
Programming Languages: Functional Programming
Worksheet for 2. Introduction to Haskell

Shin-Cheng Mu

Spring 2022

If you have your notebook computer with you (and have Haskell Platform installed), start
ghci and try the following tasks.

List Deconstruction
1. (a) What is the type of the function head? Use the command :t to find out the type of

a value.

(b) Since the input type of head is a list ([a]), let us try it on some input.

i. head [1, 2, 3] =

ii. head "abcde" =

iii. head [] =

(c) In words, what does the function head do?

2. (a) What is the type of the function tail?

(b) Try tail on some input.

i. tail [1, 2, 3] =
ii. tail "abcde" =

iii. tail [] =

(c) In words, what does the function tail do?

(d) For what xs is it always true that head xs : tail xs = xs?

1

3. (a) What is the type of the function last?

(b) Try last on some input. Think about some input yourself.

i. last =

ii. last =

iii. last =

(c) In words, what does the function last do?

4. (a) What is the type of the function init?

(b) Try init on some input. Think about some input yourself.

i. init =

ii. init =

iii. init =

(c) In words, what does the function init do?

(d) What property does init and last jointly satisfy?

5. (a) What is the type of the function null?

(b) Try init on some input. Think about some input yourself.

i. null =

ii. null =

iii. null =

(c) Can you write down a definition of null , by pattern matching?

List Generation
1. What are the results of the following expressions?

2

(a) [0..25] =

(b) [0, 2..25] =

(c) [25..0] =

(d) [′a′..′z′] =

(e) [1..] =

2. What are the results of the following expressions?

(a) [x | x← [1..10]] =

(b) [x× x | x← [1..10]] =

(c) [(x, y) | x← [0..2], y ← "abc"] =

(d) What is the type of the expression above?

(e) [x× x | x← [1..10], odd x] =

3. What are the results of the following expressions?

(a) [(a, b) | a← [1..3], b← [1..2]] =

(b) [(a, b) | b← [1..2], a← [1..3]] =

(c) [(i, j) | i← [1..4], j ← [(i+ 1)..4]] =

3

(d) [(i, j) | i← [1..4], even i, j ← [(i+ 1)..4], odd j] =

(e) [′a′|i← [0..10]] =

Combinators on Lists
1. (a) What is the type of the function !! (two exclamation marks)?

(b) Try !! on some input. Think about some input yourself. Note that !! is an infix operator.

i. [1, 2, 3] !! 1 =

ii. !! =

iii. !! =

(c) In words, what does the function !! do?

2. (a) What is the type of the function length?

(b) Try length on some input.

i. length =

ii. length =

(c) In words, what does the function length do?

3. (a) What is the type of the function (++)? (In ASCII one types ++.)

(b) Try (++) on some input. Think about some input yourself. Note that (++) is an infix
operator.

i.
ii.

(c) In words, what does the function (++) do?

4

(d) Wait a minute. . .Both (:) and (++) appear to add elements to a list. How are they
different?

4. (a) What is the type of the function concat?

(b) Try concat on some input.

i. concat =

ii. concat =

(c) In words, what does the function concat do?

5. (a) What is the type of the function take?

(b) Try take on some input. Since take expects an integer and list, try it on some extreme
cases. For example, when the integer is zero, negative, or larger than the length of
the list.

i. take =

ii. take =

iii. take =

(c) In words, what does the function take do?

6. (a) What is the type of the function drop?

(b) Try drop on some input. Like take , try it on some extreme cases.

i. drop =

ii. drop =

iii. drop =

(c) In words, what does the function drop do?

(d) Does take , drop, and (++) together satisfy some properties?

5

7. (a) What is the type of the function map?

(b) Try map on some input. It is a little bit harder, since map expects a functional argu-
ment.

i. map square [1, 2, 3, 4] =

ii. map (1+) [1, 2, 3, 4] =

iii. map (const ′a′) [1..10] =

(c) In words, what does the function map do?

(d) Is (1+) a function? Try it.

i. (1+) 2 =

ii. ((1+) · (1+) · (1+)) 0 =
where (·) is function composition.

Sectioning
• Infix operators are curried too. The operator (+) may have type Int → Int → Int .

• Infix operator can be partially applied too.

(x ⊕) y = x⊕ y
(⊕ y) x = x⊕ y

– (1 +) :: Int → Int increments its argument by one.

– (1.0 /) :: Float → Float is the “reciprocal” function.

– (/ 2.0) :: Float → Float is the “halving” function.

1. Define a function doubleAll :: List Int → List Int that doubles each number of the input
list. E.g.

• doubleAll [1, 2, 3] = [2, 4, 6].

• How do you define a new function? I’d suggest you to

(a) create a new text file (using your favourite editor) in your current working direc-
tory (the directory you executed ghci). The file should have extension .hs.

(b) Type your definitions in the file.
(c) Load the file into ghci by the command :l <filename>.

6

2. Define a function quadAll :: List Int → List Int that multiplies each number of the input
list by 4. Of course, it’s cool only if you define quadAll using doubleAll .

λ Abstraction
• Every once in a while you may need a small function which you do not want to give a
name to. At such moments you can use the λ notation:

– map (λx→ x× x) [1, 2, 3, 4] = [1, 4, 9, 16]

– In ASCII λ is written \.

1. What is the type of (λx→ x+ 1)?

2. (λx→ x+ 1) 2 =

3. What is the type of (λx→ λy → x+ 2× y)?

4. What is the type of (λx→ λy → x+ 2× y) 1?

5. (λx→ λy → x+ 2× y) 1 2 =

6. What is the type of (λx y → x+ 2× y)?

7. What is the type of (λx y → x+ 2× y) 1?

8. (λx y → x+ 2× y) 1 2 =

9. Define doubleAll :: List Int → List Int again. This time using a λ expression.

10. Pattern matching in λ. To extract, for example, the two components of a pair

(a) What is the type of (λ(x, y)→ (y, x))?

(b) (λ(x, y)→ (y, x)) (1, ’a’) =

(c) Alternatively, try
(λp→ (snd p, fst p)) (1, ’a’) =

7

Back to Lists
1. (a) What is the type of the function filter?

(b) Try filter on some input.

i. filter even [1..10] =

ii. filter (> 10) [1..20] =

iii. filter (λx→ x ‘mod ‘ 3 = = 1) [1..20] =

(c) In words, what does the function filter do?

2. (a) What is the type of the function takeWhile?

(b) Try takeWhile on some input.

i. takeWhile even [1..10] =

ii. takeWhile (< 10) [1..20] =

iii. takeWhile (λx→ x ‘mod ‘ 3 = = 1) [1..20] =

(c) In words, what does the function takeWhile do? How does it differ from filter?

(d) Define a function squaresUpto :: Int → List Int such that squaresUpto n is the list
of all positive square numbers that are at most n. For some examples,

• squaresUpto 10 = [1, 4, 9].
• squaresUpto (−1) = []

3. (a) What is the type of the function dropWhile?

(b) Try dropWhile on some input.

i. dropWhile even [1..10] =

ii. dropWhile (< 10) [1..20] =

iii. dropWhile (λx→ x ‘mod ‘ 3 = = 1) [1..20] =

8

(c) In words, what does the function dropWhile do?

4. (a) What is the type of the function zip?

(b) Try zip on some input.

i. zip [1..10] "abcde" =

ii. zip "abcde" [0..] =

iii. zip =

(c) In words, what does the function zip do?

(d) Define positions :: Char → String → List Int , such that positions x xs returns the
positions of occurrences of x in xs . E.g.

• positions ’o’ "roodo" = [1, 2, 4].

Check the handouts if you just cannot figure out how.

(e) What if you want only the position of the first occurrence of x? Define pos :: Char →
String → Int , by reusing positions .

Morals of the Story

• Lazy evaluation helps to improve modularity.

– List combinators can be conveniently re-used. Only the relevant parts are computed.

• The combinator style encourages “wholemeal programming”.

– Think of aggregate data as a whole, and process them as a whole!

9

