
PROGRAMMING LANGUAGES: FUNCTIONAL
PROGRAMMING
7. TYPES AND LOGIC

Shin-Cheng Mu
Augumn 2023

National Taiwan University and Academia Sinica

1 / 48

ANATOMY OF A (PROGRAMMING) LANGUAGE

• To define a (programming) language, we typically have to
define

• its syntax;
• its type system;
• and its semantics.

• Syntax is considered by some an issue that is done with.
There are occasionally interesting new research results,
though.

• We briefly talked about semantics before, and
unfortunately won’t have time to cover more.

• Type is a hot topic in the area of programming languages.

2 / 48

WHAT ARE TYPES FOR?

• What does a type system do?
• Kris de Volder: “... making sure that no operations are
performed on inappropriate arguments.”

• e.g. ”abc”× 123.

• “A type system is a tractable syntactic method for proving
the absence of certain program behaviours by classifying
phrases according to the kinds of values they compute”
Benjamine Pierce, Types and Programming Languages
(MIT, 2002).

3 / 48

• A type system guarantees safety properties by limiting the
programs you are allowed to write.

• Certain safety properties are not decidable. Type systems
for them cannot be precise, and some safe programs
might be ruled out too.

• A static type system verifies the program text before it is
run.

• A dynamic type system verifies the actual expression
during it is run.

• This course mainly concerns the former.

4 / 48

MOTIVATIONS FOR A TYPE SYSTEM

• Safety: early detection of certain kinds of errors.
• e.g. trivial things like integer + string.
• Types that guarantees that no communication error occurs,
polynomal running time, etc.

• Efficiency: allowing certain optimisations.
• e.g. if we are sure that array indexing never goes out of
bound, we do not have to do runtime bound check.

• Some type systems guarantee certain resource usage: “this
variable is used only once.”

• Specification: the type specifies part of what a program
does.

• As we have seen, programs are often structured around
the datatype it is defined on.

• Type guarantees certain behaviour. E.g. if f :: List a→ a we
must have f ·map g = g · f.

• “This function computes sort.”
5 / 48

NOTHING COMES FOR FREE

What’s the price?

• A type system rules out certain programs as illegal.
However, a static type system must make a conservative
guess.

• The following program does not generate a run-time type
error, but is not typable in Haskell.

f b = if b then g b else ord (g b)
g b = if b then 65 else ’A’

• A more expressive type system makes a finer guess, and
also allows more to be said in the type. However, you
often need to provide a lot more information and put
more efforts persuading the type checker that a program
is correct.

6 / 48

INTUITIONISTIC PROPOSITIONAL LOGIC

PROPOSITIONAL LOGIC

• For reasons that will be clear later, we introduce some
logic before talking about types.

• Propositional logic: a simple form of logic having some
very nice properties.

• Let P be the set of propositional symbols. The syntax of
propositional logic is given by

PL = True | False | P
| PL⇒ PL | PL ∧ PL | PL ∨ PL

• There are several formal systems to prove statements in
propositional logic. We will present one of them.

7 / 48

NATURAL DEDUCTION FOR INTUITIONISTIC PROPOSITIONAL LOGIC

• Let Γ be a set of propositions that are assumed to be true.
• The judgement Γ ⊢ P means that “given the assumptions
in Γ, P is provable”.
P ∈ Γ Hyp
Γ ⊢ P

Γ,P ⊢ Q
⇒I

Γ ⊢ P⇒ Q
Γ ⊢ P⇒ Q Γ ⊢ P ⇒E

Γ ⊢ Q

True-I
Γ ⊢ True

Γ ⊢ False False-E
Γ ⊢ P

8 / 48

NATURAL DEDUCTION FOR CONSTRUCTIVE PROPOSITIONAL LOGIC

Γ ⊢ P Γ ⊢ Q ∧I
Γ ⊢ P ∧ Q

Γ ⊢ P ∧ Q ∧E1Γ ⊢ P
Γ ⊢ P ∧ Q ∧E2Γ ⊢ Q

Γ ⊢ P ∨I1Γ ⊢ P ∨ Q
Γ ⊢ Q ∨I2Γ ⊢ P ∨ Q

Γ ⊢ P ∨ Q Γ,P ⊢ R Γ,Q ⊢ R
∨E

Γ ⊢ R

9 / 48

OBSERVATIONS...

• Each logical symbol comes with some introduction rule
and some elimination rule...

• no introduction rule for False.

• To prove a proposition, we work upwards from the bottom.
Ex. prove that (P→ Q→ R) → (P→ Q) → P→ R.

• Negation can be defined by ¬P = P→ False.

10 / 48

EXCLUDED MIDDLE

• Note that we do not have such a rule:

Excluded-Middle
Γ ⊢ P ∨ ¬P

• This rule is valid in classical logic, which talks about truth
or falsehood — a proposition is either true or false.

• It is questioned by the constructive (intuitionistic) school
of logicians. Constructive logic is about provability: it is
not always the case that either P or ¬P has a proof.

• Such different views led to many famous debates in
history.

• Not having such a rule makes intuitionistic incomplete
(see next slide).

11 / 48

CONSISTENCY, SOUNDNESS, AND COMPLETENESS

• A deduction system suggests a way to construct proofs.
But do we know whether the proofs are correct?

• Correctness is discussed with respect to a semantics:
• Assign each free identifier a true/false value.
• Each logical operator is a function, etc

• A deduction system is
• consistent: if falsehood cannot be proved;
• sound: if every provable proposition is indeed true in the
semantics;

• complete: if every true proposition in the semantics is
provable.

• The deduction system for prositional logic (with the
addition of the law of excluded middle) has all these nice
properties. It is not so for more complex logic.

12 / 48

UNTYPED AND TYPED λ CALCULUS

λ CALCULUS

• A very concise model of computation. Let X be the set of
variables. The syntax for λ calculus is given by:

Term = λX.Term | Term Term | X

• Operationally, λx.e defines an anonymous function with
local variable x, while e1 e2 is function application.

• Occurrences of x in λx.e is bound. A variable occurrence
that is not bound is called free.

• E.g. in λx.(z (λy.x y)) y, x is bound and z is free. The first y is
bound, the second is free.

13 / 48

λ CALCULUS: α CONVERSION AND β REDUCTION

• e1[x\e2]: substitute the free occurrences of x in e1 for e2.
More on the next slide.

• α conversion: λx.e ≡ λy.e[x\y] for some y not occurring
free in e.

• Meaning that names of bound variables do not matter.

• β reduction: (λx.e1) e2
β−→ e1[x\e2].

• Mimicking function application.
• These already constitute a Turing-complete model of
computation!

• You can model numbers (search for “Church encoding”),
addition, subtraction...

• You may perform recursion, and even non-terminating
computation! (Search for “Y combinator”)

14 / 48

λ CALCULUS: SUBSTITUTION

• e1[x\e2]: substitute the free occurrences of x in e1 for e2 —
and perform necessary changes of names.

• A seemingly trivial operation whose formal definition is
surprisingly tedious. For this course we might not need all
the details, so I’ll go with a “learn by examples” approach.

• E.g. (λx.y x)[y\λz.zw] = λx.(λz.z w) x.
• (λx.y x)[x\λz.z] = (λx.y x).
• (x (λy.z x y))[x\y z] ̸= (y z) (λy.z (y z) y)! The free occurrence
of y in y z is “captured”.

• It ought to be (y z) (λw.z (y z)w). The term (λy.z x y) is
α-converted to avoid name capture.

15 / 48

SUMMARY OF λ CALCULUS

• A simple syntax.
• Two rules: α and β.
• Yet it is Turing-complete — every computation possible on
a Turing machine can be expressed in λ calculus.

• You can see it as a small fragment of Haskell (or,
LISP/Scheme). In fact, λ calculus forms the theoretical
basis of functional languages.

16 / 48

SIMPLY TYPED λ CALCULUS

• One of the typed version of λ calculus.
• We postulate existence of certain basic types, e.g. Nat,
Char, etc.

• Each λ bound variables is annotated with its type. (It’s like
in many programming languages where you have to
specify the types of arguments to functions.)

Term = λ(X :: Type).Term | Term Term | X

• Remark: there is another formulation of simply typed λ

calculus (the Curry style, as opposed to the Church style
here) without type annotations. The two styles are
equivalent, however.

17 / 48

EXTENSION WITH BASIC TYPES

• For illustrative purposes, it is often convenient to extend λ

calculus with some basic types, e.g.

Term = λ(X :: Type).Term | Term Term | X
| Nat | Term⊕ Term

• where ⊕ ∈ {+,−,×}, etc.

• So you can write, e.g.
(λ(x :: Nat).λ(y :: Nat).(x+ 1)× y) ((λ(x :: Nat).x× x) 2) z

18 / 48

TYPING RULES

• A typing context: a mapping from variable names to types.

• Empty context: ∅, or sometimes just left blank.
• Γ, x :: τ denotes Γ extended with the assumption that x has
type τ ((,) is like (:) for lists).

• A typing relation: Γ ⊢ e :: τ says that “the expression e has
type τ in the typing context Γ.”

• Typing rules:
x :: τ ∈ Γ Var
Γ ⊢ x :: τ

Γ, x :: σ ⊢ e :: τ
→I

Γ ⊢ λ(x : σ).e :: σ → τ

Γ ⊢ e1 :: σ → τ Γ ⊢ e2 :: σ →E
Γ ⊢ e1 e2 :: τ

• With extensions:
n ∈ Nat Nat

Γ ⊢ n :: Nat
Γ ⊢ e1 :: Nat Γ ⊢ e2 :: Nat NatOp

Γ ⊢ e1 ⊕ e2 :: Nat 19 / 48

SEVERAL WAYS TO USE THESE RULES

• Type checking: given Γ, e, and τ , verify that Γ ⊢ e :: τ .
• Type inference: given Γ and e, find τ such that Γ ⊢ e :: τ .
• Type inhabitation: given Γ and τ , find e such that Γ ⊢ e :: τ .

20 / 48

TYPE CHECKING EXAMPLE

Denote x :: Nat→ Nat→ Nat, y :: Nat by Γ (we omit the type
annotations in λ to save space):

x :: Nat→ Nat→ Nat ∈ Γ Var
Γ ⊢ x :: Nat→ Nat→ Nat

y :: Nat ∈ Γ
Var

Γ ⊢ y :: Nat
→E

Γ ⊢ x y :: Nat→ Nat
y :: Nat ∈ Γ

Var
Γ ⊢ y :: Nat

→E
Γ ⊢ (x y) y :: Nat

→Ix :: Nat→ Nat→ Nat ⊢ λy.(x y) y :: Nat→ Nat
→I

⊢ λx.λy.(x y) y :: (Nat→ Nat→ Nat) → Nat→ Nat

21 / 48

TYPE CHECKING EXAMPLE

Denote x :: Nat→ Nat→ Nat, y :: Nat by Γ (we omit the type
annotations in λ to save space):

x :: Nat→ Nat→ Nat ∈ Γ Var
Γ ⊢ x :: Nat→ Nat→ Nat

y :: Nat ∈ Γ
Var

Γ ⊢ y :: Nat
→E

Γ ⊢ x y :: Nat→ Nat
y :: Nat ∈ Γ

Var
Γ ⊢ y :: Nat

→E
Γ ⊢ (x y) y :: Nat

→I

x :: Nat→ Nat→ Nat ⊢ λy.(x y) y :: Nat→ Nat
→I⊢ λx.λy.(x y) y :: (Nat→ Nat→ Nat) → Nat→ Nat

21 / 48

TYPE CHECKING EXAMPLE

Denote x :: Nat→ Nat→ Nat, y :: Nat by Γ (we omit the type
annotations in λ to save space):

x :: Nat→ Nat→ Nat ∈ Γ Var
Γ ⊢ x :: Nat→ Nat→ Nat

y :: Nat ∈ Γ
Var

Γ ⊢ y :: Nat
→E

Γ ⊢ x y :: Nat→ Nat
y :: Nat ∈ Γ

Var
Γ ⊢ y :: Nat

→E

Γ ⊢ (x y) y :: Nat
→Ix :: Nat→ Nat→ Nat ⊢ λy.(x y) y :: Nat→ Nat
→I⊢ λx.λy.(x y) y :: (Nat→ Nat→ Nat) → Nat→ Nat

21 / 48

TYPE CHECKING EXAMPLE

Denote x :: Nat→ Nat→ Nat, y :: Nat by Γ (we omit the type
annotations in λ to save space):

x :: Nat→ Nat→ Nat ∈ Γ Var
Γ ⊢ x :: Nat→ Nat→ Nat

y :: Nat ∈ Γ
Var

Γ ⊢ y :: Nat
→E

Γ ⊢ x y :: Nat→ Nat

y :: Nat ∈ Γ
Var

Γ ⊢ y :: Nat
→E

Γ ⊢ (x y) y :: Nat
→Ix :: Nat→ Nat→ Nat ⊢ λy.(x y) y :: Nat→ Nat
→I⊢ λx.λy.(x y) y :: (Nat→ Nat→ Nat) → Nat→ Nat

21 / 48

TYPE CHECKING EXAMPLE

Denote x :: Nat→ Nat→ Nat, y :: Nat by Γ (we omit the type
annotations in λ to save space):

x :: Nat→ Nat→ Nat ∈ Γ Var

Γ ⊢ x :: Nat→ Nat→ Nat

y :: Nat ∈ Γ
Var

Γ ⊢ y :: Nat
→E

Γ ⊢ x y :: Nat→ Nat

y :: Nat ∈ Γ
Var

Γ ⊢ y :: Nat
→E

Γ ⊢ (x y) y :: Nat
→Ix :: Nat→ Nat→ Nat ⊢ λy.(x y) y :: Nat→ Nat
→I⊢ λx.λy.(x y) y :: (Nat→ Nat→ Nat) → Nat→ Nat

21 / 48

TYPE CHECKING EXAMPLE

Denote x :: Nat→ Nat→ Nat, y :: Nat by Γ (we omit the type
annotations in λ to save space):

x :: Nat→ Nat→ Nat ∈ Γ Var

Γ ⊢ x :: Nat→ Nat→ Nat

y :: Nat ∈ Γ
Var

Γ ⊢ y :: Nat
→E

Γ ⊢ x y :: Nat→ Nat
y :: Nat ∈ Γ

Var
Γ ⊢ y :: Nat

→E
Γ ⊢ (x y) y :: Nat

→Ix :: Nat→ Nat→ Nat ⊢ λy.(x y) y :: Nat→ Nat
→I⊢ λx.λy.(x y) y :: (Nat→ Nat→ Nat) → Nat→ Nat

21 / 48

TYPE CHECKING EXAMPLE

Denote x :: Nat→ Nat→ Nat, y :: Nat by Γ (we omit the type
annotations in λ to save space):

x :: Nat→ Nat→ Nat ∈ Γ Var
Γ ⊢ x :: Nat→ Nat→ Nat

y :: Nat ∈ Γ
Var

Γ ⊢ y :: Nat
→E

Γ ⊢ x y :: Nat→ Nat
y :: Nat ∈ Γ

Var
Γ ⊢ y :: Nat

→E
Γ ⊢ (x y) y :: Nat

→Ix :: Nat→ Nat→ Nat ⊢ λy.(x y) y :: Nat→ Nat
→I⊢ λx.λy.(x y) y :: (Nat→ Nat→ Nat) → Nat→ Nat

21 / 48

SEVERAL THINGS TO NOTE

• In each step there is only one rule we could apply, guided
by the syntax.

• Typing tree of an expression is composed by the typing
trees of its sub-expressions.

• In the 90’s there was a trend to make every static analysis
a type system, since type systems are very structured.

22 / 48

SEVERAL THINGS TO NOTE

• Can the same expression be typed by
(Bool→ Bool→ (Bool→ Nat)) → Bool→ (Bool→ Nat),
given suitable Γ, and extending the typing rules with those
for Bool)?

• Yes. Typing is not unique. Which brings up the question
whether there is a “most general” type we can give to an
expression.

23 / 48

TYPE SAFETY

• Type systems try to guarantee certain safety properties.
• Subject reduction (or type preservation): if Γ ⊢ e1 :: τ and
e1

β−→ e2, we have Γ ⊢ e2 :: τ .
• In words, typable terms are still typable by the same types
after β reduction.

• Progress: if Γ ⊢ e1 :: τ , either e1
β−→ e2 for some e2, or e1 is

a value.
• Definition of a “value” varies. E.g., a normal form.
• In words, we never get stuck in a state where no further
reductions are possible (counter example: 1+ ’c’).

• Slogan “well-typed programs don’t go wrong.”
• A language guarantees certain type safety, that typable
programs don’t go wrong, is called strong typing.

• But there is always a grey area: what about 1/0?
24 / 48

PRODUCTS

• To add more datatypes to the language, just add the
corresponding introduction and elimination rules.

• For pairs (product type), we have

Γ ⊢ e1 :: σ Γ ⊢ e2 :: τ ×I
Γ ⊢ (e1, e2) :: (σ, τ)

Γ ⊢ e :: (σ, τ)
×E1

Γ ⊢ fst e :: σ

Γ ⊢ e :: (σ, τ)
×E2

Γ ⊢ snd e :: τ

• Products are like “struct” in C.

25 / 48

SUM

• There is a type we should have talked more about:
data Either a b = Left a | Right b. We will abbreviate
Either a b to a+ b, Left to L, Right to R.

• Typing rules:

Γ ⊢ e :: σ +I1
Γ ⊢ Left e :: σ + τ

Γ ⊢ e :: τ +I2
Γ ⊢ Right e :: σ + τ

Γ ⊢ e :: σ + τ Γ, x :: σ ⊢ e1 :: γ Γ, y :: τ ⊢ e2 :: γ
+E

Γ ⊢ case e of L x→ e1;R y→ e2 :: γ

• Sums are like “union” in C.

26 / 48

UNIT AND EMPTY

• The unit type in Haskell is written (). It has only one
element, also written ().

Unit-I
Γ ⊢ () :: ()

• The empty type consists of no term. You can define it in
Haskell by data Empty. There is only an elimination rule:

Γ ⊢ e1 :: Empty Empty-E
Γ ⊢ e2 :: τ

That is, if you manage to construct a term e1 having type
Empty (which cannot happen), you can assign e2 any type.

27 / 48

CURRY-HOWARD ISOMORPHISM

PROOF TERMS

But aren’t they just natural deduction rules annotated by
terms?

τ ∈ Γ Var
Γ ⊢ τ

Γ, σ ⊢ τ
→I

Γ ⊢ σ → τ

Γ ⊢ σ → τ Γ ⊢ σ →E
Γ ⊢ τ

Unit-I
Γ ⊢ ()

Γ ⊢ Empty Empty-E
Γ ⊢ τ

28 / 48

PROOF TERMS

But aren’t they just natural deduction rules annotated by
terms?

x :: τ ∈ Γ Var
Γ ⊢ x :: τ

Γ, x :: σ ⊢ e :: τ
→I

Γ ⊢ λx.e :: σ → τ

Γ ⊢ e1 :: σ → τ Γ ⊢ e2 :: σ →E
Γ ⊢ e1 e2 :: τ

Unit-I
Γ ⊢ () :: ()

Γ ⊢ e1 :: Empty Empty-E
Γ ⊢ e2 :: τ

28 / 48

PROOF TERMS

Γ ⊢ σ Γ ⊢ τ ×I
Γ ⊢ (σ, τ)

Γ ⊢ (σ, τ)
×E1Γ ⊢ σ

Γ ⊢ (σ, τ)
×E2Γ ⊢ τ

Γ ⊢ σ +I1Γ ⊢ σ + τ
Γ ⊢ τ +I2Γ ⊢ σ + τ

Γ ⊢ σ + τ Γ, σ ⊢ γ Γ, τ ⊢ γ
+E

Γ ⊢ γ

29 / 48

PROOF TERMS

Γ ⊢ e1 :: σ Γ ⊢ e2 :: τ ×I
Γ ⊢ (e1, e2) :: (σ, τ)

Γ ⊢ e :: (σ, τ)
×E1

Γ ⊢ fst e :: σ

Γ ⊢ e :: (σ, τ)
×E2

Γ ⊢ snd e :: τ

Γ ⊢ e :: σ +I1
Γ ⊢ Left e :: σ + τ

Γ ⊢ e :: τ +I2
Γ ⊢ Right e :: σ + τ

Γ ⊢ e :: σ + τ Γ, x :: σ ⊢ e1 :: γ Γ, y :: τ ⊢ e2 :: γ
+E

Γ ⊢ case e of L x→ e1;R y→ e2 :: γ

29 / 48

PROGRAMS ARE PROOFS

Let Γ = P→ Q→ R,P→ Q,P. Prove that
(P→ Q→ R) → (P→ Q) → P→ R.

P→ Q→ R ∈ Γ Hyp
Γ ⊢ P→ Q→ R

P ∈ Γ Hyp
Γ ⊢ P →E

Γ ⊢ Q→ R

P→ Q ∈ Γ Hyp
Γ ⊢ P→ Q

P ∈ Γ Hyp
Γ ⊢ P →E

Γ ⊢ Q →E
Γ ⊢ R →IP→ Q→ R,P→ Q ⊢ P→ R

→IP→ Q→ R ⊢ (P→ Q) → P→ R
→I⊢ (P→ Q→ R) → (P→ Q) → P→ R

30 / 48

PROGRAMS ARE PROOFS

Let Γ = f :: P→ Q→ R,g :: P→ Q, x :: P.

f :: P→ Q→ R ∈ Γ
Var

Γ ⊢ f :: P→ Q→ R
x :: P ∈ Γ Var
Γ ⊢ x :: P

→E
Γ ⊢ f x :: Q→ R

g :: P→ Q ∈ Γ
Var

Γ ⊢ g :: P→ Q
x :: P ∈ Γ Var
Γ ⊢ x :: P

→E
Γ ⊢ g x :: Q

→E
Γ ⊢ f x (g x) :: R

→If :: P→ Q→ R,g :: P→ Q ⊢ λx.f x (g x) :: P→ R
→If :: P→ Q→ R ⊢ λg.λx.f x (g x) :: (P→ Q) → P→ R
→I⊢ λf.λg.λx.f x (g x) :: (P→ Q→ R) → (P→ Q) → P→ R

The term λf.λg.λx.f x (g x) sufficiently records the proof, from
which we can reconstruct the proof tree.

31 / 48

CURRY-HOWARD ISOMORPHISM

• It was noticed that programs and proofs have such
correspondence. Types are propositions, programs are
proofs.

• Logic is thus given a computational meaning.
• A proof of P⇒ Q, for example, is a function that takes a
proof of P and produces a proof of Q;

• A proof of P ∧ Q is a pair consisting a proof of P and a
proof of Q, etc.

• “Given a proposition, find a proof” is the type inhabitation
problem.

• β reduction is proof reduction (proof simplification).
• Propositional logic is a simple logic with nice properties:
every true proposition has a proof, etc. This nice
properties carries over to simply typed λ calculus.

• There are stronger logic, though. When we design a new
type system, we often ask ourselves what logic it
corresponds to, and vice versa.

32 / 48

MORE EXPRESSIVE LOGIC/TYPE SYSTEMS

• Second-order logic: allowing ∀ that quantifies over
propositions (types):

• e.g. ∀a.(∀b.b→ b) → a→ a.
• That gives us polymorphic types.
• Haskell’s (original) Hindley-Milner type system is a more
restrictive version that allows ∀ only at the outer-most
level.

• First-order logic: allowing ∀ that quantifies over terms:
• e.g ∀m,n ∈ Nat.m ⩽ n→ 1+m ⩽ 1+ n.
• Dependent type. A very expressive type system in which
you may express various properties: e.g. a function returns
a sorted list.

33 / 48

MORE EXPRESSIVE LOGIC/TYPE SYSTEMS

• Allowing ∃: existential type. Used to express abstract
datatypes.

• ∃a.a ∧ (a→ a→ a): some type that has a base element
and an “addition” operator.

• Subtyping: Nat ⩽ Real ⩽ Complex... related to ad-hoc
polymorphism.

• If we allow everything in the typing context to be used
exactly once, e.g:

Γ1 ⊢ e1 :: σ → τ Γ2 ⊢ e2 :: σ →E
Γ1 ⊎ Γ2 ⊢ e1 e2 :: τ

• where Γ1 ⊎ Γ2 denotes disjoint union — Γ1 and Γ2 must not
share elements,

• we get linear type. Used to reason about usage of
resources.

34 / 48

MORE EXPRESSIVE LOGIC/TYPE SYSTEMS

• Recall the law of excluded middle:

Excluded-Middle
Γ ⊢ P ∨ ¬P

• If we want such a rule for the types, what is the
corresponding term?

• It has to do with continuations — think of it as a kind of
“go-to”.

• And many more. Research on types is still a hot topic.

35 / 48

POLYMORPHIC λ CALCULUS

POLYMORPHISM

• Allowing values of different types to be handled through a
uniform interface.

• Christopher Strachey descriped two kinds of
polymorphism:

• Ad-hoc polymorphism: allowing potentially different code
(e.g. + for Int and Float) to “look the same”.

• e.g. function overloading, and method overloading in many
OO languages.

• e.g. type classes (Eq a⇒ . . .) in Haskell.
• Parametric polymorphism: allowing the same piece of
code, which does not depend on the type of the input
data, to be used on a wide range of types.

• e.g. reverse :: List a→ List a in Haskell.

• We will only briefly talk about the second kind.
36 / 48

POLYMORPHIC λ CALCULUS (SYSTEM F)

• Proposed by Girard.
• An additional construct in the syntax of types (where T
ranges over type variables):

τ = Unit | Empty | Nat | T
| τ → τ | (τ, τ) | τ + τ | ∀T.τ

• And two additional construct of terms:

Γ ⊢ e :: τ a not free in Γ ∀I
Γ ⊢ Λa.e :: ∀a.τ

Γ ⊢ e :: ∀a.τ ∀E
Γ ⊢ e σ :: τ [a\σ]

Terms may take types as arguments!

• One more reduction rule: (Λa.e) σ β−→ e[a\σ].
37 / 48

EXAMPLE: POLYMORPHIC const

Recall the function const x y = x in Haskell. The corresponding
function in System F:

x :: a ∈ {x :: a, y :: b}
Varx :: a, y :: b ⊢ x :: a

→ Ix :: a ⊢ λ(y :: b).x :: b→ a
→ I

⊢ λ(x :: a).λ(y :: b).x :: a→ b→ a

∀I⊢ Λb.λ(x :: a).λ(y :: b).x :: ∀b.a→ b→ a
∀I⊢ Λa.Λb.λ(x :: a).λ(y :: b).x :: ∀a.∀b.a→ b→ a

38 / 48

EXAMPLE: POLYMORPHIC const

Recall the function const x y = x in Haskell. The corresponding
function in System F:

x :: a ∈ {x :: a, y :: b}
Varx :: a, y :: b ⊢ x :: a

→ I

x :: a ⊢ λ(y :: b).x :: b→ a
→ I⊢ λ(x :: a).λ(y :: b).x :: a→ b→ a

∀I⊢ Λb.λ(x :: a).λ(y :: b).x :: ∀b.a→ b→ a
∀I⊢ Λa.Λb.λ(x :: a).λ(y :: b).x :: ∀a.∀b.a→ b→ a

38 / 48

EXAMPLE: POLYMORPHIC const

Recall the function const x y = x in Haskell. The corresponding
function in System F:

x :: a ∈ {x :: a, y :: b}
Var

x :: a, y :: b ⊢ x :: a
→ Ix :: a ⊢ λ(y :: b).x :: b→ a

→ I⊢ λ(x :: a).λ(y :: b).x :: a→ b→ a

∀I⊢ Λb.λ(x :: a).λ(y :: b).x :: ∀b.a→ b→ a
∀I⊢ Λa.Λb.λ(x :: a).λ(y :: b).x :: ∀a.∀b.a→ b→ a

38 / 48

EXAMPLE: POLYMORPHIC const

Recall the function const x y = x in Haskell. The corresponding
function in System F:

x :: a ∈ {x :: a, y :: b}
Varx :: a, y :: b ⊢ x :: a

→ Ix :: a ⊢ λ(y :: b).x :: b→ a
→ I⊢ λ(x :: a).λ(y :: b).x :: a→ b→ a

∀I⊢ Λb.λ(x :: a).λ(y :: b).x :: ∀b.a→ b→ a
∀I⊢ Λa.Λb.λ(x :: a).λ(y :: b).x :: ∀a.∀b.a→ b→ a

38 / 48

EXAMPLE: POLYMORPHIC const

Recall the function const x y = x in Haskell. The corresponding
function in System F:

x :: a ∈ {x :: a, y :: b}
Varx :: a, y :: b ⊢ x :: a

→ Ix :: a ⊢ λ(y :: b).x :: b→ a
→ I⊢ λ(x :: a).λ(y :: b).x :: a→ b→ a

∀I⊢ Λb.λ(x :: a).λ(y :: b).x :: ∀b.a→ b→ a

∀I⊢ Λa.Λb.λ(x :: a).λ(y :: b).x :: ∀a.∀b.a→ b→ a

38 / 48

EXAMPLE: POLYMORPHIC const

Recall the function const x y = x in Haskell. The corresponding
function in System F:

x :: a ∈ {x :: a, y :: b}
Varx :: a, y :: b ⊢ x :: a

→ Ix :: a ⊢ λ(y :: b).x :: b→ a
→ I⊢ λ(x :: a).λ(y :: b).x :: a→ b→ a

∀I⊢ Λb.λ(x :: a).λ(y :: b).x :: ∀b.a→ b→ a
∀I⊢ Λa.Λb.λ(x :: a).λ(y :: b).x :: ∀a.∀b.a→ b→ a

38 / 48

EXAMPLE: USING POLYMORPHIC FUNCTIONS

Let Γ = f :: ∀a.a→ a. Abbreviate Bool to B.

f :: ∀a.a→ a ∈ Γ
Var

Γ ⊢ f :: ∀a.a→ a
∀E

Γ ⊢ f Nat :: Nat→ Nat Nat
Γ ⊢ 3 :: Nat

→ E
Γ ⊢ f Nat 3 :: Nat

(omitted)
Γ ⊢ f B True :: B

×I
Γ ⊢ (f Nat 3, f B True) :: (Nat,B)

→ I⊢ λf.(f Nat 3, f B True) :: (∀a.a→ a) → (Nat,B)

39 / 48

SECOND-ORDER LOGIC

• Recall Curry-Howard isomorphism? What logic does this
type system correspond to?

• Ans: second-order (intuitionistic) logic. That is,
propositional logic extended with ∀, and in all ∀a, a is a
type (proposition).

• There ought to be an ∃ operator too, but it can be
simulated by ∀ and is often omitted.

• 2nd-order logic: very expressive. You can encode all
inductive and coinductive datatypes in it! (Search for
Church encoding.)

• Sound. But no deductive system for it can be complete —
there are true propositions that cannot be proved. Thus
type inhabitance for it is undecidable.

40 / 48

SECOND-ORDER LOGIC/POLYMORPHIC λ CALCULUS

• Type inference is undecidable.
• Type checking is decidable — for the Church style (where λ

abound variables are annotated with types).
• For Curry style, even type checking is undecidable.

41 / 48

POLYMORPHIC DATATYPES

• When we define a datatype data Nat = Zero | Suc Nat in
Haskell, we have introduced:

• a type Nat,
• two data constructors Zero :: Nat and Suc :: Nat→ Nat.

• When we define a polymorphic data type
data List a = [] | a : List a in Haskell, we have introduced:

• a type constructor List — a function from a type to a type,
e.g. from Int to List Int.

• two data constructors []_ :: ∀a.List a, and
(:_) :: ∀a.a→ List a→ List a.

• To build a list of Int we should have written, e.g,
1 :Int 2 :Int 3 :Int []Int. But in Haskell we always omit the type
application (since they can be inferred).

42 / 48

COMPARISON

• Type of a polymorphic function in Haskell, e.g,
zip :: List a→ List b→ List (a,b), should actually be
∀a.∀b.List a→ List b→ List (a,b).

• In Haskell we omit all the type applications. E.g. we say
zip [1, 2] ”ab” instead of zip Nat Char [1, 2] ”ab”.

• Finally, Haskell uses a weaker system of polymorphic type:

• Names of types starting with lower-case characters are
assumed to be ∀-quantified.

• All ∀s appear at outer-most positions only. Thus
List a→ List b→ List (a,b) is seen as
∀a.∀b.List a→ List b→ List (a,b).

• The type (∀a.a→ a) → (Nat,B), which we have seen
previously, is not allowed in (standard) Haskell 98!

• Thus the ∀ symbol is not explicit written.
• Why these restrictions? To allow type inference! 43 / 48

HINDLEY-MILNER STYLE TYPE
INFERENCE

TYPE INFERENCE

Example: find τ such that ⊢ λx.λy.x :: τ . Note that x and y are
no longer annotated with types. We have to somehow find
them out.

x :: e ∈ {x :: b, y :: d}
Varx :: b, y :: d ⊢ x :: e

→ Ix :: b ⊢ λy.x :: c
→ I

⊢ λx.λy.x :: a

a = b→ c
c = d→ e
e = b

Thus τ = ∀b.∀d.b→ d→ b.

44 / 48

TYPE INFERENCE

Example: find τ such that ⊢ λx.λy.x :: τ . Note that x and y are
no longer annotated with types. We have to somehow find
them out.

x :: e ∈ {x :: b, y :: d}
Varx :: b, y :: d ⊢ x :: e

→ I

x :: b ⊢ λy.x :: c
→ I⊢ λx.λy.x :: a

a = b→ c

c = d→ e
e = b

Thus τ = ∀b.∀d.b→ d→ b.

44 / 48

TYPE INFERENCE

Example: find τ such that ⊢ λx.λy.x :: τ . Note that x and y are
no longer annotated with types. We have to somehow find
them out.

x :: e ∈ {x :: b, y :: d}
Var

x :: b, y :: d ⊢ x :: e
→ Ix :: b ⊢ λy.x :: c

→ I⊢ λx.λy.x :: a

a = b→ c
c = d→ e

e = b

Thus τ = ∀b.∀d.b→ d→ b.

44 / 48

TYPE INFERENCE

Example: find τ such that ⊢ λx.λy.x :: τ . Note that x and y are
no longer annotated with types. We have to somehow find
them out.

x :: e ∈ {x :: b, y :: d}
Varx :: b, y :: d ⊢ x :: e

→ Ix :: b ⊢ λy.x :: c
→ I⊢ λx.λy.x :: a

a = b→ c
c = d→ e
e = b

Thus τ = ∀b.∀d.b→ d→ b.
44 / 48

HINDLEY-MILNER STYLE TYPE INFERENCE

• Assume the unknown types to be type variables.
• Proceed with the typing rules of simply typed λ calculus,
and use a unification engine to discover constraints
between the type variables.

• Algorithms for unification can be quite non-trivial. We do
not go into the details for this course, and rely merely on
your intuition to perform the unification manually.

• If the procedure succeeds, ∀-quantify all the
unconstrained variables.

• The procedure fails if we encounter circular constraints:
a = . . . a

45 / 48

EXAMPLE OF A TYPE ERROR

f :: e→ c ∈ {f :: b}
Varf :: b ⊢ f :: e→ c

f :: e ∈ {f :: b}
Varf :: b ⊢ f :: e

→ Ef :: b ⊢ f f :: c
→ I

⊢ λf.f f :: a

a = b→ c
b = e→ c
b = e

The constraints imply e = e→ c, a circular type. So we signal a
type error.

46 / 48

EXAMPLE OF A TYPE ERROR

f :: e→ c ∈ {f :: b}
Varf :: b ⊢ f :: e→ c

f :: e ∈ {f :: b}
Varf :: b ⊢ f :: e

→ E

f :: b ⊢ f f :: c
→ I⊢ λf.f f :: a

a = b→ c

b = e→ c
b = e

The constraints imply e = e→ c, a circular type. So we signal a
type error.

46 / 48

EXAMPLE OF A TYPE ERROR

f :: e→ c ∈ {f :: b}
Var

f :: b ⊢ f :: e→ c

f :: e ∈ {f :: b}
Var

f :: b ⊢ f :: e
→ Ef :: b ⊢ f f :: c

→ I⊢ λf.f f :: a

a = b→ c

b = e→ c
b = e

The constraints imply e = e→ c, a circular type. So we signal a
type error.

46 / 48

EXAMPLE OF A TYPE ERROR

f :: e→ c ∈ {f :: b}
Varf :: b ⊢ f :: e→ c

f :: e ∈ {f :: b}
Var

f :: b ⊢ f :: e
→ Ef :: b ⊢ f f :: c

→ I⊢ λf.f f :: a

a = b→ c
b = e→ c

b = e

The constraints imply e = e→ c, a circular type. So we signal a
type error.

46 / 48

EXAMPLE OF A TYPE ERROR

f :: e→ c ∈ {f :: b}
Varf :: b ⊢ f :: e→ c

f :: e ∈ {f :: b}
Varf :: b ⊢ f :: e

→ Ef :: b ⊢ f f :: c
→ I⊢ λf.f f :: a

a = b→ c
b = e→ c
b = e

The constraints imply e = e→ c, a circular type. So we signal a
type error.

46 / 48

HINDLEY-MILNER TYPE INFERENCE

• The Hindley-Milner system is essentially a monomorphic
type system disguised as polymorphic.

• By doing so it found a nice balance — limited
polymorphism, with type inference.

• Adopted by some early typed functional languages. It was
believed that programmers no longer need to write types.

• Later, people were not satisfied with its limitation, and the
Haskell type system was extended with more features (e.g.
those more like System F, type classes, etc) but we lost full
type inference.

47 / 48

MORE ON TYPES

• Many other aspects on types that we won’t have time to
talk about:

• “free theorems” of polymorphic functions.
• What can we say about a function f :: ∀a.List a→ a?
• f ·map g = g · f.

• Existential type (∃) is dual to ∀, and implements abstract
data types (e.g ∃t.Printable t).

• Subtyping: Nat ⩽ Real ⩽ Complex... related to ad-hoc
polymorphism.

• What type corresponds to first order logic? Dependent
type, a highly expressive type system.

• And many more. Research on types is still a hot topic.

48 / 48

	Intuitionistic Propositional Logic
	Untyped and Typed Calculus
	Untyped Calculus
	Simply Typed Calculus
	Type Safety
	More Datatypes

	Curry-Howard Isomorphism
	Polymorphic Calculus
	Hindley-Milner Style Type Inference

