
sumsq (x : Xs) = square x + sumsq xs.

- The program still takes linear space (for the stack of
return addresses). Let us construct a tail recursive
auxiliary function.

- Introduce ssp xs n = sumsqg xs + n.

- Initialisation: sumsqg xs = ssp xs 0.

-+ Construct ssp:

ssp[]n =0+n =n
ssp (x: xs) n = (square X +sumsq xs) + n
= sumsq xs + (square x + n)

= ssp xs (square x + n).
16/ 24

BEING QUICKER BY DOING MORE?

- A more generalised program can be implemented more
efficiently?

- A common phenomena! Sometimes the less general
function cannot be implemented inductively at all!
- It also often happens that a theorem needs to be
generalised to be proved. We will see that later.
- An obvious question: how do we know what generalisation
to pick?
- There is no easy answer — finding the right generalisation
one of the most difficulty act in programming!

- For the past few examples, we choose the generalisation
to exploit associativity.

- Sometimes we simply generalise by examining the form of

the formula.
17/ 24

LABELLING A LIST

- Consider the task of labelling elements in a list with its
index.

index :: List a — List (Int,a)
index = zip [0..]
- To construct an inductive definition, the case for [] is easy.
For the x : xs case:
index (X : xs)
= zip [0..] (x : xS)
= (0,x):zip[1..] xs
- Alas, zip [1..] cannot be fold back to index!

- What if we turn the varying part into...a variable?

18 /24

LABELLING A LIST, SECOND ATTEMPT

- Introduce idxFrom :: List a — Int — List (Int, a):

idxFrom xs n = zip [n..] xs

- Initialisation: index xs =

19/ 24

LABELLING A LIST, SECOND ATTEMPT

- Introduce idxFrom :: List a — Int — List (Int, a):

idxFrom xs n = zip [n..] xs

+ Initialisation: index xs = idxFrom xs 0.

19/ 24

LABELLING A LIST, SECOND ATTEMPT

- Introduce idxFrom :: List a — Int — List (Int, a):

idxFrom xs n = zip [n..] xs

- Initialisation: index xs = idxFrom xs 0.
- We reason:
idxFrom (x : xs) n
= zip [n.]] (x: xs)
(n,x) :zip [n+1..] xs
= (n,x) :idxFrom xs (n+1)

19/ 24

PROOF BY STRENGTHENING

SUMMING UP A LIST IN REVERSE

- Prove: sum - reverse = sum, using the definition
reverse xs = revcat xs []. That is, proving
sum (revcat xs []) = sum xs.

- Base case trivial. For the case x : xs:

sum (reverse (x : xs))
= sum (revcat (x : xs) [])
sum (revcat xs [x])

- Then we are stuck, since we cannot use the induction
hypothesis sum (revcat xs []) = sum xs.

- Again, generalise [x] to a variable.

20/ 24

SUMMING UP A LIST IN REVERSE, SECOND ATTEMPT

- Second attempt: prove a lemma:

sum (revcat xs ys) =

- By letting ys = [] we get the previous property.

21/ 24

SUMMING UP A LIST IN REVERSE, SECOND ATTEMPT

- Second attempt: prove a lemma:

sum (revcat xs ys) = sum xs + sumys

- By letting ys = [] we get the previous property.

21/ 24

SUMMING UP A LIST IN REVERSE, SECOND ATTEMPT

- Second attempt: prove a lemma:

sum (revcat xs ys) = sum xs + sumys

- By letting ys = [] we get the previous property.
- For the case x : Xs we reason:
sum (revcat (x : xs) ys)

21/ 24

SUMMING UP A LIST IN REVERSE, SECOND ATTEMPT

- Second attempt: prove a lemma:

sum (revcat xs ys) = sum xs + sumys

- By letting ys = [] we get the previous property.
- For the case x : Xs we reason:

sum (revcat (x : xs) ys)
= sum (revcat xs (x : ys))

21/ 24

SUMMING UP A LIST IN REVERSE, SECOND ATTEMPT

- Second attempt: prove a lemma:

sum (revcat xs ys) = sum xs + sumys

- By letting ys = [] we get the previous property.
- For the case x : Xs we reason:

sum (revcat (x : xs) ys)
= sum (revcat xs (x : ys))
{ induction hypothesis }
Sum xs +sum (x : ys)

21/ 24

SUMMING UP A LIST IN REVERSE, SECOND ATTEMPT

- Second attempt: prove a lemma:

sum (revcat xs ys) = sum xs + sumys

- By letting ys = [] we get the previous property.
- For the case x : Xs we reason:

sum (revcat (x : xs) ys)

sum (revcat xs (x : ys))

{ induction hypothesis }

Sum xs +sum (x : ys)

SuUm xs +x+sumys

sum (X : xs) +sumys

21/ 24

WORK LESS BY PROVING MORE

- A stronger theorem is easier to prove! Why is that?

- By strengthening the theorem, we also have a stronger
induction hypothesis, which makes an inductive proof
possible.

- Finding the right generalisation is an art — it's got to be

strong enough to help the proof, yet not too strong to be
provable.

- The same with programming. By generalising a function
with additional arguments, it is passed more information
it may use, thus making an inductive definition possible.

- The speeding up of revcat, in retrospect, is an accidental

“side effect” — revcat, being inductive, goes through the
list only once, and is therefore quicker.

22 [24

A REAL CASE

- A property | actually had to prove for a paper:
smsp (trim (x : xs)) = smsp (trim (x : win Xs))
< smsp (trim (x : xs)) >4 mds xs
- It took me a week to construct the right generalisation:
smsp (trim (zs ++xs)) = smsp (trim (zs ++ win xs))
< smsp (trim (zs +-xs)) >4 mds xs

- Once the right property is found, the actual proof was
done in about 20 minutes.

- “Someone once described research as ‘finding out
something to find out, then finding it out’; the first part is
often harder than the second.”

23 /24

REMARK

- The sum - reverse example is superficial — the same
property is much easier to prove using the O(n?)-time
definition of reverse.

- That's one of the reason we defer the discussion about
efficiency — to prove properties of a function we
sometimes prefer to roll back to a slower version.

- In our exercises there is an example where you need
revcat to prove a property about reverse.

- Show that reverse - reverse = id

24 [24

	Tupling
	Accumulating Parameters
	Fast List Reversal
	Tail Recursion and Loops
	Being Quicker by Doing More!

	Proof by Strengthening

