
Programming Languages: Functional Programming
Worksheet for 3. Definition and Proof by Induction

Shin-Cheng Mu

Autumn 2023

Finish the definitions.

1 Induction on Natural Numbers
(+) :: Nat → Nat → Nat
0 + n =
(1+ m) + n =

(×) :: Nat → Nat → Nat
0× n =
(1+ m)× n =

exp :: Nat → Nat → Nat
exp b 0 =
exp b (1+ n) =

2 Induction on Lists
sum :: List Int → Int
sum [] =
sum (x : xs) =

map :: (a → b) → List a → List b
map f [] =
map f (x : xs) =

(++) :: List a → List a → List a
[] ++ ys =
(x : xs)++ ys =

Prove: xs ++(ys ++ zs) = (xs ++ ys)++ zs .

1

Proof. Induction on xs .
Case xs := []:

Case xs := x : xs :

• The function length defined inductively:

length :: List a → Int
length [] =
length (x : xs) =

• While (++) repeatedly applies (:), the function concat repeatedly calls (++):

concat :: List (List a) → List a
concat [] =
concat (xs : xss) =

2

• filter p xs keeps only those elements in xs that satisfy p.

filter :: (a → Bool) → List a → List a
filter p [] =
filter p (x : xs)

• Recall take and drop, which we used in the previous exercise.

take :: Nat → List a → List a
take 0 xs =
take (1+ n) [] =
take (1+ n) (x : xs) =

•

drop :: Nat → List a → List a
drop 0 xs =
drop (1+ n) [] =
drop (1+ n) (x : xs) =

• takeWhile p xs yields the longest prefix of xs such that p holds for each element.

takeWhile :: (a → Bool) → List a → List a
takeWhile p [] =
takeWhile p (x : xs)

• dropWhile p xs drops the prefix from xs .

dropWhile :: (a → Bool) → List a → List a
dropWhile p [] =
dropWhile p (x : xs)

• List reversal.

reverse :: List a → List a
reverse [] =
reverse (x : xs) =

• inits [1, 2, 3] = [[], [1], [1, 2], [1, 2, 3]]

inits :: List a → List (List a)
inits [] =
inits (x : xs) =

3

• tails [1, 2, 3] = [[1, 2, 3], [2, 3], [3], []]

tails :: List a → List (List a)
tails [] =
tails (x : xs) =

• Some functions discriminate between several base cases. E.g.

fib :: Nat → Nat
fib 0 =
fib 1 =
fib (2 + n) =

• E.g. the function merge merges two sorted lists into one sorted list:

merge :: List Int → List Int → List Int
merge [] [] =
merge [] (y : ys) =
merge (x : xs) [] =
merge (x : xs) (y : ys)

•

zip :: List a → List b → List (a, b)
zip [] [] =
zip [] (y : ys) =
zip (x : xs) [] =
zip (x : xs) (y : ys) =

• Non-structural induction. Example: merge sort.

msort :: List Int → List Int
msort [] =
msort [x] =
msort xs =

3 User Defined Inductive Datatypes
• This is a possible definition of internally labelled binary trees:

data Tree a = Null | Node a (Tree a) (Tree a) ,

4

• on which we may inductively define functions:

sumT :: Tree Nat → Nat
sumT Null =
sumT (Node x t u) =

5

