Anne Kaldewaij
Programming:

The Derivation
of Algorithms

C. A.R.HOARE SERIES EDITOR

Prentice Hall International Series in Computer Science

C. A. R. Hoare, Series Editor

BACKHOUSE, R. C., Program Construction and Verification
BACKHOUSE, R. C., Syntax of Programming Languages: Theory and practice
peBAKKER, J. W., Mathematical Theory of Program Correctness
BARR, M. and WELLS, C., Category Theory for Computing Science °
BEN-ARI, M., Principles of Concurrent and Distributed Programming : Programmlng
BIRD, R. and WADLER, P., Introduction to Functional Programming
BJORNER, D. and JONES, C. B., Formal Specification and Software Development
BORNAT, R., Programming from First Principles
BUSTARD, D., ELDER, J. and WELSH., ., Concurrent Program Structures ° ° :
CLARK, K. L., and McCCABE. F. G., micro-Prolog: Programming in logic - The D erwvation Of A lgO rit th
CROOKES, D., Introduction to Programming in Prolog
DROMEY, R. G., How to Solve it by Computer
DUNCAN, F., Microprocessor Programming and Software Development
ELDER, J., Construction of Data Processing Software
ELLIOTT, R. J. and HOARE, C. A. R., (eds.), Scientific Applications of
Multiprocessors
GOLDSCHLAGER, L. and LISTER, A., Computer Science: A modern introduction

(2nd edn) .
GORDON, M. J. C., Programming Language Theory and its Implementation A . Kaldewal_]
HAYES, 1. (ed.), Specification Case Studies . . .
HEHNER, E. C. R., The Logic of Programming Eindhoven University of Technology

HENDERSON, P., Functional Programming: Application and Implementation
HOARE, C. A. R., Communicating Sequential Processes
HOARE, C. A.R., and JONES, C. B. (ed.), Essays in Computing Science
HOARE, C. A. R., and SHEPHERDSON, J. C. (eds.). Mathematical Logic and
Programming Languages
HUGHES, J. G., Database Technology: A software engineering approach
INMOS LTD, occam 2 Reference Manual R
JACKSON, M. A., System Development
JOHNSTON, H., Learning to Program
JONES, C. B., Systematic Software Development using VDM (2nd edn)
JONES, C. B. and SHAW, R. C. F. (eds.), Case Studies in Systematic Software
Development
JONES, G., Programming in occam
JONES, G. and GOLDSMITH, M., Programming in occam 2
JOSEPH, M., PRASAD, V. R. and NATARAJAN, N., A Multiprocessor Operating
System
KALDEWAIJ, A., Programming: The Derivation of Algorithms
LEW, A., Computer Science: A mathematical introduction
MARTIN, J. J., Data Types and Data Structures
MEYER, B., Introduction to the Theory of Programming Languages
MEYER, B., Object-orientated Software Construction
MILNER, R., Communication and Concurrency
MORGAN, C., Programming from Specifications
PEYTON JONES, S. L., The Implementation of Functional Programming Languages
POMBERGER, G., Software Engineering and Modula-2
POTTER, B., SINCLAIR, J., TILL, D., An Introduction to Formal Specification and 2
REYNOLDS, J. C., The Craft of Programming
RYDEHEARD, D. E. AND BURSTALL, R. M., Computational Category Theory
SLOMAN, M. and KRAMER,)., Distributed Systems and Computer Networks
SPIVEY, J. M., The Z Notation: A reference manual
TENNENT, R. D., Principles of Programming Languages
WATT, D. A., Programming Languages Concepts and Paradigms —
WATT, D. A., WICHMANN, B. A. and FINDLAY, W., ADA: Language and
methodology =
WELSH, J. and ELDER, J., Introduction to Modula-2
WELSH, J. and ELDER, J., Introduction to Pascal (3rd edn)
WELSH, J., ELDER, J., and BUSTARD, D., Sequential Program Structures .
WELSH. J. and HAY, A.. A Model Implementation of Standard Pascal Prentice Hall

WELSH, J. and McKEAG M., Structured System Programming :
WIKSTROM, A., Functional Programmmg using Standard ML New York London Toronto Sydney TOkyo Smgapore

First published 1990 by

Prentice Hall Europe

Campus 400, Maylands Avenue,
Hemel Hempstead,

Hertfordshire HP2 7EZ

A division of

Simon & Schuster International Group

© Prentice Hall Europe 1990

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior
permission, in writing, from the publisher.

Printed and bound in Great Britain by
Redwood Books, Trowbridge, Wiltshire

Library of Congress Cataloguing-in-Publication Data

Kaldewaij. A. (Anne)
Programming: the derivation of algorithms/A. Kaldewaij.
p. cm.— (Prentice-Hall international series in computer

science)

Includes bibliographical references and index.

ISBN 0-13-204108-1 : $32.95

1. Electronic digital computers — Programming. 2. Algorithms.
I. Title. II. Series.
QA76.6. K3417 1990
005. 1 —dc20 90-14158

CIP

British Library Cataloguing in Publication Data

Kaldewaij. A. (Anne)
Programming : the derivation of algorithms. - (Prentice
Hall International series in computer science).
1. Computer systems. Programming. Algorithms. Design
I. Title
0045.12028

ISBN 0-13-204108-1

567 99 98 97

Contehts |

Preface

Int roducf ion

1 Predicate Calculus

2.0
2.1
2.2
2.3
24
2.5
2.6
2.7

The Guarded Command Language

Introduction e e e e e e e e e e

Assignment
Catenation . .c. o v v i e .
Selection
Repetition e
Constants, Inner Blocks, and Arrays

SUIMIMATY . .« v v v v v v e v e e e e e

3 Quantifications

4 General Programming Techniques

4.0
4.1
4.2
4.3
4.4
4.5

Introduction e
Taking conjuncts as invariant L
Replacing constants by variables

Strengthening invariants Lo oo o

Tail invariants o e e e e e e e e

SUMMATY . o o v v v e e e e e e e e

ix

13
13
16
17
20
23
28
38
42

44

vi

Contents

Deriving Efficient Programs

5.0 Introduction
5.1 Imtegerdivision
5.2 Fibonacci
Searching
6.0 Introduction P
6.1 Linear Search
6.2 Bounded Linear Search,
6.3 Binary Search
6.4 Searching by Elimination
Segment Problems
7.0 Introduction
7.1 Longestsegments,
71.0 Allzeros
7.1.1 Left-minimal segments
712 Atmosttenzeros
7.1.3 All elements different L.
7.2 Shortest segments
Slope Search
8.0 Imtroduction
8.1 Thebasicprinciple
8.1.0 Searching
8.1.1 Decomposition in a sum of two squares
8.1.2 Minimal distance
8.2 Longest and shortest segments
82.0 Longestsegments
8.2.1 Shortestsegments L
8.2.2 At least twozerosrevisited

Mixed Problems

83
83
83
88

92
92
92
95
98
104

110
110
110
111
115
117
119
122

127
127
127
130
133
136
140
141
144
146

148

Contents vii

10 Array Manipulations 152
10.0 Introduction e 152
10.1 Array assignments Lo 152
10.2.SWaps . . . v o e 159

10.2.0 The Dutch National Flag 161
10.2.1 Rotation v v v v i e e 164

11 Sorting 170
11.0 Introduction 170
11.1 Quadratic sorting algorithms 172

11.1.0 Imsertion Sort 172
11.1.1 Selection Sort oo 174
11.1.2 Bubble Sort e 176
11.2 Advanced sorting algorithms 178
11.2.0 Quicksort 179
11.2.1 Mergesort 183
11.2.2 Heapsort e . 187

12 Auxiliary Arrays 195
12.0 At most K 2eroso e e e 195
12.1 Largest square under a histogram 198
12.2 The length of a longest common subsequence 201
12.3 A shortest segment problem 206
Index 214

Preface

Programming is the art of designing efficient algorithms that meet their specifications.
During the 1980s the art of programming became more and more a discipline of pro-
gramming. Problems that were hard to solve ten years ago are now used as examples
in an introductory programming course. What happened?

There are two factors by which algorithms may be judged: their correctness (do
they solve the right problem?) and their performance (how fast do they run, and how
much space do they use?). The classical way of judging the quality of an algorithm is by
tracing execution patterns, by providing test inputs, or by supplying formal proofs. The
process of proving the correctness of an algorithm after it has been designed-is known
as verification. Verification of algorithms is rather difficult, even for the designer of an
algorithm. Many a programmer regards it as a waste of time and prefers to continue
with another interesting programming problem. This is one of the reasons why formal
methods were largely rejected or neglected by the software community.

As time went by it became obvious that neither tracing nor testing can guarantee
the absence of errors. To be sure of the correctness of a program one has to prove that
it meets its specification. This insight led to the development of specification languages
and tools that might support program verification.

A quite different approach was advocated and developed by Edsger W. Dijkstra
and others during the 1970s. In their approach a program and its correctness proof are
constructed hand in hand, thereby making a posteriori program verification superflu-
ous. The proof rules (semantics) of the program notation provide the guidelines for the
construction of algorithms from specifications. The correctness of a program obtained
in this way is implicit: following the rules of the game it is impossible to construct
an incorrect algorithm. With the introduction of this method of programming it also
became possible to reason about programs in a non-operational way.

During the 1980s W.H.J. Feijen and others refined this method to what is known
as the calculational style of programming: to a large extent, programs are derived from

ix

X Preface

their specification by means of formula manipulation. The calculations that lead to the
algorithm are carried out in small steps, so that each individual step is easily verified.
In this way the design decisions become manifest. Such decisions are based on several
_considerations, such as efficiency, simplicity and symmetry. This method does not only
help us in finding a solution, but it can also yield new solutions that are often quite
surprising. Program derivation is not mechanical: it is a challenging activity and it
requires creativity. This way of programming shows where creativity comes in. It is
this method that is explained and exemplified in this textbook.

As a vehicle for the description of algorithms we use the guarded command lan-
guage. It has the simplicity needed for educational reasons and it has the expressiveness
needed for the description of algorithms. Procedures and recursion are not included:
the modest constructs of the guarded command language provide more than enough
latitude for an introduction to programming.

How to use this book

The material of this textbook can be presented in a one-year course. Such a course may
be organized as follows: each week a two-hour lecture in which the theory is explained
and exemplified and a three-hour training session in which exercises are solved in small
groups. This is the way in which I present the material to first-year computing science
students at the Eindhoven University of Technology. Each week one exercise is marked
as a home-work assignment. That exercise has to be worked out with great precision.
The same material has been used in a third-year course.

The only prerequisite is an introductory course in Pascal, just enough to give stu-
dents some idea about programs and about program execution.

The pace of lecturing should be leisurely. It takes time to get used to the notation
and to get used to the mathematical rigor that is needed. The exercises play a funda-
mental role: you can only understand and appreciate the strength and beauty of the
method by using it.

A Teacher’s Manual (including answers to exercises) is available from the publishers
for adopters of this book.

Overview

In the first chapters, we introduce the predicate calculus and the guarded command
language. Since this book is about programming and not about semantics, the pre-
sentation of the theory of predicates is kept as simple as possible. Each construct of
the guarded command language is introduced together with its accompanying proof
rule. These chapters form the basis for the development of programs. Many exercises
have been included to help the reader gain familiarity with the notations and the proof
rules.

Chapter 3 introduces quantifications, which are used in specifications and for which

~ Preface xi

the manipulation rules are presented that are needed in program derivations.

In Chapter 4, we present the general programming techniques that underlie the
more specific techniques presented in the chapters that follow. Chapter 5 discusses
efficiency and presents two examples of efficient algorithms. This chapter gives the
teacher the opportunity to show how one can reason about such programs without
operational arguments.

In Chapters 6, 7, and 8 the general programming techniques of Chapter 4 are ap-
plied to more specific classes of problems. Chapter 6 addresses searching paradigms:
the Linear Search, the Bounded Linear Search, the Binary Search, and Searching by
Elimination are presented. In Chapter 7 segment problems are discussed, which pro-
vide an excellent training in the calculus needed for program derivation. Chapter 8
deals with two-dimensional searches and applies the Slope Search technique to segment

- problems. These chapters are followed by a set of mixed programming problems.

The final chapters deal with array operations. The proof rule for the array assign-
ment is introduced and applied to various problems. In Chapter 12 the introduction of
auxiliary arrays is discussed and exemplified by some more complicated programming
problems.

Bibliography

The proof format used in this book was jnvented by W.H.J. Feijen. Much of the nota-
tion, such as the square brackets for universal quantification over a state space, is due
to E.W. Dijkstra. Many of the examples and many exercises occur also in-4 Method
of Programming by Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley, 1988.
Another source is The Science of Programming by David Gries, Springer-Verlag New
York Inc., 1981. For instance, the exercise called ‘Welfare Crook’ is an example from
this book. Both books are recommended.

Searching by Elimination was invented by Berry Schoenmakers. Some of the exer-
cises have been composed by Jan L.A. van de Snepscheut.

Two other books have to be mentioned. My first contact with the science of pro-
gramming was A Discipline of Programming by Edsger W. Dijkstra, Prentice-Hall,
1976. You will find it a pleasure to read it after you have studied this textbook. For
those interested in the theory of predicate transformers, I recommend Predicate Cal-
culus and Program Semantics by Edsger W. Dijkstra and Carel S. Scholten, Springer-
Verlag New York Inc., 1990.

Acknowledgements

It is a pleasure to express my gratitude to Wim Feijen, who spent so much time teach-
ing me all he knows about programming. This book would not have been written
without him.

The Eindhoven Algorithm Club, in particular Lex Bijlsma, Victor Dielissen, Joop

Xii Preface

van den Eijnde, Wim Nuij and Berry Schoenmakers, is gratefully acknowledged for
pointing out errors and obscurities in earlier versions.

My thanks go to all those colleagues and students who made comments on parts
of this book. I want to mention W.H.J. Feijen, Ria van Ouwerkerk, Martin Rem, Rob
Nederpelt, Asia van de Mortel, and Tom Verhoeff.

The ATAC (Austin Tuesday Afternoon Club), in particular Edsger W. Dijkstra, is
acknowledged for comments on the first part of this book.

Finally, my special thanks go to Rob Hoogerwoord who carefully studied the final
draft of this text, and who suggested many methodological improvements.

Eindhoven, September 1990
Anne Kaldewaij

Chapter 0

Introduction

There are many different views on programming. A common view is that a program
is just a-kind of recipe that explains what steps have to be performed to achieve a
certain goal. Such a program is often presented in an operational way: ‘first do this,
then apply that’ and ‘perform the following N times’. This approach can be found in
many textbooks on programming. Often such textbooks treat a specific programming
language, sich as FORTRAN-77, COBOL or MODULA-2, and usually those books
only differ in the language that is used. ,

In this book we present a completely different approach. A program together with
its specification is viewed as a theorem. The theorem expresses that the program
satisfies the specification. Hence, all programs require proofs (as theorems do). We
shall derive programs according to their specifications in a constructive way, such that
program development and correctness proof go hand in hand.

As an example, we consider the following Pascal program.

program mazimum (input,output);
var z,y : integer;
begin
read(z);
read(y);
if z < y then z:=y;
write(z)
end.
Program variables define a so-called state space. Variables z and y introduced in the
second line of this program define state space Z x Z, where Z denotes the set of

integers. The coordinates of this state space correspond to the variables, the first one
to z and the second one to y. Elements of a state space are called states. Typical states

1

2 Introduction

are (1,2) and (0, —5). Sets of states, i.e. subsets of the state space, are characterized
by predicates (boolean functions), such as z > yand z >0 A y > 0.

When values A and B are supplied as input to the program above, execution of
read(z); read(y) establishes = A A y = B, or, phrased differently, leads to state
(A, B). Execution of

ifr<ythenz:=y

establishes z = Amax B, the maximum of A and B. Finally, execution of write(z)
will print the value of z, i.e. Amax B, at some output device.

The heart of the program is the selection statement:
ifr<ythenz:=y
The relation between

r=AANy=D0B,
if z < y then z:=y, and

z = AmaxB
is denoted as
{zr=AAy=B}ifz<ythenz:=y {z = AmaxB}
The operational interpretation of this triple is

Execution of ‘if z < y then z:= ¥’ starting in a state satisfying
= A A y = B terminates in a state satisfying z = A max B.

Predicate z = A A y = B is called the pre-condition and predicate £ = AmaxB is
called the post-condition of this statement. How the pre-condition (in particular, the
initial state) has been established is not relevant. In this book we will not be concerned
with input or output, but we focus our attention on the design of the algorithm that
expresses the computation of the outpu\t in terms of the input.

We will use Edsger W. Dijkstra’s guarded command language to denote our pro-
grams. This language is quite modest but sufficiently rich to represent sequential
algorithms in a succinct and elegant way. The language is not a main subject of the
course, it is only used to represent programs. In the guarded commands notation the
program presented above is denoted as

Introduction 3

| var z,y : int;
{z=AANy=B}
fr<y mz:=y[lz>y — skipfi
{z = Amax B}

I

Specifications have the same shape as programs, for instance, a possible specification
for the program above is

[var z,y : int;
{z=AANy=B}
marimum
{z = AmaxB}

I

in which mazimum is the name of the program we are looking for.

In general, a specification consists of the definition of a state space (a set of program
variables), a pre-condition and a post-condition. Program S satisfies a specification if
all executions of S starting in a state satisfying the pre-condition terminate in a state
satisfying the post-condition. !

The fact that program S satisfies a specification with pre-condition P and post-
condition @ is denoted as

{P} 5 {Q}

The guarded command language will be introduced in such a way that {P} S {Q} can
be inferred from the structure of S. For each construct S an inference rule is presented
which is based on an operational interpretation of S. However, as soon as the rules
have been defined, the operational interpretation will not be used any more.

Thus, before we can start with the main subject of this book, i.e. programming, we
have to define the program notation and the rules of the game. The predicate calculus
needed for this is the topic of the next chapter.

Any notation used in this book is introduced when it is needed. One convention
is mentioned here: for function application we use a dot, so instead of F(z) we write
F.z . Function application is left-binding: f.z.y should be interpreted as (fz)y.

Chapter 1

Predicate Calculus

In programming, predicate logic is used as a calculus, as opposed to its use in other
disciplines where logic plays a more static role. This chapter is not a short introduction
to logic, but a presentation of a (rather modest) notation and set of rules that will be
used in the subsequent chapters.

A predicate is a boolean function: for set X, function P: X — {false,true} is
called a predicate on X. In our applications set X will be a state space defined by
a set of program variables. Each program variable is of a certain type and X is the

Cartesian product of these types. The coordinates of X are identified by the nameéﬂ

of the program variables. For instance, z and y of type integer define state space
X = Z x Z. Let the first coordinate correspond to z and let the second coordinate
correspond to y. Typical predicates on X are z > y and £ = 2 A y = 3. The latter
has value true in point (2, 3) and value false in all other points of the state space.

For each state space the (constant) predicate that is true in each point of that space
is also denoted by true. Similarly, false denotes the predicate that is false in all points
of the state space. The following operators are defined on the set of predicates on a
state space.

(conjunction)
(disjunction)
(equivalence)
(implication)
(negation)

Tym< >

These operators are defined as follows:

P A @ is the predicate that is true in each point where P is true and Q is true;
it is false in all other points.

Predicate Calculus 5

PV Q is the predicate that is false in each point where P is false and Q is false;
it is true in all other points.

P = Q is the predicate that is true in each point where P and Q have the same
value; it is false in all other points.

P = Q is the predicate that is false in each point where P is true and Q is false;
it is true in all other points.

—P is the predicate that is true in each point where P is false; it is false in each
point where P is true.

For P = Q we may also write Q < P (‘Q follows from P’). To avoid parentheses
in expressions we introduce the following priorities. Negation has the highest priority.
From the binary operators, conjunction and disjunction have the highest priority fol-
lowed by implication and then equivalence. For instance, P = @ = —-P V @ should
be read as (P = Q) = ((-P)V Q).

We are often interested in predicates that hold everywhere, i.e., predicates that
are true at each point of the state space. Examples of such predicates are Q = @,
(z+1)2 ==? + 2z + 1, and true. The proposition ‘P is true for all states’ is denoted
as

+

[P]

which is pronounced as ‘for all states P’ or ‘P, for all states’.
For instance, [z > 1 = z > 0] and [true] hold, whereas [z > 0 => z > 1] does not hold,
since

0>0A-(0>1)

Note that [P = Q] expresses that predicates P and @ denote the same function.
In particular, Q@ may be substituted for P. This substitution rule (known as Leibniz’s
Rule) may be formulated as follows:

If [P = Q] then any occurrence of P in expression R may be replaced by
() without changing the value of R.

We assume that the reader is familiar with most of the properties of the operators
introduced above. The following list shows some of these properties. This list is
not exhaustive and not all of the listed properties will be used frequently. Their use
will become apparent in the chapters that follow. In the following P, @, and R are
predicates on the same state space.

6 Predicate Calculus
idempotence: . [PAP = P]
[PVP = P
commutzitivity: [PAQ = QAP
[PVQ = QV P
(P =Q) =(Q=P)
associativity: [(PAQ)AR = PA(QAR)]
[(PVQ)VR = PV(QVR)]
(P =@Q)=R) = (P=(Q=R))

These associativity properties permit us to omit parentheses.

distributivity: [PA(QVR) = (PAQ)V (PAR)
[PV(QAR) = (PVQ)A(PV R)
[PV(Q=R) = PvQ = PVR]
absorption: [PA(PV R)b = P]
[PV(PAR) = P
false-true rules: [P A true = P)] [P A false
[PV false = P| [PV true
De Morgan: [(PAQ) = ~PV Q] ~(PVvQ)
negation: [--P = P] [PV-P =
[ﬂPEQ)E—!PEQ] [P/\ﬁPE
implication: [P=Q = -PVQ] [false = P]
[P=Q = PAQ = P] [P = true]
P=Q = PVvQ = Q] [true = P
[P= PV{Q] [P = false
[PAQ= P]
equivalence: [P = P]
[P = P = true]

[P = P = false]

Predicate Calculus 7

A theorem of the form [P = Q] is often proved in a number of steps, for instance,
by showing [P = A], [A = B], and [B = @], for certain predicates A and B. To
avoid writing down A and B twice, we use the following notation for such a proof:

P

= {hint why [P = 4]}
A

= {hint why [A = B]}
B

= {hint why [B = Q]}
Q

Similarly [P = Q] may be proved by, for instance, [P = A], [A = BJ, and [B = Q).

We will denote such a proof as follows:

P
= {hint why [P = A]}
A
= {hint why [A = B]} !
false] B
true] = {hint why [B = Q]}
= =P A-Q] Q
rue] As an example we show [P A (=P V Q) = P AQ), a so-called ‘complement rule’:
false] - PA(=PVQ)
= { distributivity of A over V }
(PA-P)V(PAQ)
= P = { negation rule }
= -Pj false V (P A Q)
= { false-true rule }
PAQ

When [P = Q] holds then P is called stronger than @ and Q is called weaker than
P. For example, © > 2 is stronger than z > 1 and z? > 0 is weaker than z > 0.
The weakest predicate is predicate true, since [P = true] for all P, and the strongest
predicate is predicate false, since [false = P] for all P.

Equation Y : [Y = P] has P as weakest solution, since

8 Predicate Calculus

(i) [P = P), ie., P is a solution, and

(ii) for any solution Y, [Y = P], i.e., P is weaker than Y.

Note that false is the strongest solution of this equation. Similarly, equation
Y: [P = Y] has P as its strongest solution, and true as its weakest solution.

We use predicates that are expressions in the program variables of the state space.
An important operation on expressions is substitution. Substitution of expression E
for variable z in expression @ is denoted as

to be pronounced as ‘Q in which z is replaced by E’. Multiple substitution of z and y
by E and F, respectively, is denoted as

Q(z,y:=E,F)

Substitution has a higher priority than all other operators, for instance,
[P = Q(z:= E)| should be read as [P = (Q(z:= E))]. Substitution distributes over
all other operators.

Examples

(% 4+ 2 z)(z:= z+1) = (z+1)> + 2% (z+1)]

&>)= at1) = 241 23]

(z+2xy=2)(z,y:=y,8) = y+2*z=2]

[(#=E)(z:=E) = E = E(x:= E)] (Note that z may occur in E)
[(P(z:=y))(z:=y) = P(z:=1y)]

(Pla=y))y=2) = Ply=a)

(PAQ)a=B) = Plzi=F) Q= E)

Y
T

We will use ezistential quantification and universal quantification. Existential quan-
tification is a generalization of the disjunction. Let, for 4 > 0, P.4 be a predicate. For
n > 0 the disjunction

POV -+ V P(n—1)

is denoted as

Predicate Calculus 9

(3i:0<i<n:Pi)
We have

[(Fi:0<i<0:Pi) = false]
[(3i:0<i<nti:Pi) = (3i:0<i<n:Pi)V Pnj

In derivations this last line is accompanied by the hint ‘split off i = n’. Due to the
symmetry and associativity of V any term may be split off. In general, existential
quantification is of the form

(3::R: P)

where i is a variable (or a list of variables), R is a predicate, called the range of the
quantification, and P is called the term. The range need not be finite, for instance, ‘z
is an even natural number’ is expressed by

(Fi:i€ ZANi>0:z=2i)

The term should be defined for all i that satisfy R. In general R and P depend on :.
In some formulae we make this dependence more explicit and we write

(3i: Ra: Pi)
We have
[(3i: false : P) = false

When the range of a quantification is false we say that the range is empty. Similarly,
a non-empty range means that the range is not false.

In (3i: R : P) variable i is called a bound variable or a dummy. The expression
(3i : R : P) does not depend on i. We will always use fresh names for dummies.
In particular, program variables will never occur as the name of a bound variable.
Dummies may be renamed: for fresh variable j we have

[(3i:R:P) = (3j:R(i:=j): P(i:=j))]

Unless stated otherwise, dummies have type Z and we omit this type indication in the
range. For instance, ‘z is an even natural number’ is denoted as

(Fi:1>0:z=20)

10 Predicate Calculus

We mention some properties of existential quantification.

[(Fi: false : P) = false]
[(3i:i=x:P) = P(i:=z)] (one-point rule)

[@i:RAS:P) = (3i: R: SAP)] (trading)

[@ A (3i:Ri:Pi) = (3i:Ri:QAPi)]
[QV (3i:Ri:Pi) = (3i: Ri:QV Pi)] for R non-empty

[@i:R:P)Vv (3i:R:Q) = (i: R: PVQ)]
[(Fi:R:P)Vv (Fi:S:P) (3i: RV S: P)]

[(3i:Ri:Pi) A (3i:84:Q.i) = (F4,5:Ri A Sj:PiAQj)
Universal quantification is a generalization of the conjunction. It is denoted as
(Vi:R:P)
We have similar (dual) rules for universal quantification:

[(Vi:false: P) = true]
[(Vi:i=xz:P) = P(i:=z)] (one-point rule)

[(Vi:RAS:P) = (Vi:R:S=P)] (trading)

[Q V (Vi:Ri: Pi)
[Q@ A (Vi:Ri: Pi)

m

(Vi:Ri:Q V Pi)
(Vi:Ri:Q A Pi)] for R non-empty
[(Vi:R:P) A (Vi:
[(Vi:R:P)y A (Vi:

:Q) = (Vi: R: P A Q)
:P) = (Vi: RVS:P)

0

[(Vi:Ri:Pi)Vv (Vi:Si:Qui) = (Vi,j : RiASj:PiV Q.
Universal and existential quantification are coupled by De Morgan’s Law:
[-(3i:R:P) = (Vi:R:-P)]

Note that [P] is also a form of universal quantification; it may also be written as
(Vz:z € X : P), where X is the state space. For universal quantification over a state
space, however, we always use the square brackets.

Predicate Calculus 11

Exercises

Prove the ‘Golden Rule’: [PAQ = P = Q = PV Q)]

. Prove

@) [(P=Q)V~-R = PAR = Q]
(i) [PAB = R = P= (B= R)
(i) [(P=> Q) = (PAR= QAR)]

Prove or disprove

@) [(P=Q) V(@= P)]
(i) [P=Q] vV [@=P]

(3. Prove
()[P=Q =P=>Q = Q=PF]
(i) [P=Q = (P=QA(Q=P)
. Prove

(i) [(Vi:4>0:Pi) = PO
(ii) [P.0 = (Fi:¢>0: P.i)]

. Determine how the following pairs of predicates are related (which of the predi-

cates is the weakest or strongest), if they are related at all:

(i) z<0and z<1

(i) >0 and 22 +3y* =9

(i) z>1=>z>0and z2>1
(iv) z>1and (i:¢>0:2=1)
(v) (Vi: P:Q) and (3i: P: Q)

. Determine the strongest and the weakest solutions of the following equations in

Y:
(
(ii

(i

YY: [Y = PvQ)]

YY: [YvQ=PVQ

)Y:[Y = PAQ) L
YY: [YAQ=PAQ]

(iv

12 Predicate Calculus

7. Disprove
[@i:R:P)AFi:R:Q) = (3i:R: PAQ))
8. Perform the following substitutions:

(i) (2% + 2z + 1)(z:= z+a)
(i) (a* 2 y)(z,y:=y+1,2-1)
(i) 2? > y(z,y:=y+1,2-1)
(iv) (> y+1Ay > 2)(z,y:=z+3*z,2—-y+1)
(v) (e = b)(a:=a=b)

9. Simplify the following expressions

() Fi:1>0:2=2%1i)
(i) (Vi:i>a:z <)
(i) (F5:4>0:(Fj:0<j<i:x=2%j))

Chapter 2

The Guarded Command Language

2.0 Introduction

A program is specified by its state space, a pre-condition and a post-condition. For
example, consider the specification of a program for the computation of the greatest
common divisor of two positive natural numbers X and Y:
[var z,y : int; ‘
{X>0AY>0Az=XAy=Y}
S
{z=XgedY }

Il

The first line defines state space Z x Z, in which the first coordinate corresponds to
z and the second coordinate corresponds to y. In this chapter we restrict ourselves
to types int and bool. The latter denotes the set of boolean values, {true, false}.
The second line contains the pre-condition of the program. Variables X and Y are
called specification variables. They are not program variables and thus may not occur
in program statements. They may occur in predicates; specifications are universally
quantified over all of the specification variables that occur in it. The third line contains
the name of the program specified. Finally, the fourth line states the post-condition.

The operational interpretation of the specification is as follows: program S satisfies
the specification if for all integers X and Y, execution of S starting in a state satisfying
X>0AY>0Az=X Ay=Y terminates in a state satisfying z = X gedY..

Programs, also called statements, are introduced in the next sections. For each
statement S of the guarded command language a proof rule (inference rule) is pre-
sented that shows how to prove that S satisfies a given specification. These rules are

13

14 The Guarded Command Language

inspired by the operational interpretation of S and by the operational interpretation
of {P}S{Q}, which states

each execution of S terminates in a state satifying @ when applied to a
state satisfying P.

As soon as the rules have been given, we will not rely on this operational interpretation
any more. As a preliminary, we discuss some general rules on programs. We shall then
define the guarded command language in such a way that the general rules are not
violated.

The first relation that we discuss is {P} S {false} which states that execution of
S starting in a state satisfying P terminates in a state satisfying false, i.e. in no state.
To exclude miracles, we require that the following rule is valid for all our programs:

{P} S {false} is equivalent to [P = false]

Note that {P} S {true} expresses the fact that execution of S terminates when applied
to a state satisfying P.

Another rule is the fact that the pre-condition may be strengthened and the post-
condition may be weakened. This is formulated as follows:

{P}S{Q} and [P, = P] implies {P,} S{Q}
{P}S{Q} and [Q = Qo] implies {P}S{Qo}

Suppose that {P}S{Q} and {P}S{R} hold. Then, execution of S starting in a
state satisfying P terminates in a state satisfying @ and also in a state satisfying R,
hence, in a state satisfying Q A R. This observation leads to the rule of conjunctivity:

‘ {P}S{Q} and {P}S{R} is equivalent to {P}S{Q A R}

|

The last rule of this kind is

{P}S{Q} and {R}S{Q} is equivalent to {PV R}S{Q}

A more precise way in which constructs may be introduced is as follows. For each
construct S one defines a predicate transformer, denoted by wp.S, which is a function

Introduction 15

from predicates to predicates. For construct S and predicate @, wp.S.Q is interpreted
as the weakest predicate P for which {P} S {Q} holds. It is called the weakest pre-
condition of S with respect to Q. The relation between the expressions {P}S{Q}
and wp.S.Q is given by

{P} ${Q} is equivalent to [P = wp.5.Q]

We shall use proof rules in terms of {P} S {Q}. For the interested reader, however, we
provide proof rules in terms of weakest pre-conditions as well. The rules of this'section
follow from the following rules for wp.S:

[wp.S.false = false]
[wp.S.Q Awp.S.R = wp.5.(Q A R)]
[wp.S.Q V wp.S.R = wp.S.(QV R)|

We do ﬁot have
[wp.S.Q Vwp.S.R = wp.5.(QV R)]

since we allow so-called non-determinism in our programs. We will see examples of

non-determinism in Section 2.4. ¢

The examples used in this chapter may seem to be rather contrived. Their purpose
is to show how the proof rules should be used and not how programs are derived. The
derivation of programs is the subject of subsequent chapters: in this chapter programs
are merely presented. Moreover, these programs are not supposed to be ‘meaningful’
nor is the reader expected to figure out ‘what they do’.

Exercises

0. Give an operational description of {true}S {true} and of {false} S {true}.

1. Deduce from the rules of this section that
{Po} S{Qo} and {P1}S{Q:}
implies
{PoAP}S{QoA@:} and {PoV P} S{QoV Q:1}

2. Show {false} S {P} for any P and S:

16 The Guarded Command Language

3. As explained in this section, we denote for construct S and predicate Q the

weakest predicate X for which {X} S {Q} holds as wp.S.Q. Then {P}S{Q} is
equivalent to

[P = wp.S.Q)]
Show that the rules of this section follow from the following rules for wp.S:

[wp.S false = false]
[wp.5.Q Awp.S.R = wp.S5.(Q A R))
[wp.S.QVwp.S.R = wp.S.(QV R)]

4. Statement abort is specified by
{P} abort {Q} is equivalent to [P = false]

(i) Give an operational interpretation of abort.
(ii) Determine wp.abort .

(iii) Show that abort satisfies the rules of this section.

2.1 Skip

The first statement that we consider is skip. Execution of skip does not have any effect
on the current state. As we will see later, it is important to be able to denote such
an action by a word like skip. From the operational interpretation of {P} S{Q} we
conclude that skip may be characterized by {Q}skip {@} for all predicates Q. Since
the pre-condition may be strengthened, we prefer to characterize it by

{P}skip{Q} is equivalent to [P = Q]

For example,

[var z,y : int; {z > 1}skip {z > 0}]
follows from

[z>1 = z>0]

The weakest solution of X: {X}skip{Q} is @, hence, in terms of weakest pre-
conditions skip is defined by

[wp.skip.Q = Q]

Assignment 17

Exercises

0. Prove:

(i) [var z,y :int; {z > 0Ay > 0} skip {z > 0}].
(i) [[var z,y :int; {z > 0Ay > 0} skip{y > 0}].
(i) |[varz,y: bool; {z = y}skip{z = y}].

1. Disprove: .
(i) |[var z,y : int; {z >0Ay > 0}skip{z = 1}].
(ii) [var z,y :int; {z > 0Ay > 0} skip {y > z}].
(iii) |[var z,y: bool; {x = y}skip{z Vy}].
2. Show that the general rules of Section 2.0 hold for skip.

2.2 Assignment

Any change of state that occurs during execution of a program is due to the execution
of an assignment statement. The assignent statement is of the for.m z= E, Wher.e z
is a program variable and F is an expression of z’s type. Its operational mte.rpretatlo‘n
is: execution of z:= E replaces the value of = by the value of E. In predicates this
replacement corresponds to substitution. For predicate Q, we have that.Q ho_lds after
execution of z:= E if Q(x:= E) held before execution. This observation yields the
following rule for the assignment statement.

{P}z:= E{Q} is equivalent to [P => Q(z:= E)|]
For example,
{z >3}z:=z+1{z >0}
follows from
(z > 0)(z:= z+1)
= { substitution }
z+12>0
{ arithmetic }
z> -1
& { arithmetic }
z>3

18 The Guarded Command Language

The weakest solution of X: {X}z:= E{Q} is Q(z:= E), hence, in terms of weakest
pre-conditions the assignment statement is defined by

[wp.(z:= E).Q = Q(z:= E)]

For instance, the weakest P for which {P} :=z+1 {z >0} holdsis z > —1.

It is not difficult to show that the general rules of Section 1.0 are valid for the
assignment. We will also use multiple assignments. For example,

{t=AAy=B}z,y=y,z{z=BAy= A}
follows from
(z=BAy=A)(z,y:=y,7) = z=AAy=B]
Integer expressions consist of integer constants (represented in the usual way), vari-

ables of type int, and combinations of these, formed by operators. We will use the unary
operator — and the binary operators

+ addition
- subtraction
* multiplication

max maximum
min minimum
div quotient of integer division

mod remainder of integer division

Binary operators + and — have a lower priority than the other operators. Expressions
adivb and a mod b are defined for b # 0 by

adivb=¢ A amodb=r = a=bxg+r A 0<r <}

Note that equation (g,r): a=b*xg+7 A 0 <7 < |b| has for b # O precisely one
solution.

As an example, we show. (a + b)modb = amodb for b # 0. We derive

Assignment 19

adivb=¢g A amodb=r
{ definition of div and mod }
a=bxg+r A O<r <[}
{ arithmetic }
a+b=bx(g+1)+r A 0<7<|h
= { definition of div and mod }
(a+b)divb=g+1 A (a+b)modb=r

Il

I

Hence, (a+b)divb=adivb+1 and (a+b) modb=amodb.

In boolean expressions we use the unary operator - and the binary operators A,
V, =, <, and =. Furthermore, one may form boolean expressions by applying the
relational operators <, <, >, >, =, and # to integer expressions. These operators have
a higher priority than the boolean operators and a lower priority than the arithmetic
operators. Examples of boolean expressions are, for a,b: int, p bool,

axb<a A amod3=0
a>b-1Vp

Expressions such as a div b are not defingd for all values of @ and b. The predicate that
defines for which values of its variables expression E is defined, is denoted by def.E. .
For instance,

[def.(amodbd) = b # 0]

[def.(a +b) = true]

[def.(xdiv (a — b)) = a #b]
[def.(zdivy +ydive) = 2 #0 A y #0]

Since assignment z := E is only defined when def.E holds, we extend the definition of
the assignment to

|7{P} z:= E{Q} is equivalent to [P = def.E A Q(z:= E)]

Since for most expressions E [def.E] holds, we usually omit def.E and calculate
Q(z:= E) only. In terms of weakest pre-conditions we have

20 The Guarded Command Language

[wp.(z:=F).Q = def.E A Q(z:= E)]

Exercises

0. Determine the weakest predicate P that satisfies

(i) {P}z:==z+1{z > 0}
(il) {Pzi=zxz{z > 0}
(iii) {P}z:=zxaxxzx—2%x+4{z >0}
(iv) {P}z:=z+1 {z® — 52% + 2z > 0}
(v) {P}z:=z*zxz—2x3+4 {23522 4+ 2z > 0}
(vi) {P}z:=z+1{z = z+1}
(vii) {P}z:=E{zx=FE}
(viii) {P}z:=smod2{z = zmod2}

(ix) {P}z,y:=z+1,y—1{z+y > 0}

(%) {P}z,y:=y+1,z—1{z > 0}

(xi) {P}z,y:=y*z,z*xy{zt+y > 0}
(xil) {P}a:=a = b{a}
(xiii) {P}e:=a=b{aVb}

1. Show that execution of z:= z+1 terminates.
2. Prove for b # 0:

(i) (emodb)modb=amodbd
(i) amodb = amod (-b)
(iii) (emodb + cmodb)modb = (a+ c)modb

2.3 Catenation

Catenation allows us to describe sequences of actions. The catenation of S and T is
denoted as S ;T. Its operational interpretation is: first .S is executed after which T is
executed. To prove {P}S;T {Q}, we have to invent predicate R such that {P} S {R}
and {R} T {Q} hold. Then execution of S starting in a state satisfying P terminates
in a state satisfying R, and execution of T starting in that state terminates in a state
satisfying @). This leads to the following rule:

Catenation 21

{P}S5;T{Q} is equivaleﬁt to
a predicate R exists such that {P}S{R} and {R}T{Q}

Note that the semi-colon is not used as a separator or a terminator: it is the composition
operator for combining two statements. The weakest P that satisfies {P}S;T{Q} is
obtained by taking the weakest R in {R} T {Q} and for that weakest R the weakest
P for which {P}S{R} holds. In terms of weakest preconditions this is captured by
the following definition:

[wp.($;T).Q = wp.S.(wp.T.Q)]

i.e., the semi-colon corresponds to function composition. In particular, catenation is
associative. As an example, we prove

| var a, b : bool;
{a=A)A (b= B)}

a:=a=b
;b:=a=b
ja:=a=b f

{(a=B)A(b= A)}
]I

We calculate the weakest predicates that are allowed as intermediate predicates, pro-
ceeding from the bottom to the top, starting with the post-condition:

(e=B)A(b=A))(a:=a= b)
= { substitution }
(a=b=B)A(b=A)

and
((a=b=B)A(b=A))(b:=a=Db)
= { substitution }
(a=a=b=B)A(a=b=A)
= { predicate calculus }
(b=B)A(a=b=A)
and, finally,

22 The Guarded Command Language

(b=B)A(a=b=A))(a:=a=1b)
= { substitution }
b=B)A(as=b=b=A)
= { predicate calculus }
(b=B)A(a=A)
{ predicate calculus }
(a=A)A (b= B)

From these results we conclude
{la=A)Ab=B)la:=a=b{(b=B)A(a=b=A)}
{6=B)A(a=b=A)}b:=a=b{(a=b=B)A (b= A)}
{la=b=B)A(b=A)}a:=a=b{(a=B)A(b=A)}

which had to be proved. To avoid this duplication of predicates, these three arguments
may be given in a so-called annotated program:

[var a,b : bool;

{(a= A)A (b= B)}

a:=a=b
{6=B)A(a=b= A), Proof 0}
ib:=a=b
{{a=b=B)A (b= A), Proof 1}
ja:=a=b

{(a=B)A (b= A), Proof 2}
]"

and Proofs 0, 1, and 2 are the derivations above (in the order 2, 1, and 0).

Exercises

0. Determine the weakest predicate P that satisfies
(i) {P}z:=z+1;z:= m;i/{z > 0}
(i) {P}z:=z+z;3:=2+1{z >0}
(iii) {P}z:=2z+y;y:==z—y;z:=z—y{r=A Ay=DB}
(iv) {P}z:=y;y:=z{z=A A y= B}

Selection 23

(v) {P}z:= z+1;skip {z* > 0}

(vi) {P}z:=E;z:=E{z=E}
1. Show that skip ;skip is equivalent to skip.
2. Calculate expressions E such that

(i) {A=¢*B+r}q:=E;r:=r—B{A=¢*xB+r}

(i) {true}y:= E;z:=zdiv2{2*z =y}

(i) {z*xy+prg=N}z:=2—p;¢:=E{zxy+p*xg=N}
3. Prove

[var z,y : int;

{z=AANy=B}

==Y ;Y: =Tty ,;T:=Y—=

{z=B A y=A}

2.4 Selection

Selection takes the form
if BO— S0[:- |[Bn—Sn fi

in which for 0 < i < n, B.i is a boolean expression (a guard) and S.i is a statement.
The construct B.i — S.i is called a guarded command. An operational interpretation
of selection is as follows:

Upon execution of a selection all guards are evaluated. If none of the guards
evaluates to true then execution of the selection aborts, otherwise one of
the guards that has the value true is chosen non-deterministically and the
corresponding statement is executed.

Abortion may be interpreted as ‘fails to terminate’. A possible implementation of the
selection is as follows: the guards are evaluated until one of these evaluates to true
after which the corresponding statement is executed.

As an example we derive a statement S that satisfies

[var z,y, z : int;' {true} S {z = z maxy}]

24 The Guarded Command Language

From
z=zmaxy = (z=zVz=y)Az2zAz2Yy
'we conclude that z:= z is a candidate for S. As a pre-condition we then have

(z=zVz=y)Az2z A z>2y)(z:=1)
= { substitution }
(z=zVz=y)Az>2zAz2y
= { calculus }
z2y

which leads to the guarded command z >y — 2 := 2. On account of symmetry we
also have y > z — z:=y. Combining these two leads to S:

fz>y— 2=z Jly>z—oz=y fi

From [z >y V. y > z] we infer that the selection will not abort. Since guards need
not exclude each other, we were able to exploit the symmetry of max.

We are now ready to present the definition of selection. It is formulated for a
selection statement that has two guarded commands.

{P}if By — Sy [| B1 — 51 i {Q} is equivalent to
(1) [P = Bo \% Bl} and
(i) {P A Bo} So{Q} and {P A B} 5 {Q}

In Section 2.2, we added def.E to the definition of z:= E. For selection, we have a
similar situation:

ifB()'—')SO HBI_’Sl fi

may only be executed in states where def.By A def.B; holds. Hence, instead of (i) the
formal proof obligation is

(i) [P = def.By A def.B, A (ByV By)]

Since for most expressions B [def.B] holds, we usually omit def.By A def.B; and
consider By V B; only.

The fact that only one of the guards is chosen, is demonstrated in the following
example in which both guards are true. Its post-condition, = 1, may not be replaced
by z = 2. We prove

Selection 25

{z = 0}if true — z:=z+1 [] true » z:=z+1 fi{z =1}

Proof:
(i) true V true
= { predicate calculus }
true
<+ { predicate calculus }
z=0
(ii) (z = 1)(z:= z+1)
= { substitution }
z+l=1
= { arithmetic }
z=0

Hence, {z =0 A true}z:=z+1{z =1}

In programs we will use the following annotation and corresponding proofs for the
selection:

{P}

if Bo — {P A Bo} So {Q, Proof 0}
By — {PAB;}5{Q, Proof 1}
fi

{Q, Proof 2}

¢

with

Proof 0: a proof of {P A By} Sy {Q};

Proof 1: a proof of {P A B1} S {Q};

Proof 2: a proof of [P = B,V Bi] and, if relevant,
a proof of [P = def.By A def.By).

The next example exhibits the non-determinism of selection. Its post-condition may
be replaced neither by z = 1 nor by z = —1. We annotate the following program and
we supply a proof for its correctness.

{x =0}if true > z:=1 [true - z:=—-1 fi{fx =1V z=-1}

The annotated version is

26 The Guarded Command Language

{z =0}

if true » {r =0}z:=1{z =1V z = —1, Proof 0}
| true— {r=0}z:=—-1{z =1V z = —1, Proof 1}
fi

{£ =1V z = ~1, Proof 2}

Proof 0:

(z=1Vz=-1)(z:=1)

= { substitution }
1=1vil=-1

= { calculus }
true

< { predicate calculus }
z=0

Proof 1: Similarly.
Proof 2:

true V true

= { predicate calculus }
true

= { predicate calculus }

z=0

Hence, execution of this selection is guaranteed to terminate in a state satisfying
z =1V z = —1, but neither termination in a state satisfying z = 1 nor termination
in a state satisfying £ = —1 can be guaranteed.

In terms of weakest pre-conditions selection is characterized by

= def.By A def.B; A (Bo \% Bl) A (BO = prOQ) A (Bl = ’prlQ)]

Since for most expressions B [def.B] holds, we usually omit def.By, A def.B; in calcu-
lations with this weakest pre-condition.

Selection

Exercises

0. Prove:

(i) {true}if 2 >1 - z:=2+1 [z <1 o z:=2-1 fi{z # 1}
(i) {true}if z >y —skip [z<y—=z,y:=y,z fi{z 2y}
(iii) | var z,y :int;
{true}
T, Y =Y*Y,T*T
ifr>y—z=z-y Jy2z—y=y-z fi
{fz>0nAy>0}
1
(iv) |[var a,b : bool;
{true}
if vaVb—a:=-a
[aVv-b—b:=-b
fi ,
{(I,Vb}]
Il

1. Prove: {P}if By — So;S [| By — 51;S fi {Q} is equivalent to
{P}if By— S [| B1— 51 fi;S{Q}.

2. Prove: {P}if By — Sp [| By — S fi {Q} implies
{P}ifB0—>S() [I B]_ A _|B0"')Sl ﬁ{Q}

3. Determine the weakest P such that

[var « : int;
{r}
z:=z+1
jifz >0 - z:=2-1
[z<0—z:=x+2
| «=1—skip
fi
{z>1}
]

27

28 The Guarded Command Language

2.5 Repetition

The next construct of the language is repetition. Programs composed from the previous
- constructs have execution times proportional to their length. It is possible to specify,
using repetition, a statement that is to be executed more than once. It has the form

doB.0—S0[--- [Bn— Snod

in which for 0 < ¢ < n, B.i is a boolean expression (a guard) and S.i is a statement.
An operational interpretation of repetition is the following.

Upon execution of a repetition all guards are evaluated. If all guards eval-
uate to false then skip is executed. Otherwise one of the guards that has
value true is chosen non-deterministically and the corresponding statement
is executed after which the repetition is executed again.

At the end of this section, we present a (rather complicated) expression for the weakest
pre-condition of a repetition. In the design of programs we do not use this weakest
pre-condition. Instead, we use a rule known as the Invariance Theorem. In order to
explain this rule we consider repetitions with one guarded command, i.e. repetitions of
the form do B — S od. From the operational description above we conclude

{P} do B — S od {Q}
is equivalent to

{P}if -B— skip | B— S;do B — Sod fi{Q}
Annotation of the selection yields

{r}

if -B— {P A -B}skip {Q}

] B— {PAB}S;doB— Sod{Q}
fi

{Q}

Since {P}do B — S od {Q} should hold, we choose P as intermediate predicate in
the catenation S ;do B — S od. Thus, we have

{P}

if =B — {P A -B}skip {Q}

| B— {PAB}S{P};doB — Sod{Q}
fi

{Q}

Repetition 29

with proof obligations

(i) [PA-B = Q]

(i) {PAB}S{P}

(i) {P}do B — S 0od {Q}

in which (iii) gives rise to (i), (ii), and (iii) again. If we can ensure that the repetition

terminates, (i) and (ii) suffice. This is formulated for a repetition with two guarded
commands as follows.

(1) [P/\"Bo/\"Bl = Q] and
(11) {P/\Bo} S() {P} and {P/\B1}Sl {P}

implies
{P}dOBo-—-)SQ DBI—’SI od {Q}

provided that this repetition terminates.

A predicate P that satisfies (ii), i.e. {P A By} So {P} and {P A B;}S; {P}, is called
an invariant of do By — Sy [[By — S od.

Before discussing termination, we consider Edsger W. Dijkstra’s example of the
computation of the greatest common divisor of positive integers X and Y. Its specifi-
cation is

[varz,y:int;{z =X Ay=Y Az >0Ay>0}S{z=XgedY}]

where X gecdY denotes the greatest common divisor of X and Y; for zgedy with
z>0 A y>0, we have

(0) rgedz==x
(1) zgedy =ygedz
(2) 2>y = zgedy = (z—y)gedy and, applying (1):

y>z = zgedy =zged(y — z)

A derivation of a program based on these properties is presented in Chapter 4. Here
we supply an invariant without further justification and we focus our attention on the
proof obligations. Predicate P is defined as

P:z>0Ay>0Azgedy=XgedY

The pre-condition of the specification implies P. Furthermore,

30 The Guarded Command Language

PAz>y
{ definition of P }
z>0Ay>0Azgedy=XgedY Az >y
= {@)}
z>0ANy>0A(z—-y)gedy=XgedY Az >y
{ arithmetic }
z2—y>0Ay>0A (z—y)gedy = X gedY
{ definition of P}
P(z:=z—y)

1l

Hence, {P A z > y}z:=z — y{P} and by symmetry {P Ay > z}y:=y —z{P}.
Finally, we derive

PA-(z>y)A-(y>x)
{ arithmetic }
PAzx=y
= { definition of P}
zgedr = X gedY
= ()
z=XgedY

[t

Application of the rule for repetition yields

{P}
doz>y—zi=x—-y Jly>z—y=y—z od
{r=XgcdY}

provided that this repetition terminates.
Sincex=X Ay=Y A x>0 A y>0 is stronger than P, we also have

{z=XAy=Y Az>0Ay>0}
doz>y—z=z—y [y>zc—y:=y—x od
{z=XgedY}

provided that this repetition terminates.
Termination of a repetition is proved by means of an integer function on the state space

that is bounded from below and that decreases in each step of the repetition. Such a
function is called a bound function. For the repetition above, a suitable bound function

Repetition 31

is + y. From invariant P we infer £ 4y > 0, and both z:=z -y and y:=y —x
decrease z + y, i.e., for any constant C' we have

{PAz>yANz+y=Clz=z—y{z+y<C} and
{PAy>zAz+y=Cly==y—z{z+y<C}

Combining the previous rule with the termination requirement, we obtain

(l) [P A _\Bg A "‘IBl = Q]

(i) an integer function ¢ on the state space exists such that
[PA(By vV By) = t>0],
{P/\ Bo A t=C}SO {t<C}, and
{PAB At=C}S {t<C}

implies

{P} dOB0—>S() []Bl——»Sl Od{Q}

This rule is known as the Invariance Theorem. Such a repetition is annotated as follows.

{invariant P:--- , bound ¢: ---}
do By— {P A By} Sy {P, Proof 1}
[Bi— {PAB;}S:{P, Proof 2}
od

{Q, Proof 3, termination: Proof 4}

with

Proof 1: proof of {P A By} Sy {P};

Proof 2: proof of {P A B;} S; {P};

Proof 3: proof of [P A =By A =B; = Q];
Proof 4: proof of (i) [P A (Bo V B;) = t 2> 0],

(i) {PAByAt=C} 5 {t<C}, and
(i) {P A By A t=C} 5, {t < C}.

32 The Guarded Command Language

Often, the invariant is the post-condition of a statement that precedes the repetition.
That statement is sometimes called ‘the initialization of P’ or ‘the statement estab-
lishing P’. If S is such a statement and H is its pre-condition, the annotation is

{#}
S

{invariant: P, Proof 0, bound: ---}
;do By— {P A By} So {P, Proof 1}

| Bi— {P A By} S;{P, Proof 2}

od

{Q, Proof 3, termination: Proof 4 }

with Proof O containing a proof of {H} S {P}.

As with selection,
do By — Sy [| B — S1 od
is only defined when def.By A def.B; holds. Hence, another proof obligation is
[P = def.By A def.By]

When relevant, a proof thereof is added to Proof 3.

It is clear that repetition is the most complex construct of the guarded command
language. Indeed, repetition is the essence of sequential programming. Programming
is mainly the use of suitable techniques to derive invariants. These techniques are
the subject of subsequent chapters. For instance, it is shown in Chapter 4 how this
repetition for the computation of the greatest common divisor can be derived.

The derivation of a program is based on an invariant. However, in this chapter,
for educational reasons, we give proofs of programs rather than deriving the program
with its proof from scratch. Moreover, the examples and exercises are rather artificial:
their only purpose is to show how the rules should be applied. An illustration thereof
is given below. We prove

| var z,y, N : int; {N > 0}
z,y:=0,0
idoz #0 — r:=2z-1
[y#N —z,y:=z+1,y+1
od
{z=0Ay=N}

Repetition 33

It can be observed that the conjunction of the negations of the guards forms the post-
condition. It remains to demonstrate termination. In the first guarded command z
decreases and in the second guarded command —y decreases. However, a decrease of
—y is accompanied by an increase of xz. Weighting the decrease of ~y twice as much
as the increase of x yields — 2y as a function that decreases in each step of this
repetition. Since this function has —2N as final value, we add 2N to it. This results
in the bound function =+ 2(N—y) . Clearly, the upper bound for y must be N and the
lower bound for z must be 0, thus, we propose as invariant

P:0<zAy<N
The annotated program is

[var z,y, N :int; {N > 0}
z,y:=0,0
{invariant P: 0 <z A y < N, Proof 0, bound: = +2(N—y) }
idoz #0 — {P Az #0} z:=z-1{P, Proof 1}
l y#N— {P Ay#N}zy:=z+1,y+1 {P, Proof 2}
od
{z =0 A y= N, Proof 3, termination: Proof 4}

I ‘

and the proofs are presented below.
Proof 0:

P(z,y:=0,0)

{ substitution }
0<0AO<N

{ calculus }
0<N

1l

Proof 1:

P(z:=z-1)
{ substitution }
0<z-1Ay<N
{ arithmetic }
0<zAy<NAz#0
= { definition of P}
PAz#0

34 The Guarded Command Language ‘ Repetition 35

Proof 2: : For the interested reader we discuss the weakest pre-condition of do B — S od.
As mentioned before, we define do B — S od as being equivalent to

P(z,y:= z+1,y+1)
if -B —skip | B— S;doB — Sod fi

= { substitution }
O<z+l Aytl< N We abbreviate do B — S od to DO, and we derive
<= { arithmetic }
0<zAy<NAy#N wp.DO.Q
= { definition of P} = { see above }
PAy#N wp.(if =B — skip [| B — S;DO fi).Q
= { definition of selection }
Proof 3: (-BV B) A (=B = wp.skip.Q) A (B = wp.(S;D0).Q)

= {[-BV B = true], definitions of skip and catenation }

(=B = Q) A (B = wp.S.(wp.DO.Q))
= { predicate calculus }

P Az #0) A (y#N)
=> { calculus }

z=0Ay=N
v (BV Q) A (=B V wp.S.(wp.DO.Q))
Proof 4:
Hence,
@ PA@#0Vy#N) [wp.DO.Q = (BV Q) A (=B V wp.S.(wp.DO.Q))]
= { definition of P }
0<zAy<N ie., wp.DO.Q is a solution of the following equation in predicate X:

= { arithmetic }

T+ Z(N_y) 2 0 X: [X = (B \" Q) A (-IB \Y4 'LU])SX)]

This is a so-called recursive equation. We define wp.(do B — S 0d).Q as the strongest

(i) (z+2(N-y))(z:=2z—1) . . L : . : :
_ { substitution } solution of this equation (it can be shown that a strongest solution exists). With this
rtution . definition the Invariance Theorem can be proved. Such a proof, however, is beyond
z—-1+2(N-y) the scope of this book.
< { arithmetic } As an example, we compute wp.(do n # 0 — n:=n-2 od).(n = 0). For this
z+2(N—-y) specific choice the equation is
(iii) (z +2(N-y))(z,y:= z+1,y+1) X:[X =m#0Vn=0)A(n=0Vuwp.(n:=n-2).X)]
= { substitution }
414 2(N - (y+1)) which may be simplified to
= arithmetic
{ } X:[X =n=0VX(n:=n-2)]
z+2(N-y)—1 ,
< { arithmetic } The strongest solution of this equation can be obtained by successive approximation,

T+ 2(N—y) starting with false (the strongest predicate of all). Define for k > 0 predicate X by

36 The Guarded Command Language

[Xo = false]
[Xer1 = n=0V Xi(n:=n-2)]
then the strongest solution is

(Fk:0<k:Xy)

Starting with [X, = false] we have

X1
= { definition of X, [Xo = false| }
n =0V false
= { predicate calculus }
n=20
and
X
= { definition of X}, [X; = n=10]}
n=0V (n=0)(n:=n-2)
= { substitution }
n=0Vn=2
Similarly, we have [X3 = n =0V n =2V n = 4] and with induction one can prove

[Xx = 0<n <2k A nmod2 = 0]. This result yields

wp.(don #0 - n:=n-2 od).(n =0)
= { strongest solution of the equation }
(3k:0<k:Xy)
= { substitute X} }
(3k:0<k:0<n<2k Anmod2=0)
= { calculus }
0<n Anmod2=0

Hence, [wp.(don #0 > n:=n—-2 od).(n=0) = 0<n A nmod2=0]. It is easy

to verify that 0 <n A nmod2 = 0 is indeed a solution of

X: [X =n=0VX(n:=n-2)].

Repetition

Exercises
Prove the correctness of the following programs

0. | var z, N :int; {N >0}

z:=0
idox# N — z:=z+1 od
{o=N}

I

1. || var z,y, N :int; {N >0}
z,y:=0,1
;doz # N — z,y:=z+1,y+y od
{y=2"}
I

2. || var y, N :int; {N > 0}
yi=1 .
;doy < N - y:=y+y od
{y>NAQ@k:k>0:y=2}
)

3. [[var z,y, N : int; {N >0}
z,y:=0,0
;doz#0—z:=2-1
l y#N —z,y:=N,y+1
od
{x=0Ay=N}
)

4. | var z,y, z : int; {true}
doz<y—z:=z+l
| y<z—oy:=y+l
[2<z—2zi=2+1
od
{z=y=2}

]

37

38 The Guarded Command Language

5. The following program may be used to compute (non-deterministically) natural
numbers z and y such that z * y = N. Prove:

[var p,z,y, N :int; {N > 1}
p,x,y:=N-1,1,1
{N==zx*y+p}
jdop#0
—if pmodz =0 - y,p:=y+1,p—z
[pmody =0 — z,p:=z+1,p—y
fi
od
{zxy=N}
)

6. For natural ¢ and b, a gcd b denotes the greatest common divisor of ¢ and b. By
definition 0gcda = a A aged0 = a. Prove

(i) agedb = bged (amodb) for a > b > 0.
(ii) | var z,y, A, B :int; {4 > B > 0}

z,y:=A,B
;doy#0— z,y:=y,zmody od
{z = Aged B}

I

2.6 Constants, Inner Blocks, and Arrays

A possible specification for a program for the computation of the greatest common
divisor of two positive integers is

[var A, B,z : int;
{A>0A B>0}
ged
{z = Agcd B}
)
This specification, however, has A, B,z:=1,1,1 as possible solution. Of course, this

solution is not what we have in mind. To exclude such solutions, we might change the
specification to

Constants, Inner Blocks, and Arrays 39

[var A, B,z : int;

{A=A; AB=By ANA>0A B>0}
ged

{r=AgedB A A=Ay A B = By}

I,

expressing that the final values of A and B equal their initial values. This specification
still allows assignments to A and B. We use in the declaration con instead of var
to express the fact that no value should be assigned to the listed names. Hence, a
specification that avoids the problems mentioned above is

[con A, B :int {A >0 A B> 0};
var z : int;
ged
{z = Agcd B}
I
Variables defined as con may not occur on the left-hand side of an assignment. Asser-

tions about constants, such as A > 0 A B > 0, should not be repeated in annotations
and should not be part of an invariant.’ They are ‘universally invariant’ since the val-

- ues of constants do not change. Assertions about constants provide a context of the

program and may be used in proofs whenever appropriate. Constants are not part of
the state space.

Another addition to the guarded command language are so-called inner blocks.
These are used to extend the state space (locally) by means of new variables. An inner
block has the form [[var --- ;S]. For variables introduced in an inner block, we use
fresh names. As an example, we present a solution to gcd:

[con A, B :int; {A>0A B >0}
var z : int;
[var y : int;
z,y:=A,B
dor>y—zi=2—y
| y>z—oy=y—z
od
{r=AgedB A y=Agcd B}
I
{z = Agced B}
I

40 The Guarded Command Language

In the inner block variable y of type int occurs. Between the inner scope symbols ||
and] the state space has two coordinates, z and y. Outside the inner block the state
space has one coordinate, z.

We formulate a rule for inner blocks for the case that the state space is extended
with (fresh) variable y:

For predicates P and' @ in which y does not occur

{P}vary:int;S]{Q}

is equivalent to

{P} S {Q}

Note that {P}[[vary :int;S] {Q} is an assertion involving the states of the original
state space, whereas {P} S {Q} is an assertion over the state space extended with y.
In terms of weakest pre-conditions, it is defined by

[wp.vary :int;5].Q = (Vy:y € Z: wp.S.Q)

The universal quantification over y guarantees that (Vy :y € Z : wp.5.Q) depends
on the variables of the original state space only. It says that, no matter what initial
value y has, S should lead to a state satisfying Q.

Arrays are the final subject that we discuss in this chapter. Often arrays are
considered as an abbreviation for a set of variables. We view arrays as functions on a
finite consecutive subset of the integers. Such a subset is also called a segment. For
p < q the segment consisting of all 4 satisfying p < i < g is denoted by [p..q). It has
length ¢ — p. The statement

[: array [p..q) of int

defines a program variable f which has as value a function: [p..q) — Z. For the time
being we use arrays defined as con only, and we restrict the operations on arrays to
function application. For integer expression E, f.E denotes f applied to E. Of course,
f.E is only defined when p < E < ¢, i.e.,

[def.(f.E) = def.E A p< E <]

We also use notation such as [p..g], (p..q], and (p..q). The sentence ‘integer array
f[0..N)’ is short for ‘f of type array [0..N)of int’. Instead of

- f : array [0..N) of array [0..M) of int
we may also write

f : array [0..N)x[0..M) of int.

Constants, Inner Blocks, and Arrays

Exercises
0. Prove

[var z,y :int {z = A A y = B};
[var A : int;
hi=z;z:=y;y:=h
]
{z=BAy=A}
]

1. Determine wp.[var b :int ;h:=z;2:=y;y:=h].(z =B Ay=A)

2. Show that for P not depending on y

{P}s{Q}
implies
{PHvary:int;S]{(Qy:y€ 2:Q)}

4

3. Prove

(i) |[con N :int {N >0}; f: array [0..N) of int;
var b : bool;
| var n : int;
b, n := false, 0
cdon#N—b=bVfn=0;n=n+1od
I
{b = (Fi:0<i<N:fi=0)}
Il
(i) || con N :int {N >0}; f: array [0..N) of int;
var b : bool;
| var n : int;
b,n := false, 0
:don#NA-b— b:=fn=0;n:=n+1o0d

(b= (3Fi:0<i<N:fi=0)}

41

42 The Guarded Command Language

2.7 Summary

We have the following proof rules for constructs of the guarded command language.

skip:

assignment:

catenation:

selection:

repetition:

inner blocks:

{P}skip {Q} is equivalent to [P = Q]

{P}z:= E{Q} is equivalent to [P = def.E A Q(z:= E)|

{P}S;T{Q} is equivalent to
a predicate R exists such that {P} S {R} and {R}T{Q}

{P}if By — Sy [| Bi — S i {Q} is equivalent to
(i) [P = ByV By] and
(if) {P A Bo} S {Q} and {P A B} 8 {Q}

(i) [PA-ByA=B; = Q]

(i) {P A By} So{P} and {P A B} S, {P}

(iil) an integer function ¢ on the state space exists such that
[PA(ByV B) = t>0],
{PABy,At=C} S, {t < C}, and
{PAB, At=C}S8 {t<C}

implies

{P}do By — S | By — S, od {Q}

For predicates P and Q in which 4 does not occur
{P}[[vary:int;S]{Q} is equivalent to {P} S {Q}

Summary

The operational interpretation of {P} S{Q} is

All executions of S starting in a state satisfying P
terminate in a state satisfying Q.

Statements of the guarded command language satisfy the following rules:

(P} S {false} is equivalent to [P = false]

(P} S{Q} and [P, = P| implies {Po} S {Q}

(P}5{Q} and [@ = Qo] implies {P} S {Qo}

(P}S{Q} and {P}S{R} is equivalent to {P}S{Q AR}

{P}S{Q} and {R}S{Q} is equivalent to {PV R}S{Q}

4

43

Chapter 3

Quantifications

Many practical programming problems involve the computation of a function over a
sequence, such as the maximum element of a sequence of integers, the conjunction of
a sequence of booleans, the sum of a sequence of integers, etc.. In order to specify
such computations, we introduce a uniform notation, which is similar to that used for
universal and existential quantification. '

Let X be a set and let @ be a binary operator on X such that @ is commutative,
associative and has e as identity, i.e.,

T@y=yOx
TO(Y®2)=(z0y) B2
e@r=zPe==zx
for all z, y, and z in X. For sequence z.i, 0 < 4, and natural number n, we write
z.0@ - @z.(n-1)
as
(@®i:0<i<n:z4)
for which we have

(@i:0<i<0:z4)=¢
(®i:0<i<n+l:z4)=(®i:0<i<n:zi)Dzn
This last line may be accompanied by the note ‘split off i=n’. Due to the commutativity

and associativity of @ any term may be split off. In general such a quantification is of
the form

44

Quantifications 45

(@z:R: F)

where z is a list of variables, R is a predicate, called the range of the quantification,
and F is called the term. The term should be defined for all z that satisfy R. In general
R and F depend on z. In some formulas we make this dependence more explicit and

we write
(dz:Rz: Fux)
We have
(@ : false : F) = e, the identity of ®.

Addition and multiplication are well-known operators on-Z. For these we have, for

instance,

(+7:3<i<5:4%) =32+42=25

(+2,y:0<z<3A0<Ly<3:zxy)=9

(xk:1<k<4:k)=1%2%x3=6

(+z:false: F.x) =0

(xz:false: F.z)=1 ‘
As a more detailed example, we consider the binary operators max and min defined
on Z by

emaxb=c= (a=cVb=c)Aa<lcAb<c

eminb=c = (a=cVb=c)Aa>cAb>c

An identity e for max should satisfy

emaxa=a forallain Z,ie,
e<a forallain 2

Since no such integer exists, we extend Z with the value —oo for which, by definition,
—o0o < g for all a in Z. Similarly, we add oo as identity for min. Thus, we have

(maxi : false : F.i) = —oo
rmax—oo =&
zmin—o0 = —00

(mini : false : F.i) = oo
zminoo =
£ maxoo = oo

46 Quantifications

Addition and multiplication are not defined for co and —oo, hence, expressions like
oo +a and 3 * —oco are not allowed. Operators min and max distribute over each
other:

z min (maxi: R: F.1) = (maxi: R:z min F.)
z max (min:: R: F.i) = (mini : R: z max F.)

Farthermore, we have for a non-empty range R

z+ (maxi: R: F.i)= (maxi: R:z + F.i)
¢+ (mini: R: F.i) = (mini: R:z + Fi)

These rules are phrased as ‘+ distributes over max and min when the range is non-

empty’. The fact that max is idempotent, i.e., a maxa = a for all a, may be expressed
by

(maxi: RV S:F)=(maxi: R: F) max (maxi: S :F)

A similar equality holds for min.

This concludes our treatment of min and max. Other binary operators with
other rules, and other lists of properties could be given. However, instead of doing so,
we shall consider the general binary operator @ again, for which we have

(@i:false: F)=e

(®i:i=z:F)=F(@:=z)

(@i:R:F)® (®i:S:F) = (®i:RVS:F)® (®i:RAS:F)
(@i:R:F)® (®i:R:G) = (@i:R:F®G)

(@i Ri:(@j:Sj:Fij)) = (®j:55:(®i:Ri:Fij))

When @ is idempotent as well, i.e., z @ z = z for all z, then

(®i:RVS:F) = (@i:R:F) ® (®i:S: F)
t@®(@®i:R:F) = (®@i:R:2®F) for R non-empty

Let ® be a binary operator on X that distributes over @, and has e as zero, i.e.,
z®e=e®z=cforall zin X. Then

T(@i:R:F)=(®i:R:2QF)
@i:Ri:Fi) ® (@i:54:Gid) = (@i,5: Ri A S.j:Fi®G.j)

The following associative and commutative operators will be used frequently:

-Quantifications 47

+ identity O,

distributes over max and min when the range is non-empty;
* identity 1,

zero 0,

distributes over +;
max identity —oo,

ZEro 0o

idempotent,

distributes over min;
min identity oo,

ZEero —oo

idempotent,

distributes over max;
A~ identity true,

zero false

idempotent,

distributes over V;

% identity false,
zero true !
idempotent,
distributes over A.

‘We mention some more rules for max and min.
For z > 0 and R non-empty:

o+ (maxi: Ri: F.i) = (maxi: Ri:zx*Fi)

z+(mini: Ri: F.i) = (mini: Ri:zx Fi)
and

—(maxi: R.i: F.i) = (mini: Ri: —FJq)

Instead of (At : R : F) we write the more common (Vi : R : F) and instead of
(Vi:R:F)weuse (3i: R: F).
In derivations of programs, we often use the following relations (R is non-empty):

Fg=(maxi:Ri:Fi)= Ra A (Vi:Ri:Fi< Fa)
Fz=(mini:Ri:Fi) = Rz A (Vi:Ri: F.i> Fux)

48 Quantifications

For summation, a common notation is (£¢ : R : F) instead of (+4 : R : F), and for

multiplication we use (Il : R : F) instead of (xi: R: F).

A quite different quantifier is ‘the number of’. We introduce it as follows. Function

: {false, true} — {0, 1} is defined by # .false = 0 and # .true = 1. Expression
(#i:Ri: Fi)

is defined as
(X4: Ra: # .(F9))

For this quantifier we have
(#1i:false: F.i) =0

and, for n >0,

(#i:0<i<n+l:Fi)=(#i:0<i<n:Fi)+#.(Fn)

_J @#i:0<i<n:Fi)+1 if Fn
(#i:0<i<n:Fi) if -F.n

Notice that

(Fi:R:F) = (#i:R:F) >
(Vi:R:F) =

]
N
Y
3
Il
N

i: R :true)

We will use the following definitions for increasing, decreasing, ascending, and de-
scending. Let N > 0 and let X[0..V) be an array of integers. Then

X is increasing = (Vi,j103i<j<N:X.z'<X.j)
(Vi,j:0<i<j<N:Xi>Xj)
(Vi,j:0<i<j<N:Xi<X.j)
(Vi,j:0<i<j<N:Xi>Xj)

X is decreasing =
X is ascending

X is descending =

For example, a formal expression for ‘r is the length of a longest ascending segment of
X' is

r=(maxp,¢:0<p<qg<NANVi,j:p<i<j<gqg:Xi<Xj):q—p)

Quantifications 49

Exercises

0. An integer array X[0..N) is given, where N > 1. Express the following sentences

in a formal way:

r is the sum of the elements of X.

m is the maximum of the array.

X is increasing.

all values of X are distinct.

all valueé of X are equal.

if X contains a 1 then X contains a 0 as well.

no two neighbors in X are equal.

the maximum of X occurs only once in X.

r is the length of a longest constant segment of X.
X is a permutation of [0..V).

all elements of X are prime numbers.

the number of odd elements equals the number of even elements.
r is the product of the positive elements of X.

7 is the maximum of the sums of the segments of X.

X contains a square.

integer array X[0..N) is given, where N > 1. Express the following expres-

sions in a natural language.

(a)
(b)
(c

b= (Vi:0<i<N:X.i>0)
r=(maxp,g:0<p<g<NA(MNi:p<i<qg:Xi>0):q—p)
7‘=(#k:OSk<N:(\'/i:0§z'<k:X.i<X.k))

b= (3i:0<i<N:X.(i—1) < X.5)
r=(#p,g:0<p<g<N:Xp=0AXg=1)

s =(maxp,q:0<p<g<N:Xp+X.yq)

b= (Vp,g:0<pA0<gAptgq=N-1:Xp=Xyq)

b= (Ji:0<i<N:X.i=0)

2. Prove amax (bminc) = (amaxb) min(a maxc).

50 Quantifications

3. The greatest common divisor of natural numbers z and y is denoted by z ged y.

By definition 0 ged 0 = 0.

(i) Give a formal definition of ged.
(ii) Show that gcd is commutative and associative.
(iii) Prove that ged has an identity.

(iv) Investigate whether * or + distribute over ged.

4. Prove

| con N :int {N >1}; f: array [0..N) of int;
var z : int;
[var y : int;
z,y:=0,N-1
jdoz #y
—=if fr< fy—oz:=1+1
[fy<faz—y=y-1
fi

od 7

|
{fz=(maxi:0<i< N: fi)}
I

Chapter 4

General Programming Techniques

4.0 Introduction

The rest of this book is devoted to the derivation of programs. In the chapters that fol-
low we shall discuss domain specific techniques. However, in this chapter some general
underlying techniques are presented. The programming problems that we are study-
ing typically have solutions in which repetitions occur. Thus, the design of suitable
invariants is crucial in the derivation of solutions to these problems.

As will turn out in the next sections and chapters, there are many ways in which
an invariant may be deduced from (the contents of) the pre- and post-condition of
a specification. Program derivation is not mechanical: in general it is a challenging
activity and it requires creativity. However, many programming problems may, to a
large extent, be solved by pure calculation and by carefully applying the techniques
discussed in this chapter. Moreover, the derivations show where the creativity comes
in.

We do not always present completely annotated programs. Program derivations
are carried out in such a way that the result is correct by design and that it is easy to
deduce an annotated program with accompanying proofs.

The efficiency of a program is expressed as the upper bound of the number of steps
that each repetition can take. This so-called time complexity is a function of (the
values of) the constants in the specification. We use the O-notation to express the
time complexity. If, for instance, a program has natural N as constant then ‘the time
complexity is O(f.N)’ means that the number of steps is bounded by a constant times
f.N. For instance, if the number of steps equals %N 2 _2N +4 then the time complexity
is O(N?).

Efficiency is of vital importance in computing science. Usually, programs are written
only once and they are executed many times. To illustrate the role of efficiency, we

51

52 General Programming Techniques

consider a program consisting of a repetition of a statement which requires, in isolation,
one second for each execution. The program contains integer N as constant. The
execution time of the program is shown below for the cases that the repetition performs

log N, VN, N, and N? steps.

number of steps N = 1000 N = 1000000
Ylog N 10 seconds 20 seconds
VN 30 seconds 15 minutes

N 15 minutes 300 hours

N? 300 hours 30 000 years

If we succeed in speeding up the hardware such that execution of S takes a millisecond,
i.e., we improve it by a factor 1000, then we obtain the following figures.

number of steps N = 1000 N = 1000000

2log N 0.01 seconds 0.02 seconds

VN 0.03 seconds 1 second

N 1 second 15 minutes —
N? 15 minutes 30 years

A significant improvement of a program is not obtained by tricky adaptations that, for
instance, save a variable or save an assignment within a repetition. Such changes often
destroy the elegance and clarity of the original algorithm. Similarly, case analysis in
which ‘easy to compute’ cases are treated separately does not really help.

A huge improvement is a reduction from, for instance, O(N) to O(log N). Such an
_improvement is obtained by transforming the program into a more efficient one, or by
deriving a completely different program. Examples of this are discussed in Chapter 5.

4.1 Taking conjuncts as invariant

When post-condition R is of the form P A @), one may try to take one of the conjuncts,
say P, as an invariant, and the other one as negation of the guard of a repetition,
leading to

{P}do—-Q — Sod {PAQ}

In its simplest form this method yields, taking true as invariant,

{true} do =R — S od {R}

Taking conjuncts as invariant 53

For instance, for integer variables z and y, z < y can be established by
doz>y—z,y:=y,z0d

for which true is an invariant and z — y is a bound function, as the reader may verify.
A similar sorting program for four integers a, b, ¢, and d is obtained by taking true as
invariant and the negations of the conjuncts of post-condition

R: a<bAb<cAc<d
as guards, leading to

{true}
doa>b—a,b:=b,a
[b>c—brei=¢b
[e>d—cd:=d,c
od

{a<b<c<d}

(Why does it terminate?) :

A somewhat more interesting example is the computation of div and mod when only
operators + and — may be used. Its specification reads

[con A,B:int {A>0A B >0}
var ¢,r : int;
divmod

{g=AdivB A r = Amod B}
I

We rewrite post-condition R, using the definitions of div and mod, as

R: A=gqxB+r AN0Lr<B

Conjunct 0 < r < B is an abbreviation of 0 <7 A r < B; hence, we may write
R: A=qxB+r AN0L<r Ar<B

There are three conjuncts and possible solutions may, for instance, contain repetitions
of the form '

54 General Programming Techniques

{P:0<rAr<B}doA#gxB+r— Sod{R},
{P:A=q*B+r Ar<B}do0>r— Sod{R}, or
{P:A=q*B+rA0<r}dor > B — S od{R}

We choose as invariant

P: A=g«xB+r AO0OLT

and as guard r > B, the negation of r < B, leading to a program of the form
{P}dor > B — S od {R}

Invariant P is established by ¢,r:= 0, A. Since P implies 0 < r, we decide to take r
as bound function. Then S has to decrease r. The guard is r > B, and, since B > 0,
r:=7r—B is a candidate for S. We derive

P(r:=r—B)
{ substitution }
A=gqxB+r—-BAO0<Lr—B
{ calculus }
A=(¢g-1)xB+r Ar>B

Hence,

P(q,7:=q+1,7—B)

= { substitution, see above }
A=gxB+rAr>B

& { definition of P}
PAr>B

This yields the following solution to divmod:

¢q,7:=0A
{invariant P: A=gxB+r A 0<r, bound: r}
jdor > B — ¢q,7:=¢q+1,7—B od

{R}

The initial value of g is 0, its final value is Adiv B, and in each step of the repetition
q is increased by 1. We conclude that this program has time complexity O(Adiv B).

Taking conjuncts as invariant 55

In the next chapter we show that, if one allows div2 and mod2 as operators as well,
a program can be derived that has time complexity O(log(Adiv B)).

As another example, we derive a program for the computation of the square root,
rounded down, of a ngtf.lral number. It is specified by

[con N :int {N >0};
var r : int;
square root
{z* < N A (z+1)2 > N}

I

We try as invariant P : 22 < N, which is established by z:=0.
Negation of (z+1)? > N yields (z+1)2 < N as guard, leading to

z:=0{P} ;do (z+1)* (z+1) < N > S od {z? < N A (z+1)* > N}

Since P implies N — z? > 0, N — 2% seems appropriate as bound function. However,
N — z2 decreases for increasing z if and only if 0 < x, which cannot be inferred from
P A B. This problem is solved by specifying a bound for z: strengthen P to

P: 0<zAz*<N
We investigate an increase of z by 1:

P(z:=z+1)
= { substitution }
0<z+1A(z+1)2<N
= { calculus }
0<z A (z+1)*)<N
& { definition of P}
P A(z+1* <N

leading to

(N>0)

r:=0 .
{invariant P: 0 <z A 2 < N, bound: N — z?})
;do (z+1) * (z+1) £ N — z:= z+1 od

{z? < N A (z+1)* > N}

56 General Programming Techniques

-

This program has time complexity O(v/N). In Chapter 6 we present a solution for
square root that has time complexity O(log N).

Instead of 2> < N, we may also take (z+1)? > N as invariant and z+z > N as
. guard. This choice leads to

{N >0}

z:=N

{invariant P: 0 < z A (z+1)? > N, bound: z}

idozxz > N — z:=z2—1o0d

{z? < N A (z+1)? > N}
Execution of this program, however, takes about N — /N steps and has, therefore,
time complexity O(N), which is worse than O(v/N).

As a final remark, we mention that it is quite common that invariants have to be
strengthened with bounds for the variables involved. As a matter of fact, it is a good
habit to include bounds for the variables right away.

Exercises

For each exercise that is specified in natural language, one has to supply a formal
specification first.

0. Derive a program for the computation of 3log N, rounded down, for positive
integer N.

1. Derive, for given N, N > 0, a program for the computation of the smallest integer
z that satisfies 2% — 622 + 9z > N.

2. Derive, for given N, N > 0, a program for the computation of the largest integer
z that satisfies 2% — 622 + 9z < N.

3. Solve
|con A,B :int {A >0 A B> 0};

var z : int;

lem
{z = Alcm B}
Il

where lcm denotes the least common multiple, i.e., for A >0A B > 0:

AlemB = (mini:1<:AimodA=0AimodB =0:1)

< Replacing constants by variables 57

4.2 Replacing constants by variables

We consider the computation of A to the power B for given naturals A and B. This
problem is formally specified as

[con A, B :int{A >0 A B >0}
var r : int;
exponentiation
{r= A%}
I,

where, by definition, 0° = 1. There is no obvious way in which the post-condition can
be weakened to a suitable invariant. In the state space defined by r predicate r = AP
corresponds to a single point. When we extend the state space by introducing a fresh
variable #, say, the state space defined by r and z contains the entire line satisfying
r = AP and in this space this relation may be more easily established. A way in
which fresh variables can be introduced is by replacing constants by variables. Such a
replacement yields a possible invariant. For this specification possible choices are

r=z8 r=A% and r = 2Y
We use the invariant
Py r= A%

Then Py A z = B implies the post-condition, and P; is established by r,z:= 1,0.
Furthermore, we specify an upper bound for « and add to the invariant

b z< B
This yields the program scheme
r,z:=1,0{P, AP} ;doz # B — S od {r = A%}

We investigate the effect of increasing z by 1in S:

Py(z:=x+1)
= { substitution }

r = A%t

Hence, {r = A*"'}z:= z+1{Fo}. Assuming Py A P, A z # B, we have

58 General Programming Techniques

Ax+l
= { calculus }
Ax A%

{R}
Axr

from which we conclude
{PoAPLAz#B}r:=Axr{r=A4""};z:=2+1{R}

The invariance of P, i.e.,
{PoANP ANz#B}r:=Axr ;z:=2+1{P}

is easily proved and we obtain the following solution for ezponentiation

[var z : int;
rz:=1,0 .
{invariant: P, A P;, bound: B — r}
jdoz # B
—{P, A P, A z # B}
ri=rxA;z:=x+1
{Po N P}
od
{Ps A P, A z = B, hence, r = AP}
1
{r = AB}.

This program has time complexity O(B). In Section 4.4 we derive a solution that has
time complexity O(log B).

Constants are usually denoted by capital letters, and we often use the same letter
in lower-case for a variable that replaces a constant.

As a final example, we derive a solution to summation, which is specified below. To
show how exercises should be worked out, we present a ‘model solution’ to the problem.
Here is the specification:

[con N :int {N > 0}; f : array[0..N) of int;
var r : int;
summation
{z=(Zi:0<i< N: fi)}
Il

Replacing constants by variables 59

The quantification that appears in the post-condition has two constants: 0 and N. Let
us replace N by variable n and propose invariant

b z=(2i:0<i<n: fi)

Then, by construction, Py A n = N implies the post-condition. Summation over an
empty range equals 0, hence, P, is established by n, z := 0,0. We investigate an increase
of n by 1 and we derive, assuming Py A n # N:

(Zi:0<i<n+l: fq)

= {split off i =n, 0 < n < n+1: see below }
(2i:0<i<n: fi)+ fn

= {h}
z+ fn

Evidently, 0 < n is needed in the derivation above, which must be added to F,. From
this derivation we conclude

{Pp AO0<n}z:=z+ fon {Po(n:=n+1)}

4
As a bound funtion N —n seems appropriate; for the proof of termination we strengthen
P, with n < N as well. We now show how the solution is presented.

Solution:

Replacing constant N by variable n gives rise to the following invariants.

B z=(2i:0<i<n: fi)
P 0<n<N

Proof 0:

(P, A Pi)(n,z:=0,0)
= { substitution }
0=(8i:0<i<0:fi)AOSOLN
= {0 is identity of + }
0=0A0<0<N
= { predicate calculus }
0< N

60 General Programming Techniques

Proof 1: Assuming P, A P, An#N,

(Bi:0<t<n+1: fi4)

= {split of i =n,0< n < n+1}
(2i:0<i<n: fi)+ fn

= {Fo}
z+ fn

and

0<n+1<N
< {hA}
n#N

Proof 2:

P()/\Pl/\'nzN
= { definition of P}
z=(8i:0<i< N:fi)

Proof 3:

P
=> { definition of P; }
N-n>0
and
N-(n+1)<C
< { calculus }

N-n=C

Replacing constants by variables 61

Together with these proofs, the following annotated program solves summation.

[var n : int; {N > 0}

n,z:=0,0
{invariant: Py A Py, Proof 0, bound: N —n}
;don#N
—{P, A P, An#N}
z:=z+ fn
ini=n+1

{Py A Py, Proof 1}
od
{z=(Ti:0<i< N: fi), Proof 2, termination: Proof 3}

]
{z=(Zi:0<i< N: fi)}

Some of the proofs presented above are really trivial (cf. Proof 2 and Proof 3) and
they are omitted in other examples.
Verify that replacing constant 0 by variable n leads to invariants

Py: z=(Zi:n<i<N:fi)
P 0<n<N

to which the following program corresponds:

[var n : int;
n,z:=N,0
;idon #0
— z:=z+ f.(n-1)
ini=n-—1
od

62 General Programming Techniques

Exercises

Derive solutions for the following programming problems.

0. [[con N :int {N > 0}; f: array[0..N) of bool;
var r : bool;
S
{r = (3t:0<i<N:fi)}

]

1. [con N :int {N > 0}; f: array [0..N) of int;
var 7 : bool;
S

{r = (Vi:0<i< N:fi>0)}
]

2. [con N :int {N > 0}; f : array [0..N) of int;
var r : int;
S

{r=(maxi:0<i<N:fi)}

]

3. |[con N :int {N > 0}; f : array [0..N) of int;
var r : int;
S
{r=(#i:0<i<N: fimod2=0)}
]
4. [con N, X :int {N > 0}; f : array [0..N) of int;
var r : int;
S

{r=(Zi:0<i<N:fixX")}
J

5. [con N :int {N > 1}; f: array [0..N) of int;
var r : int;
S
{r=(maxi:0<iAi?<N:f(?)}

I

Strengthening invariants 63

4.3 Strengthening invariants

When an invariant for a repetition has been chosen, the termination requirement guides
the construction of the statement of the repetition. For such a candidate one applies
the proof rules. This may lead to an expression E which cannot easily be expressed
in terms of the program variables. A way to deal with this situation is to introduce a
fresh program variable and an accompanying invariant stating that the variable equals
E . Of course, the fact that this new invariant has to be established and kept invariant
may pose other problems. We illustrate this point with some examples.

As a first example, we consider the Fibonacci function fib, defined by

fib.0=0, fib.1=1, and
fib.(n+2) = fib.n + fib.(n+1) forn >0

We are asked to derive a program for the computation of fib.N, i.e., we have to solve

[con N :int {N > 0};
var z : int;
Fibonacci
{z = fib.N} ‘
I,

and we propose as invariant P, A Pi, where
Py: z=fib.n
P: 0<n<N

which is established by n,z:=0,0.

An increase of n by 1 leads to expression fib.(n+1) which cannot be easily expressed
in terms of z and n. Therefore, we introduce variable y of type int and invariant Q
defined by

Q: y=fib(n+l)

The strengthened invariant Py A P; A Q is established by n,z,y:=0,0,1.

The invariance of P, is now easily realized: from Q we infer that z:= y establishes
Py(n:=n+1).
For Q(n := n+1) we derive, assuming Po A Py A Q:

64 General Programming Techniques

fib.(n+2)
= { definition of fib,n > 0}
fib.n + fib.(n+1)
{ P and Q}
T+y

This leads to the following solution:

[var n,y :int; {N > 0}

n,z,y:=0,0,1

{invariants: Py A P, A Q, bound: N —n}

jdon # N
= Z,y:=Y,z+Yy
jni=n+l

od

{z =fib.N A y = fib.(N+1)}
]
{z =fib.N},

a program that has time complexity O(N). In Chapter 5 we derive a program for
Fibonacci that has time complexity O(log N).

As a second example, we derive, given array f[0..N), a program for the computation
of the number of pairs (4, j) for which 0 <i<j< N A fi<0A fj>0. A formal
specification is

[con N :int {N > 0}; f: array [0..N)of int;
var r : int;

S
{r=(#i,j:0<i<j<N:fi<O0A fj>0)}

]

Replacing constant N by variable n gives rise to invariants

Py: r=(#14,7:0<i<j<n:fi<0A fj>0)

Strengthening invariants 65

P: 0<n<N

’ which are initialized by n,r:= 0,0, since number-of quantification over an empty range

is 0. Assuming Py A P, An # N, we have

(#4,j:0<i<j<n+l: fi<OAfj20)
= {split off j =n}
(#i,j:O§i<j<n:f.i§0/\f.j20)+(#i:0§i<n:f.i§0/\f,n_>_o)
= {F}
r+(#i:0<i<n:fi<0Afn2>0)
= { case analysis }

T if fn<O
r+(#i:0<i<n:fi<0) if fn2>0

{introduction of s with invariant @, see below }

{r if frn<O

r+s if fn>0
where s satisfies
Q: s=(#i:0<i<n: fiL0)

Substitution of n = 0 yields that @ is established by n,s:= 0,0. For the invariance of
Q, we derive, assuming P, AQ An # N,

(#i:0<i<n+l: fi<0)
= {splitoffi=n,0<n<nt+tl <N}
(#i:0<i<n:fi<0)+#.(fn<0)
= {Q}
s+#.(fn<0)
= { definition of # }

s if fn>0
s+1 if fn<0

These derivations yield a program that solves the problem:

66 General Programming Techniques

[var n, s : int; {N > 0}
n,r,8:=0,0,0
{invariant: Py A P, A Q, bound: N —n}
;don# N
— {PBAPAQAR#N}
if f.n < 0 — skip
| fn>0—-r:=r4s
fi
{Po(n:=n+1)APLAQ AN # N}
;if f.n > 0 — skip
| frn<0—s:=s+1

fi
{(Po A P AQ)(n:=n+1)}
;ni=n+l

od
|

{r=#4j:0<i<j<N:fi<0A fj>0)}

The reader may verify that the two selections

if f.n <0 — skip
Jfr>0—-r:=r4s
fi

;if fon > 0 — skip

[frn<0—> s:=s+1
fi

can be replaced by

if fn<0 — s:=s+1

0 frn=0—>rs:=rt+s s+l
ﬂfn>0 —)T:='r+s

fi

due: to the fact that Po A P, A Q A n # N can be used as assumption for all the
derivations.

In t.he calculations we derived that the value of (#i:0<i<n: fi<0)isneeded
for the invariance of Py. We could have decided to introduce another repetition in which

Strengthening invariants - 67

this value is computed, i.e., a repetition that establishes s = (#i:0<i<n: fi<0).
This naive approach leads to an O(N?) algorithm instead of the O(N) algorithm
presented above.

Finally, we mention that the introduction of variables is always based upon some
reasoning or derivation. They are not introduced by magic.

In the following example we consider the problem of the maximal sum of the ele-
ments of segments A[p..q) of a given integer array A. A formal specification for this
problem is

[con N :int {N >0}; A: array [0..N)ofint;
var r : int;
mazsegsum ‘
{r = (maxp,¢:0<p<g<N: (Ti:p<Li<q:Ad)}
I

To make the expression in the post-condition more manageable, we define,
for0<p<qg<N:

Spg=(Ti:p<i<q:Ai)
Post-condition R becomes
R: r=(maxp,q:0<p<g<N:5pyq)
Replacing constant N by variable nj’yields invariants P, and P;y:
P,: r=(maxp,q:0<p<g<n:Spg)

P: 0<n<N

which are initialized by n,r:= 0,0, since 5.0.0 = 0. Assuming Po A P A n # N, we
derive

(maxp,q:0<p<g<ntl:Spg)
= {split off g =n+1} v
(maxp,q:0<p<g<n:Spg) max (maxp:0<p<ntl: S.p.(n+1))
= {Po}
r max (maxp:0 < p < n+l:Sp(n+l))

At this point it seems appropriate to introduce the variable s and accompanying in-
variant

68 General Programming Techniques

s =(maxp:0<p<ntl:Sp(n+l))

However, for n=N (which is not excluded by P,) this predicate is not defined. Replacing
all occurrences of n by n—1 yields an expression that is defined for all 7, 0 < n < N.
Thus, if we define additional invariant Q by

Q: s=(maxp:0<p<n:Spn)
then @Q(n:= n+1) equals the relation that is needed, i.e.,

(maxp,g:0<p< g<n+tl:Spg)
= { see previous derivation }
r max (maxp:0<p<n+l:Sp(n+l))
{assume Q(n:=n+1)}
T maxs

This leads to a solution of the following form

[var n, s : int;
‘establish Py A P, A @’
;don#N
— ‘establish Q(n:=n+1)’
7= T maxs
yni=n+1
od
J

where ‘establish @Q(n:=n+1)’ is formally specified as
[con N,n,r:int; A: array[0..N)of int;
{Pob AP, An#N}
var s : int;
{Q}
S
| {Q(n = n+1))
|.

For Q(n:= n+1), we derive, assuming Py A P, A Q A n # N:

Strengthening invariants 69

(maxp:0 < p < n+l: Sp.(n+l))
= {split off p=n+1,0<n+1 <N}
 (maxp:0<p<n:Sp(n+l)) max S.(n+1).(n+1)
= { definition of S, summation over an empty range is 0 }
(maxp:0<p<n:Sp(nt+l)) max0
= { definition of S}
(maxp:0<p<n:Spn+ An)max0
= { + distributes over max when the range is non-empty, 0 < n}
((maxp:0<p<n:Spn)+ An) max0
= {Q}
(s + An)max0

From this derivation it follows that Q(n := n+1) is established by s:= (s + A.n) max0.
Thus, we arrive at the following non-annotated solution to mazsegsum:

[var n, s : int;
n,r,5:=0,0,0
idon#N
— s:=(s+ An)max0 ,
;7= rmaxs
in:=n+l
od
I

A nice solution to a not so simple problem. In order to get used to the calculations that
are performed in such derivations, the reader should thoroughly analyse the derivation
of this program. In these derivations we used the following properties of S:

Snn=0 for0<n<N
Sp(n+l)=Spn+An for0<p<n<N

We summarize these examples by showing the general pattern of the derivations
carried out. Post-condition R is of the form

R: r=FN
for some natural number N and function F defined on [0..N]. The choice of invariants

Py: r=Fmn
P: 0<n<N

70 - General Programming Techniques

leads to a program of the form

[var n : int;
n,r:=0,F.0
ijdon# N
— ‘establish r = F.(n+1)’
;ni=n+1
od
1,

and a calculation of the form

F.(n+1)
{ calculus }
Fn®Gn
{P}
r®G.n

{introduction of variable s and invariant Q }
Tr®s

I

where s satisfies
Q: s=Gn

Then r:= r @ s establishes Py(n:= n+1). Computation of G.(n+1) may similarly
lead to a relation of the form G.(n+1) = G.n ® H.n in which case another invariant

is introduced. This process continues until (we hope) an expression comes up that is
easily computed.

Sometimes, as in the derivation of mazsegsum, we obtain a relation of the form
F.(n+1) = Fn® G.(n+1)
in which case
Q: s=Gn

is introduced and the statement establishing Q(n:= n+1) precedes the statement es-
tablishing Py(n := n+1).

Strengthening invariants 71

Exercises
Derive solutions for the following programming problems.

0. [con N :int {N > 1}; A: array [0..N) of int;
var r : int; '
'S |
{r = (maxp,q:0<p<g< N:Ap-—Ag)}

]
1. [con N :int {N > 1}; A: array[0..N) of int;
var 7 : int;
S
{r=@#pq:0<p<g<N:ApxAqg20)}
I
2. Derive for integer N, N > 1, and integer array A[0..N) a program for the com-
putation of the maximal sum of the non-empty segments of A.

3. [con N :int {N >1}; A: array‘[O..N) of int;
var r : int;
S
{r = (maxp,q:0<p<qg<N:(Ap—Aqg)?*)}
! |
4. [[con N :int {N > 0}; A: array [0..N) of bool;
var 7 : bool;
S .
{r = 3p:0<p<N:(Vi:0<i<p:Ad)A (Vi:p<i< N:-Aid))}
I

5. Lét N > 0and lét A[0..N) be an array of integers. For0 <p<g¢< N, the credit
of A[p..q) is defined by

credit.p.q:(#i:p$i<q:A.i>0)—(#’i:p$i<q:A.i<0)

Derive a program for the computation of a segment of A with maximal credit.

72 General Programming Techniques

6. [con N :int {N > 0}; A: array [0..N) of int;
var r : int;
S
{r =(maxp,q:0<p<g<N:(lli:p<i<q:Ad))}

]

4.4 Tail invariants

In this section we discuss tail recursion. We used a form of tail recursion when we
discussed the greatest common divisor algorithm in Section 2.5. That algorithm is
based on properties of the function F defined for positive integers z and y by

F.x.y = xgcdy. These properties are

Frxzxz=1z

_ | Fz—y)y ifz>y
Fey= { Fz.(y-z) fy>=z

which is an example of a so-called tail recursive definition. A repetition for the com-
putation of F.A.B is obtained by choosing as invariant

Fzy=F.AB

as we did for the algorithm in Section 2.5.

As another example, consider

[con N :int {N > 0}; A: array [0..N] of int;
var 7 : int;
S
{r=(maxi:0<i< N:Ai)}

I
Define, for 0 < z < y < N, the function F by

Fzy=(maxi:z<i<y: Ai)

Tail invariants 73

Then the post-condition of this specification can be written as
R: r=FO0N
and F has the following properties:

(i) z=y = Frzy=Ax

.. Fzy=F(z+1)y if Az < Ay
(i) <y = { Fzy=Fz.(y-1) fAy< Az

A repetition based on (i) and (ii) has invariant
P: Fzy=FONAO<L<z<y<N
and its coding is straightforward:

[var z,y : int; {N > 0}
z,y:=0,N
{invariant P: F.z.y=F.O0N A 0<z <y <N, bound: y -z}
jdoz #y .
—if Az < Ay —-z:=1+
| Ay< Az —y=y-1

fi
od
{P Az =y, hence, Az = F.0.N}
= Az

I
{r=(maxi:0<i<N:Ad)}

The general setting of tail recursion is as follows. A function F is given for which

(i) Fe=hz if- bz
(i) Fz=F(g9x) if -bx

and one is asked to derive a program that establishes r = F.X for some X. Taking

74 General Programming Techniques

P: Fz=FX

as a so-called tail invariant, yields

[var z;
z:=X
{invariant: F.z = F.X}
;do mb.x — z:=g.x od
;7= h.x

]

{r =F.X}

provided that the repetition terminates.

Solving a problem by tail recursion amounts to finding a suitable function F. A special
case of tail recursion is the following.

An associative operator @ is given with identity e. A function G has the following
properties:

(0) Gz=a if b.x
(1) Gz=hz®G.(9.x) if bz

and one is asked to derive a program with post-condition r = G.X. This problem may
be solved by a tail invariant of the form

P: GX=r®Gz
which may be interpreted as
‘the result’ = ‘what has been computed’ & ‘what still has to be computed’

Invariant P is stablished by r,z:= e, X. Furthermore, if b.z holds, then

GX=roGz
= {b.z, use (0)}
GX=r®a

and, for -b.x

Tail invariants 75

GX=r®Gzx
{-b.z, use (1)}
GX=ro (h.zx ® G.(g.z))
= { & is associative }
GX=(r®hz)®G(9.x)
= { definition of P}
P(r,z:=r® h.z,g.x)

This yields the following program scheme

If @ is associative and has identity e, and G is such that

(0) Gz=a if b.x
(1) Gz=hz®dG(g9z) if bz
then

{true}

[var z;

z,7:= X,e {invariant: G.X =r & G.z}
:do =b.x — ,ri=g.z,7® h.x od
{GX =r&®a}
iri=r®a

|

{r=G.X}

provided that the repetition terminates.

Note that in almost each line of the derivation above ‘G.X =’ occurs. When applying
tail invariants, we only derive the relevant parts, leading to derivations of the following
form:

If b.z holds, then

r® Gz
{b.z, use (0) }
rda

I

and, for —b.x

76 General Programming Techniques

r® Gz

{-b.z, use (1) }
r® (h.z ® G.(g.7))
= { & is associative }

(r®h.z)®G.(g.7)

Il

We illustrate tail recursion by two examples.

For natural number z, G.z is the sum of the decimals of z, defined by

G0=0
Gz =zmod10+ G.(zdiv10) forz >0

We are asked for a program with post-condition » = G.N for natural number N. The
program scheme presented above yields as tail invariant

Fh: GN=r+G.x

and as a lower bound for z, we add

P: 0Lz

For £ = 0, we have r + G.z = r and for z > 0:

r+G.z
= { definition of G, z > 0}
r + (r mod 10 + G.(z div 10))
= {+ is associative }
(r + mod 10) + G.(z div 10)

leading to

[var z :int; {N > 0}
z,7:= N,0 {invariant: P, A Py, bound: z}
;doz #0— z,7:=xdiv10,7 + zmod 10 od

]
{r=G.N}.

Note that a bound function is specified to satisfy the termination requirement. Termi-
nation follows from

Tail invariants 77

zdivid <z
{ heading for the definition of div }
10% (rdiv10) < 10z
= { calculus }
zmod10 + 10 % (zdiv10) < zmod 10 + 10z
{ definition of div and mod }
r<zmodlO+10xz
& {zmod10 >0}
r<10*z
{ calculus }
0<=zx

As a second example we reconsider ezponentiation (cf. Section 4.2), specified by

[con A,B:int{A >0 A B >0}
var 7 : int;
ezponentiation
{r = AP}
I

For exponentiation, i.e., for function G defined by G.z.y = 7Y, we have,
forz >0Ay>0:

(0) Gz0=1
(1) Gzy=1%G.(zz).(ydiv2) if ymod2=0
Gzy=z*Gz(y—1) if ymod2=1

A tail invariant corresponding to G is
Py: rxa¥ =AB
and a lower bound for y is given by

Pll 0_<_y

- From the recurrence relations for G, we infer

PANy>0Aymod2=0 = Py(z,y:= z * z,ydiv2)

and

78 General Programming Techniques

PBAy>0Aymod2=1 = Py(r,y:=rx*z,y-1)
resulting in

[var z,y : int; {4 > 0A B > 0}
rz,y:=1,AB
{invariant: r * ¥ = AB A 0 <y, bound: y}
;doy #0
—ifymod2=0 — z,y:= z *xz,ydiv2
Jymod2=1—-ry:=r+zy-1
fi
od
{r*2¥ = A A y =0, hence, r = AP}
1
{r = AB}.

Since y halves at least every other step of the repetition, the time complexity of this
program is O(log B).

The purpose of this section is not to explain how a specific problem can be formu-
lated in terms of F or G. In practice, we do not always define F' or G explicitly. For
instance, the exponentiation program would be introduced by

‘We choose a tail invariant P, defined by
P: rx2¥=A8

and we choose as guard y # 0.

In later chapters we will see many applications of the tail invariant technique.

Exercises

0. Derive a program for the computation of A * B where A and B are natural
numbers. Apart from div2, mod2, and *2 only addition and subtraction are
allowed.

1. Derive a program for the computation of the number of factors 3 of natural
positive number N.

Tail invariants

. Solve

[con N, X :int {N > 0}; f : array[0..N) of int;
var 7 : int;
S
{r=(8i:0<i< N: fi*x X"}
),

by defining for 0 <n < N

Gn=(Zi:n<i<N:fixX"™")

and deriving a suitable recurrence relation for G.

. The function fusc is defined on the natural numbers by

fusc.0 = 0, fusc.1 =1
fusc.(2#n) = fusc.n, and
fusc.(2#+n+1) = fusc.n + fusc.(n+1) forn >0

Derive a program for the computation of fusc.N, N > 0.
(Hint: compute fusc.78).

. Solve

[con N, X :int {N > 0}; f : array[0..N)of int;
var r : bool;
S
{r = 3i:0<i<N: fi=0)}
I,

by defining for 0 <n < N
Gn= (Qi:n<i<N:fi=0)

and-deriving a suitable recurrence relation for G.

79

80 General Programming Techniques

5. An h-sequence is either a sequence consisting of the single element 0 or it is a 1,
followed by two h-sequences. Syntactically, h-sequences may be defined by

Solve

[con N :int {N >0}; A: array[0..2+N+1)of [0..1];
var r : bool;
S
{r = Ais an h-sequence}

]

4.5 Summary

In this chapter we discussed some general techniques that show how a suitable invariant
may be derived from a given pre- and post-condition. We summarize these ideas.

Taking conjuncts

When the post-condition is a conjunction’ of predicates, take some of
the conjuncts as invariants and take the negations of the other conjuncts
as guards for a repetition. As a special case, one can try true as invariant
and the negation of the post-condition as guard.

Replacing constants by variables.

The replacement of one or more constants by variables yields a possible
invariant for a repetition.

Strengthening invariants.

When a choice for an invariant has been made, calculations may lead
to an expression E' that is neither easily computed nor easily expressed in
terms of the program variables. The extension of the state space with a
variable and the addition of an invariant that expresses that this variable
equals E may help obtain a solution to the problem.

Summary 81

Tail invariants

The general setting of tail recursion is as follows. A function F is given
for which

Fz=hz if b.x
Fz=PF(gz) if -bx

and one is asked to derive a program that establishes r = F.X for some
X. Then F.z = F.X is a good candidate as invariant for a repetition that

solves this problem. .
A special case of tail recursion is applicable to the problem of computing
G.X, where G is such that

(0) Gz=a if b.r
(1) Gz=hz®G.(gx) if -bx

in which @ is an associative operator with identity e. Then G.X =r®G.x
is good candidate for an invariant.

Exercises ,

Derive solutions to the following programming problems.

0. [con N :int {N > 1}; A: array [0..N)of int;
var b : bool;
S
{6 = 3p,q:0<p<g<N:Ap—-Aq<2)}
I

1. [con N :int {N > 1}; A: array [0..N) of int;
var r : int;
S .
{r=#i:0<i<N:(Vp:i<p<N:Ai2>Ap))}
I

2. The function A is defined on the natural numbers by

A0=1
A(2n)=2xAn,forn>1
A.(2n+1) =n+ A.(2n), forn >0

82

General Programming Techniques

Derive a program for the computation of A.N, N > 0.

. [con N :int {N > 2}; A: array [0..N) of int;

var z,y : int;
s .
{0<z<y<NA|AzxAy|=(maxp,g:0<p<g<N:|ApxAg|)}

I

. [[con N :int {N > 2}; A: array [0..N) of int;

var r : int;
S
{r=(2pq:0<p<g<N:(Ap-Ag)?)}
I '

. Derive an O(log N) program for the computation of (£¢:0 <4 < N : A*) where

N and A are natural numbers.

. [[con N :int {N > 0}; A: array [0..N)of int;

var r : int;

S
{r=#k:0<k<N:(Vi:k<i<N:Ai>0))}
)

. [con N :int {N > 1};

var z : int;
Fibolucci
{z=(Zi:0< i< N:fibixfib(N-i)}
I,
where fib is defined by

fib.0 =0, fib.1 =1, and
fib.(n+2) = fib.n + fib.(n+1) forn >0

(Hint: replace both occurrences of N by n).

Chapter 5

Deriving Efficient Programs

5.0 Introduction

In this chapter we present two examples of efficient programs. The chapter may be
skipped at first reading.

In Section 5.1 we present an efficient program for the computation of Adiv B and
Amod B. In Section 5.2 we show a technique that is applicable to a class of algorithms.
In that section we assume that the reader is familiar with matrix multiplication.

Both examples are not simple and one of the purposes of this chapter is to show
how one can reason about these programs in a non-operational way.

5.1 Integer division

Our first example is the derivation of an efficient solution to integer division, specified

as
[con A,B:int{A >0 A B> 0};
var ¢, r : int;

divmod
{¢g = AdivB A r = Amod B}

I

in which apart from div 2, mod 2 and *2 (that are usually provided by machines) only
addition and subtraction are allowed. As pointed out in Section 4.1, post-condition R

may be written as

R A=qgxB+r AN0<L<T<B

83

84 Deriving Efficient Programs " Integer division 85

In Section 4.1 we chose as invariant A=g*B+7 A 0<r leading to This part has time complexity O(log(Adiv B)), since k is O initially and has the
minimum 4 for which 2¢ > Adiv B as its final value.

As guard of the next repetition, we choose b # B. To obtain an efficient algorithm
we investigate the effect of b:= bdiv 2 and we derive

q,r:=0A
jdor > B — q,r:=q+1,7r— B od
a program whose execution takes A div B steps. PAP AbED
0
{ definitions of P, andP; }
A=qxb+r AOL<Tr<bAb=2)xBA0OL<kAb#B

It is quite easy to transform it into a program that is twice as efficient, by dividing
by 2 * B instead of B. Such a transformation leads to the following program.

g,r=0,4 = { calculus }

{A=g*x2«B+r A0 T} A=qg+b+r AO<r<bAb=26+BA1<k

jdor >2xB —q,r:=q+1,7r—2xB od = { heading for b:= bdiv2}

{A=q+2+B+rA0<r<2xB} A=(gx2)*(bdiv2)+7r A0 <7 <2x(bdiv2) A bdiv2=2""+B
g=g*2 A0< k-1

{A=¢*B+4+rA0<r<2%B}

Hence,
if B<r - ¢qr:=q+1,r—B
[» < B — skip {Py A P, A b+# B}
i g,b,k:=qgx2,bdiv2,k-1
{A=¢*xB+rA0<r<B) {A=qxb+r AO<Tr<2xbAD=2"+B A0k}
Execution of this program takes ; * (A div B) steps. Of course, we can apply this idea Starting with the last line it is easy to establish Py A Pi:
again, leading to a program that is four times as efficient as the original program (at
the price of two selections). In general we may start with a division by 2* * B for some {A=g*b+r AO<r<2xbAb=2+B A0k}
k > 0. This idea leads to an invariant that is obtained from the post-condition by if r < b—skip {Py A Pi}
replacing constant B by variable b: | r>b—gqr=gqg+tl,r—b{Fs A P}
fi
F: A=qxb+r A0<L<r<b (P A P}

To guarantee b = 2* x B for some natural k, we introduce variable k as well and define

invariant P, by Thus, we arrive at the following program:

Pi: b=2xBA0Lk [var b,k : int;
q,7,b,k:=0,4,B,0

Py A P, is established by a repetition for which ‘dor>b— bk:=bx2k+1 od
;dob# B

: =qgx*b < =2k ANO<Lk ' .

Q: A=grbrrAOsrAb=2+B - — q,b,k:=gx*2,bdiv2,k-1

is an invariant and 7 > b the guard. Its coding is straightforward: ifr<b—skip] r>b—gqri=¢+l,7-b fi
od

q,r,b,k:=0,A,B,0 I
jdor >2b—bk:=bx2,k+1 od

86 Deriving Efficient Programs

In each step of the second repetition k is decreased by 1. Its final value is 0, hence
execution of the second repetition takes log(Adiv B) steps as well. We conclude that
this program has time complexity O(log(A div B)).

Variable & plays a specific role. No other variable depends on k and leaving out
~ this variable does not affect the algorithm. But k does play a role, since the invariant
(and, hence, the correctness of the algorithm) depends on k. When we remove k, what
would be an invariant of the resulting program? The solution is not difficult: the above
program shows the existence of integer k such that all relations are satisfied. Replacing
invariants P; and Q by

PP : (3k:0<k:b=2*xB)
RQR: A=gxb+rA0L<rA(3k:0<k:b=2"«B)
results in a program in which k does not occur any more:

{A>0AB>0}
[var b : int;
q,7,b:=0,A,B
idor >b—b:=b%x2 od
-dob# B
— gq,b:=¢q*2,bdiv2
jifr<boskip|[r>b—ogqri=q+1,7—b fi
od

]
{¢g=AdivB A r = Amod B}.

It is possible to derive this program in terms of Py, PP;, and QQ right from the
beginning. As a disadvantage one has to perform all calculations with an existential
quantification. Moreover, the efficiency considerations cannot be phrased in terms of k
any more. The introduction of variable k makes it easier to reason about the program,
and as k does not actually occur in the final program it is called a ghost variable.

Finally, we remark that the correctness of the program presented above is difficult to
grasp without its derivation. Nevertheless, it is essentially the same division algorithm
that is taught in primary school.

Inte‘ger' division

Exercises

0. Derive an O(log N) algorithm for square root:

[con N :int {N > 0};
var r : int;
square root
{z? < N A (z+1)* > N}
I,

by introducing variables y and k and invariants

Py: 22 <N A (z+y)? > N
P: y=2A0<k

1. Derive a program that has time complexity O(log N) for

lcon N :int {N >1}; f: array [0.N]ofint {f.0 < f.N};
var z : int;
S
{0<z<NA fz<f(z+1)}

I

by introducing variable y and invariants

Py: fx<fuy
P: 0<z<y<N

2. Solve

[con A, B :int {B > 0};
var g, : int;
divmod
{g= AdivB A r = Amod B}

]

87

88 Deriving Efficient Programs

5.2 Fibonacci

Our second example is the derivation of an O(log N) program for Fibonacci (cf. Section
4.3), specified by

[con N :int {N > 0};
var z : int;
Fibonaccs
{z =fib.N}
I,

where fib is defined by

fib.0 = 0, fib.1 = 1, and
fib.(n+2) = fib.n + fib.(n+1) for n >0

In Section 4.3, we chose as invariant z = fib.n A y = fib.(n+1), leading to

{N >0}
[var y, n : int;
n,z,y:=0,0,1
jdon # N
- T,y =y, zt+y
imi=n+1
od

|
{z = fib.N},

a program that has time complexity O(N). We derive from this program a more
efficient one by a rather general technique exploiting the fact that the expressions
assigned to x and y in the multiple assignment z,y:= y, z+y are linear combinations
of z and y. In terms of matrices this assignment is denoted as

()=(21)(z)

and the algorithm may be denoted as

Fibonacci 89

:don# N
- (5)=(01)(5)
ini=n+1
od
N
(2)=(01) (0)- (o)
]chyﬁb.N}.

An invariant of the program for Fibonacci is
z\ (0 1\"[o0
y)] \11 1
and its post-condition is
z\ (01 N 0
y) " \11 1
In Section 4.4 we developed an O(log N) program for ezponentiation, based on a tail

. 01 0. .
invariant. A similar approach to the computation of (11) (1) is appropriate,

using invariants
N
01 0 z
. = A"
P"'(“) (1> <y>
P: 0<n<N

11) and for which we have

’ 01
which are initialized by n,z,y:= N,0,1; A:= (

PoAn=0= z=fibN Ay=1fib.(N+1)

90 Deriving Efficient Programs

This leads to the following program:

n,z,y:=N,0,1;A:= ((1) })

idon #0
— ifnmod2=0— A:=A*A;n:=ndiv2

|]nmod2=1—»(z) :=A(I) ini=n—1
) Y
fi
od
{z = fib.N}

A next step is the elimination of the matrix operations. We compute some powers of
01
1 1)

G- nEn-(s)
C-00)-(2)

This leads to the conjecture that all these powers are of the form (Z

a b a b (P q
b a+b b atb |~ \ ¢ pt+q
where p = a® + b2 and ¢ = ab + ba + b?. Hence, matrix A may be represented by two

. . . a b
integers: pair (a, b} represents matrix b oath) Then

b

ath) Indeed,

A:= Ax A corresponds to a,b:=axa+b*xbaxb+bxa+bxb

and

(;) :=A(;) corresponds to z,y:=a*xxr+bxybrxr+axy+bxy

Fibonacci 91

The final solution is presented below.

{N >0}
| var a, b, n,y : int;
a,bz,yn:=0,1,0,1,N
;don #0
— ifnmod2=0—a,b:=axa+bxba*xb+brxa+bxb;n:=ndiv2
[nmod2=1—-z,y=axz+bxybrxz+arxy+brxy;n:=n-1
fi
od
{z = fib.N}
I

Needless to say that this program cannot be easily understood without its derivation.

Exercises

Solve

0. |[con A, B, N :int {N > 0};
var z : int;)
S
{r=(2i:0<i< N: AN % B')}
]

1. [con N :int {N > 1};
var z : int;
Fibolucci
{z=(2i:0< i< N:fibixfib(N-i)}
]|7
where fib is defined by

fib.0 =0, fibl1=1and
fib.(n+2) = fib.n + fib.(n+1) for n > 0.

Chapter 6

Searching

6.0 Introduction

Many programming problems can be viewed as a so-called searching problem. For
instance, the square root problem of Section 4.1 may be formulated as ‘search for the
maximal natural number ¢ for which 2 < N, i.e., establish post-condition

z=(max:i:0<iAZ <N :9)
It may also be formulated as
z=(mini:0<7iA(i+1)2 > N :4)

i.e., search for the minimal natural number ¢ for which (i+1)> > N. In Section 6.1
we discuss a simple program called Linear Search. The Bounded Linear Search is
presented in Section 6.2. In Section 6.3 we consider a more efficient scheme which is
applicable to a large class of search problems. That program is known as the Binary
Search. In Section 6.4 we discuss a less well-known program scheme called Searching
by Elimination.

6.1 Linear Search

We consider the following problem. For integer variable z, b.z is a boolean expression
such that

(3i:0<1i:bd)

An example of such an expression is (z+1) * (z+1) > N. We are interested in the
smallest natural ¢ for which 5.z holds. A formal specification of this problem is

92

Linear Search 93

[var z : int;
{(Fi:0<i:bi)}
Linear Search
{z=(mini: 0<% A bi:d)}

J-

We rewrite the post-condition:

R: 0<zAbzAVi:0<i<z:bi)

A possible invariant is obtained by the technique of taking a conjunct: we define P by
P: 0z A(Vi:0<i<z:bi)

which is initialized by z:= 0. As guard we choose, of course, —b.z. Investigation of
z:=z + 1 leads to

P(z:=z+1)
= { definition of P} ,
0<z4+1AVi:0<i<z+1:-bi)
<= { heading for P}
0<zAVi:0<i<z+1:-bi)
= {splitoff i=z,0<z<z+1}
0<zA(Vi:0<i<z:nbi) A bz
= { definition of P}
P A -bz

This gives rise to the following program:

z:=0;do -bzx —'z:=z+1 od.
For a proof of the correctness of this program we still have to provide a bound function.
Note that we have not used the pre-condition yet. The pre-condition allows us to define

constant X by

0< X AbX

and we derive

94 Searching

P
=> { definition of P}
(Vi:0<i Adi<z:~bi)
= { predicate calculus: trading }
(Vi:0<iAbi:i>x)
= {0<XAbX}
X>z

Hence, X — z is a suitable bound function for the program presented above. We
formulate our result as follows. '

Linear Search

[var z : int;
{(3i:0<i:bi)}
z:=0

ido-bzrx—z:=z+1 od
{z=(mini:0<i Abi:i)}

I

Of course, the fact that 0 is a lower bound is not essential: the maximum % for which
b.i holds is obtained by initializing z with an upper bound and replacing = := 2 + 1 by
T:=z-—1.

As an example, we solve the following problem.

[con N :int {N > 0}; A: array[0..N] of int;

{A0< A.N}
var r : int;
S

{r=(maxi:0<i<N A Ai< A(i+1): 1)}
I

This problem can be solved by replacing constant N by variable n; an approach that
leads to a less elegant algorithm, as the reader may verify. Applying the Linear Search,
we obtain as solution:

Bounded Linear Search 95

S: {(3i:0<i< N:Ai< A(i+1)), see Proof, apply Linear Search}
ri=N-1
jdo Ar > A(r+1) = r:=r-1od
{r=(maxi:0<i< N A Ai<A.(i41) : 1)}

Proof:

(Vi:0<i<N:Ai> A(i+1)
= { transitivity of >} -
AO0> AN

Hence,
AO<AN = (Fi:0<i< N:Ai<A(i+1))

The program with its accompanying proof is all one has to provide as solution to the
problem.

6.2 Bounded Linear Search

The Bounded Linear Search is a solution to the following problem. Given integer N,
N > 0, and boolean array b[0..N), one is asked to derive a program that assigns to
variable x the least number 7 in [0..N) for which b.7 holds. If no such number exists in -
this domain, N should be assigned to z. A solution with invariant

0<z<NANMi:0<i<z:bi)
and program
z:=0;do-bz Ax#N — z:=z+1od

is not correct, since N does not belong to the domain of b and = N is not excluded
by the invariant.

A formal specification of the problem is

[con N :int {N > 0}; b: array [0..N) of bool;
var z : int;

bounded linear search
{r=(maxi:0<i<NA(Vj:0<j<i:-bj):4)}

|

96 Searching

When we define (without, of course, actually changing b) b.N as true, the post-condition
may be written as

R: 0<z<NAMi:0<i<z:=bi)Abx

As explained above, a repetition with —b.z as guard is not possible. When we take b.z
as part of the invariant, it should be established by z:= N, since N is the only value for
which it is known that b has the value true. On the other hand, the first two conjuncts
of R require z:= 0 as initialization. This ‘conflict’ is solved by the introduction of
integer variable y: we choose as invariant

F: 0z NAVi:0<i<z:bi)Aby

Then F, is established by z,y:= 0, N and Py A z =y implies R. Hence, we choose
z # y as guard for the repetition and y — z as bound function. As bounds for y we add

P: z<y<N

to the invariant. Then P, A P, Az #y = 0<z < N, and, hence, b.z may occur in
the statement of the repetition. It is now easy to- derive

PoANP ANz#y A bz = (P A P)(z:=z+1)
and

PBANPANz#yANbz = (P A P)(y:=1x)
This leads to the following solution:

Bounded Linear Search

[con N :int {N > 0}; b: array [0..N) of bool;
var z : int;
[var y : int;
z,y:=0,N
jdoz #y
—if —b.z — z:=z+1
[bz—oy=x
~fi
od
I
{r=(max::0<i<NA(Vj:0<j<i:=bj):4)}

]

Bounded Linear Search 97

Exercises
Solve the following programming problems.

0. |[con N :int {true};
var z : int;
S
{z=(mini:0<i A 2" >N:4)}

I
1. |lcon N :int{N > 0},
var z : int;
S
{z=(maxi:0<iA2<N:4i)}

] ‘

2. |lcon N :int{N > 2}; A: array [0..N) of int;
{(3i,j:0<i<j<N:Ai-Aj<2)}
var r : int;

S ‘
{r=(maxi:0<i< N A A(i—-1) - Ai < 2:4)}

J.

3. Derive a linear program for the Bounded Linear Search problem, based on the

invariant
z=(maxi:n<i<NA(NVj:n<j<i:nbj):i)

What is the disadvantage of this solution compared to the one presented in this

section?
4. |var z:int;
{(Fi:iint: bi)}
S

{bx A (Vi:] <|z|:—bi)}
I

98 Searching

5. [con N :int {N >0}; f: array[0..N) of int;
var r : int;
S
{fr=(maxi:0<i<NA(Vj:0<j<i:fj#0):4)}

I

6. [[con N :int{N >1}; A, B: array[0..N]of int;
{A0< B.O A AN > B.N}
var r : int;
S
{r=(maxi:0<i<NA Ai<B.iA A.(i4+1) > B.(i+1) : 1)}
I

6.3 Binary Search

For ascending and descending functions, searching may often be realized in a much
more efficient way than by an application of the linear search. For instance, it is much
easier to find one’s telephone number in a phone book than to find a name, given a
telephone number. We explain the so-called Binary Search by solving

[con N, A:int {N >1}; f: array [0..N]of int {f.0 < A < f.N};
var z : int;
binary search
{fz <A< f(z+1)}
J-

Note that, apart from f.0 < A < f.N, nothing is assumed about f.

The post-condition is a conjunction of two predicates: f.z < A4, which is initialized
by z:= 0; and A < f.(z+1), which is initialized by z:= N—1. As we did for the
Bounded Linear Search, we introduce a variable y and we define invariants P, and P,
by

P: fz<A< fy
P: 0<z<y<N

Then, on account of the pre-condition, Py A P, is established by z,y:= 0, N. As guard
of the repetition we choose z+1 # y, and as bound function we choose y—z. For any
h such that z < h < y, we have y—h < y—z and h—z < y—z, hence, both z := k and
y:= h decrease y—r and both maintain P;. Furthermore,

Binary Search 99

Py(z:=h)

= { substitution }
fR<A<fy

<« { definition of Py}
PoAfR<A

and

Po(y:=h)

= { substitution }
fo<A<fh

= { definition of Py}
PyANA<f.h

This leads to

{f0< A< f.N}
[var y : int;
z,y:=0,N ,
{invariant: P, A P;, bound: y — z}
idoz+1l#y
— |[var h : int;
‘establish z < h < ¥/’
if fAh<A - z:=h
l A<fh—y=h
fi

od

|
{fe <A< f(z+1)}

Since y — z is replaced either by y — h or by h — x, the best choice for h is the middle
of [z..y], i.e., (z+y) div 2. Indeed,

100 Searching

< (z+y)div2<y
= { calculus }
z+ 1< (z4y)div2<y—1
<= { div 2 is ascending }
2r+2<c+y <2y -2
= { calculus }
r+2<y
{ calculus }
z<yAz+l#y
< { definition of P; }
PoAz+l#£y

Hence, h:= (z+y)div2 is a valid choice. Substitution in the above algorithm yields
the solution:

Binary Search

{0<N A fO<A<f.N}
z,y:=0,N
idoz+l #y
— |[var A : int;
h:= (z+y)div2
;if fA<A —sz:=h
l A<fh—oy=h
fi
I
od
{0<z<NA fz<A<f(z+1)}

Since y — z has initial value N and halves in each step of the repetition, the time
complexity of this program is O(log N).

Binary Search 101

Variable h has been introduced to enable us to name a value between = and y. In
the program above h is just short for (z+y)div 2 and the only property of h that is
relevant to the correctness of the program is z < h < y. This example shows another
reason for the introduction of variables.

Note that 0 < h < N, from which we infer that f.0 and f.N are not inspected
during the execution of the program. Pre-condition f.0 < A < f.N is only used for
the initialization of £ and y. When this part of the pre-condition is replaced by true
or, equivalently, by

fOSKA<fN V fO>AV fN2>A
the post-condition is
0<z<N A (ft<A<f(z+]) V f0>A V f.N>A)

We use this property in the following application of this algorithm. Let N > 1 and let
f[0..N) be an ascending array of integers. We are asked to derive a program for the
computation of the boolean value ‘integer A occurs in f[0..N)'. A formal specification
is

[con N, A:int{N >1}; f: array{0..N)ofint ;
((v4,j:0<i<j<N:fi< fj)}
var r : bool,

S
{r = 3i:0<i<N:fi=A)}
J

In view of the remarks above, we define, since f.N is not inspected, f.N = oo (without,
of course, actually changing f). Then A < f.N holds and the post-condition of the
Binary Search is

R: 0<z<NA(fz<A<f(z+1)V A< f0)

At this point (and only here!) the ascendingness of f comes in. From R and the
ascendingness of f we infer

102 Searching

(3i:0<i<N:fi=A) = fz=A4A
Hence, we have

[con N, A:int{N >1}; f: array[0..N) of int {f is ascending};
var b : bool; :
[var z,y : int;
z,y:=0,N
idoz+l #£y
— [[var h : int;
h:= (z+y) div2
f fA<A - z:=h
| A<fh—oy=h

fi

od
bi=fx=A
I
{b = (3Fi:0<i<N:fi=A)}
I

This program is also known as ‘the binary search’. It is an imporfant algorithm and
every programmer should know this program and its derivation by heart.

)

As a final example, we reconsider square root of Section 4.1, specified by

[con N :int {N > 0};
var z : int;
square root
{£? < N A (z+1)? > N}
I

For N > 0, we have 0> < N < (N+1)%. A straightforward application of the binary
search yields the following O(log N) program.

Binary Search 103

{N >0}
[var y : int;
z,y:=0,N+1 {0 <z <y A 2? < N < ¢?, binary search}
;doz+l#y
— |[var h : int;
h:= (z+y)div2
iif hxh< N —z:=h
| N<hxh—y:=h
fi

od

|
{2? < N < (z+1)%}

Once again, we remark that the correctness of this program does not depend on the
fact that z? is an ascending function of = on the natural numbers. However, when this
program is used to establish b = (3p:0 < p: N = p?) for boolean variable b, then
the ascendingness of z2 is needed.

Exercises

Derive a program for the following specifications.

0. [[con N :int {N > 0};
var 7 : bool;
S
{r = 3p:p20:N=p"}

]

1. Derive for given N, N > 0, a program for the computation of the smallest integer
z that satisfies 2% — 622 + 9z > N.

2. [con N :int {N > 1}; A, B: array [0..N]of int;
{A0< B0 A AN > B.N}
var r . int;
S
{0<r<NA Ar < Br A A(r+1) 2 B.(r+1)}

]

104 Searching

6.4 Searching by Elimination

Searching by elimination is the last technique discussed in this chapter. It may very
well be studied at a later stage. Its derivation is a first example of so-called program
refinement. The resulting program is obtained in a number of steps, and intermediate
programs have, for instance, sets as variables.

We are given a finite set W and a boolean function S on W, such that S.w holds for
some w € W. We are asked to derive a program with post-condition S.z. We identify
boolean functions on W and subsets of W, i.e., S is identified with {zx € W |S.z}.
Thus, the post-condition may also be written as z € S or as

R: Sn{z}+#0

Note that in terms of sets the pre-condition ‘S.w holds for some w in W’ may beé written
as SNW # 0. We replace {z} by variable V and we define P, as a generalization of
the pre- and post-condition, by

P: SAV#OANVCW
From P A |V| =1 we infer that the unique element of V' satisfles R. This leads to

{SNW # 0}

V=W

{invariant P: SNV # 0 A V C W, bound: |V}

;do |V| # 1 — ‘decrease |V| under invariance of P’ od

;x:= ‘the unique element of V’

b

From P A |V| # 1 we conclude that |V| > 2. Searching by elimination is based on the
fact that of any two elements of V at least one may be removed without violating P.
This yields the following approximation:

V=W
jdo [V] #1
— ‘choose a and b in V, such that a # ¥’
{aeV AbeV Aa#bA SNV £0}
iif By — V=V \{a}
| B, »V:=V\{b}
fi
od
; := ‘the unique element of V"’

Searching by Elimination 105

From SNV # ® weinfer =S.a = SNV \ {a} # 0 and, since b € V A a # b, we
also have S.b = SNV \ {a} # 0. Hence, ~S.aV S.b is a good choice for By. More
formally, this is derived as follows:

SNV #0 = Sn(V\{a})#0
= {a€eV}
Sav Sn(V\{a))#6 = SN(V\{a})#0
= { predicate calculus }
Sa = SN(V\{a})#0
e {pev\{a})
S.a = Sb
= { predicate calculus }
-S.aVSh

On account of the symmetry, 7S.bV S.a is a good choice for B;. Note that this choice

yields two guards whose disjunction is true. Substitution of these guards into our pre-
vious program yields the first version of searching by elimination.

Searching by Elimination (0)

{Qw:weW:Sw)}
V=W
jdo [V] #1
— ‘choose a and b in V', such that a # '
;if =2S.aVv Sb - V=V \ {a}
| =SbVSa—V:=V\{b}
fi
od
;x:= ‘the unique element of V”’

{S.7}

We often encounter situations in which set W is [0..N]. In that case V' may be
represented by two integers a and b, 0 < a < b < N, such that

106 Searching

V =[a..b]

|V| # 1 corresponds to a # b

V=V \ {a} corresponds to a:=a+1
V=V \ {b} corresponds to b:=b—1

and the program may be encoded as

Searching by Elimination (1)

{(@i:0<i < N:Sq)}

a,b:=0,N

;doa #b

— if 2SaVvSb —wa=a+1

] ~SbvSa—b=b-1
fi

od

iTi=a

{S.z}

Our first application of searching by elimination is the derivation of a program that
satisfies ‘

[con N :int {N > 0}; f : array[0..N] of int;
var z : int;

mazlocation
{0<z<NA fr=(maxi:0<i< N: fi)}

]
The post-condition may be rewritten as
0<z<NA(Mi:0<i<N:fi<fux)
In order to use Searching by Elimination we define S by

Sz = (Vi:0<i<N:fi<fx)

Searching by Elimination 107

Then

-S.aV Sb
{ predicate calculus }
Sa=Sb v
{ definition of S}
(Vi:0<i<N:fi<fa) = (Vi:0<i<N:fi<fh)
<« { transitivity of <}
fa< fb

Hence, f.a < f.b = -S.aV S.b and, by symmetry, f.b < fa = -5bV S.a as well.
This leads to the following solution to mazlocation

[var a,b : int;
a,b:=0,N
;doa#b
— if fa<fb —a=a+1
Jfo<fa —-b:=b-1
fi ‘

(Zi=a

]

{0<z<NA fz=(maxi:0<i< N: fi)}

Our second example is known as the celebrity problem. It is described as follows.
Among N+1 persons, a celebrity is someone who is known by everyone, but does not
know anyone. This relation between persons is represented by a boolean matrix k:

k.i.j = person i knows person j

Knowing that a celebrity exists among these persons, one is asked to determine such a
celebrity. A formal specification is

[con N :int{N > 0}; k : array [0..N]x[0..N] of bool;
((Fi:0<i<N:(Vj:j#i:kgih-kig))}
var z : int;
celebrity
{0<z<NANj:j#z:kjzA-kzj))}
]

108 Searching

We choose S.z = (Vj:j#z:kjz A —k.z.j) and we derive

-Sa Vv Sb
<= { predicate calculus }
-S.a
{ definition of S}
~(Vj:j#a:kja N -k.aj)
{De Morgan }
3j:j#a:-kjaV kaj)
& {b#a}
—k.b.a V k.a.b

1]

By symmetry, ~5.b <= —k.a.b V k.b.a. Since k.a.b V —=k.a.b = true, we strengthen
the guards slightly, thereby destroying the symmetry, and we obtain as solution

[var a,b : int;
a,b:=0,N
;doa #b
— if kab —a:=a+1
| ~kab—ob=b-1

fi
od
T=a
I
Exercises

0. Derive a program that non-deterministically computes a number in the range
[0.N], N > 0.

1. Derive from general program scheme (0) a scheme for which W = [0..N] and V is
represented by integers a and b such that 0 < a < b < N+1and V = {a}U[b..N].

2. What changes have to be made to the program schemes such that they satisfy

pre-condition W #£0
post-condition S #0 = Sz

Searching by Elimination 109

3. Solve the bounded linear search problem of Section 6.2 by application of Searching

by Elimination.

4. The starting pit location problem is stated as follows. There are N+1 pits located

along a circular race-track. The pits are numbered clockwise from 0 up to and
including N. At pit ¢, there are p.i gallons of petrol available. To race from
pit i to its clockwise neighbour one needs g.i gallons of petrol. One is asked to
determine a pit from which it is possible to race a complete lap, starting with an
empty fuel tank. To guarantee the existence of such a starting pit it is given that

(2i:0<i<N:pi)=(£i:0<i< N:gq.i)
A formal specification of the problem is

[con N :int {N > 0}; p,q: array [0..N]of int;
{(Ti:0<i<N:pi)=(2i:0<i<N:qi)}
var z : int;

starting pit location
{0<z<NA(Ni:0<i<N:Dz.i>0)}

I,

where D.i.j is the difference of the number of gallons provided and the number
of gallons needed, when racing from pit ¢ to pit j in clockwise direction:

4

D.i.j = (Xk: k from i up to and not including j in clockwise direction : p.k — ¢.k)

Chapter 7

Segment Problems

7.0 Introduction

In this chapter we illustrate programming by so-called segment problems. Such prob-
lems involve the computation of a longest or shortest segment that satisfies a certain
predicate, usually defined in terms of a given array. Many attempts have been made
(and are still made) to classify these problems with respect to the predicates that define
the segments one is interested in. In this chapter we do not classify these problems nor
do we provide general program schemes that can be applied to all kinds of segment
problems. Of course, some general aspects of this type of problem will emerge during
our treatment.

The purpose of this chapter is to show how problems may be solved, what decisions
are made in the derivations and which properties play a specific role. The techniques
used in this chapter are applicable to other classes of programming problems as well.

In Chapter 8 we apply a technique called Slope Search to segment problems. That
technique yields another way in which these problems may be solved.

7.1 Longest segments

Let N > 0 and let X[0..N) be an integer array. We are interested in the length of a
longest subsegment [p..q) of [0..]N) that satisfies a certain predicate defined in terms of
X. Examples of such predicates are B

(Vi:p<i<gq:Xi=0)
(Vi:p<i<g:Xp<Xi) the segment is left-minimal,
(#1:p<i<qg: Xi=0)<10 the segment contains at most 10 zeros,

all elements are zero,

110

Longest segments 111

(Vi,j:p<i<j<g:Xi#X.j) allvalues are different.
In the following sections we solve these problems. Each of them has its own character-
istics.
7.1.0 All zeros

As our first example we solve the problem of determining the length of a longest segment
of X[0..N) that contains zeros only. It is about the simplest longest segment problem
one can imagine and, hence, it is very well suited to illustrating the calculations that
are typical for this kind of problem. A formal specification of this problem is

[con N :int {N > 0}; X : array [0..N) of int;
var r : int;
all zeros
{r = (maxp,g:0<p<g<NA (Vi:p<i<gq:X.i=0):q9-p)}

I

Our first step is the introduction of a name for (Vi :p <4 < ¢: X.i = 0). This does
not only abbreviate the post-condition, but, more importantly, it enables us to find
out which parts of the derivation are independent of the specific form of the predicate.
For 0 < p < ¢ £ N we define A.p.q by

Apg = Vi:p<Li<q:Xi=0)
Post-condition R may then be written as
R: r=(maxp,q:0<p<g<N A Apq:q-p)

What can be said about predicate .A? Its term, X.i = 0, does not depend on p or q.

It holds for empty segments, i.e.,
(0) Ann for0<n 5 N (A holds for empty segments)

Furthermore, A is prefiz-closed, i.e., if a segment satisfies A then all prefixes of that
segment satisfy A as well. More formally,

(1) Apg= (Vi:p<i<gq:Api) for0<p<g<N (Ais prefix-closed)
and A is postfir-closed:
(2) Apg=> (Vi:p<i<qg:Aigq) for0<p<g<N (Ais postfix-closed)

\

112 Segment Problems

Since the term, X.i = 0, in A neither depends on p nor on ¢, it does not matter
whether we replace in R the constant 0 or the constant N by a variable. We propose
as invariants Py and P, defined by

Py: r=(maxp,q:0<p<qg<nAApgq:q-p)
and

P: 0<n<N

For the initialization, we derive

(maxp,g:0<p<q¢g<0A Apg:q-p)
= { calculus }
(maxp,g:p=0Ag=0A Apg:q-p)

{A0.0, cf. (0)}

0

from which we infer that P, A P, is initialized by n,r:= 0,0. Note that we used (0).
For an increase of n by 1 we derive, assuming Py A P, A n# N,

(maxp,q:0<p<g<n+l A Apgq:q-p)

= {split of g=n+1}
(maxp,q:0<p<g<nA Apg:q-p)
max (maxp:0<p<n+l A Ap(n+l):nt+l—p)

{Po}
r max (maxp:0<p<nt+l A Ap.(n+l):n+l—p)

{+ distributes over max for a non-empty range, A.(n+1).(n+1), cf. (0) }
rmax (n+ 1+ (maxp:0<p<n+l A Ap.(n+1): —p)

{ property of max and min }
rmax (n+1— (minp: 0 < p <n+l A Ap.(n+1) : p))

1

leading to the introduction of integer variable s and accompanying invariant
Q: s=(minp:0<p<nA Apn:p)
(Why is s not defined as s = (minp: 0 <p < n+l1 A A.p.(n+1):p)?) From

(minp:0<p<0A Ap0:p)=0

Longest segments 113

we infer that s should be initialized at zero and we obtain a program of the following
form.

{N>0A(VR:0<n < N:Ann)}
n,r,s:=0,0,0
{invariant: P, A P, A Q, bound: N —n}
:don #N
— ‘establish Q(n:=n+1)’

;7= rmax (n+1-s)

in:i=mn+l
od
{r = (maxp,q:0<p<g< N A Apq:q-p)}

This scheme leaves ‘establish Q(n:= n+1)’ as a subproblem. Since .A holds for
empty segments, the range of the quantification in Q is non-empty and @ can be
written as the conjunction of Qo, @1, and Q,, defined as

QO:\OSSSTL
Q1: Asn
Q;: (Vp:0<p<s:-Apn)

Since A is prefix-closed, we have - A.p.n = - Ap.(n+1) for 0 < p < n, and, hence,
Q2 = Qi(n:=n+1)

We have Qo = Qo(n:=n+1) as well and we conclude
Qo A Qa2 A As(ntl) = Q(n:=n+l)

The fact that Qy(n:=n-+1) is implied by @, has another consequence. From
Qa(n:=n+1) = (Vp:0<p<s:-Ap.(ntl))

we infer

Q; = (minp:0<p<nt+l A Ap.(ntl):p) >

114 Segment Problems

i.e., only values p for which s < p < n+1 have to be investigated. For p = n+1 we
know that A.p.(n+1) holds, so we usually start our investigations with the calculation
of A.p.(n+1) for s < p < n. '

We return to all zeros, for which Ap.q = (Vi:p <i < g: X.i=0), and we
compute A.p.(n+l) for s <p<n:

A.p.(n+1)
= { definition of A}
(Vi:p<i<n+l:Xi=0)
= {splitoff i =n,p<n}
Vi:p<i<n:Xi=0AXn=0
= { definition of A}
Apn A Xn=0

Hence,
QA Xn=0=> Q(n:=n+l1)
and
Xn#0 = (Vp:s<p<n:-Ap.(ntl))
from which we infer, since A.(n+1).(n+1) holds
Xn#0 = Q(n:=n+l)(s:=n+l)
This leads to the following solution to all zeros:

[var n, s : int;
n,r,$:=0,0,0
idon #N
— if X.n=0 — skip
[Xn#0 — s:=n+l

fi
;7:=rmax (n+1-s)
ini=n+l

od
I

Note that we did not use the postfix-closedness of A.

Longest segments 115

7.1.1 Left-minimal segments

As another example of the approach outlined in the previous section, we consider the
problem of the computation of the length of a longest segment that is left-minimal. Its
formal specification is

[con N :int {N > 0}; X : array [0..N) of int;

var 7 : int;

S
{r=(maxp,q:0<p<qg<NA(Vi:p<i<q:Xp<Xi):g-p)}

It
As before, we start with the introduction of A and define for 0 <p<g< N
Apg = Vi:p<i<qg: Xp<Xi)

Evidently, the term in A.p.q depends on p and does not depend on g. However, the
following properties of .A.p.q do hold:

(0) Ann for0<n<N (A holds for empty segments)

and
(1) Apg= (Vi:p<i<gqg:Api) for0<p< N (Ais prefix-closed)

But A is not postfix-closed and the derivation of a program based on a replacement
of the constant O by a variable is quite difficult, as the reader may verify. As in the
previous section we define Py, P;, and Q (the conjunction of Qo, @1, and Q-) as

P,: r=(maxp,q:0<p<qg<nA Apg:q-p)
P: 0<n<N

Qo: 0<s<n

Q: Asn

Q;: (Vp:0<p<s:-Apn)

Since A is prefix-closed, we have, as before,

Qo A Q2 A Ais(n+l) = Q(n:=n+l)

We derive, assuming @ A0 <n< N,fors<p<n

116 Segment Problems

A.p.(n+l)
= { definition of A}
(Vi:p<Li<n+tl: Xp<Xi)
= {split off i=n,p<n<nt+l}
Vi:rp<i<n: Xp<Xi)AXp<Xn
= { definition of A}
Apn A Xp< Xn

hence,
QA Xs<Xn = Qn:=n+l)
When X.n < X.s, we have, starting with the last line of the derivation above,

Apn A Xp< Xn
= {Xn<Xs}
Xp< X.s
= {Q@,, definition of A.s.n }
Xp<XsA(Vi:s<i<n:Xs<X.)
= {s<p<n, Xn<Xs}
p=mn

from which we infer
QA Xs>Xn = Q(n:=n+l)(s:=n)
It is now easy to code the program:

[var n, s : int;
n,r,s:=0,0,0
;don #N
— if X.s < X.n — skip
] Xs>Xn —-si=n

fi
;7:=rmax (n+1-s)
ini=n+l

od

Longest segments 117

7.1.2 At most ten zeros

In this section we discuss a variation on the previous approach. Reconsider the program
scheme of Section 7.1.0 in which ‘establish Q(n := n+1)’ has to be refined. We assume
that A is prefix-closed and holds for empty segments.

The pre-condition of ‘establish @(n:=n+1)"is @, the conjunction of

Qo: 0<s<n
Q.: Asn
Qy: (Vp:0<p<s:-Apmn)

As stated before, we have Qo = Qo(n:= n+1) and, since A is prefix-closed, we have
Qs = Qy(n:=n+1) as well. Thus, Q implies

0<s<n+l A (Vp:0<p<s:-Ap(n+l))

which may be used as invariant for a repetition with guard —|A.s..(n+l) and bound
function n+1—s (the invariance of s < n+1 follows from A.(n+1).(n+1)). Substitution
of this linear search in the program scherpe results in the program below.

n,r,s:=0,0,0
idon #N
— do - A.s.(n+1) — s:=s+1 od
7= rmax (n+1—s)
;ne=n+1
d
r=(maxp,q:0<p<qg<N A Apq:q-p)}

L{

To determine the time complexity of this ‘program’, we add ghost variable ¢:

n,r,s:=0,0,0;t:=0
i:don#N 7
— do = A.s.(n+1) — s:=s+1;t:=14+1 od
;7:=rmax (n+1-s)
ini=n+l;t:=1+1
od

118 Segment Problems

Variable # is initialized at 0 and is incremented in each step of the outer repetition and
in each step of the inner repetition. Hence, the final value of ¢ is a good measure for
the time complexity of the program. When s is incremented by 1 then ¢ is incremented
by 1 and the same holds for n and ¢. Thus, the value of t — s —n is not changed during
execution of the program. Initially this value is zero. Thus,

t=s+n

is an invariant of the program and holds initially. Since s < n < N is also an invariant
of the repetitions, we have

t<2N

from which we conclude that the time complexity is O(N). In this discussion we have
assumed that —A.s.(n+1) can be evaluated in constant time. If this is not the case,
refinement of this expression may lead to a final program that is not linear at all.

We use this scheme for the derivation of a program for the computation of the
length of a longest segment that contains at most 10 zeros. Its formal specification is

[con N :int {N > 0}; X : array[0..N) of int;
var r : int;
S
{r=(maxp,q:0<p<g<NA (#i:p<i<g:Xi=0)<10:q-p)}

I
With A.p.q defined as (#i:p<i<gq:X.i=0)<10,wehavefor 0<s<n<N

~A.s.(n+1)
= { definition of A}
(#i:s§i<n-|-1:X.i:0)>10

We introduce variable ¢ and accompanying invariant Q' defined by
Q: c=(#i:s<i<n:Xi=0)

Provided that Q'(n:= n+1), we may replace ~A.s.(n+1) by ¢ > 10.
From (#14:0<i < 0:X.i=0)=0 we conclude that c should be initialized at 0. We
obtain the following O(N) solution.

Longest segments 119

[var n,s,c:int;
n,r,8¢:=0,0,0,0
;don#N

— if Xn=0—-c:=c+l
[X.n# 0 — skip

fi
{c=(#i:s<i<n+l:X.i=0)}
;doc> 10

- if Xs=0—-ci=c-1
] X.s+# 0 — skip

fi
;8:=s+1
od
;7:=rmax(n+1—s)
ini=n+l

od
-

The derivations of the selection statements in this program are straightforward and
have been left to the reader.

7.1.3 All elements different

Our final example is a problem for which we derive a quadratic solution, despite the fact
that the defining predicate holds for empty segments, is prefix-closed and is postfix-
closed. The problem is to determine for a sequence X, the length of a longest segment in
which all values are different. (Using more sophisticated data structures an O(NV log N)
solution to this problem can be derived. However, the treatment of such data structures
is beyond the scope of this book.) A formal specification of the problem is

[con N :int {N > 0}; X : array [0..N) of int;
var r : int;
S
{r = (maxp,q:0<p<qg< N A Apqg:g-p)}

I,

where for0<p<g< N

Apg = (Vi,j:p<i<j<gq:Xi#X.Jj)

120 Segment Problems

Verlfy that A is prefix-closed, postfix-closed and holds for empty segments. We define
Py, P, and @ as before and we consider ‘establish @(n :=n+1)". Its pre-condition is

Qo: 0<s<n
Q.: Asn
Q,: (Vp:0<p<s:-Apn)

Since A is prefix-closed, Q, implies (Vp:0 < p < s : ~Ap.(n+1)). Furthermore,

A.s.(n+1)
= { definition of A}

(Vi,j:s<i<j<n+tl:Xi#X,j)
= {split off j =n}

(Vi,j:s<i<j<n:Xi#X,j)A (Vi:s<i<n:Xi# Xn)
= { definition of A}

Asn A (NVi:s<i<n:X.i#Xmn)

Hence, Q(n:= n+1) is the conjunction of the following four predicates:

0<s<nt+l

A.s.n
(Vi:s<i<n:Xi#Xn)
(Vp:0<p<s:-Ap(ntl))

The first, second, and last conjunct are implied by @ and the third conjunct holds for
s = n. As we did for the Bounded Linear Search, we introduce a fresh variable (h) and
we define invariant U as the conjunction of Uy, Uy, U, and Us:

Uy: s<h<n+l

Up: Asan

U, : (Vi:h§i<n:X.i7éX.n)
Us: (Vp:0<p<s:—Ap(ntl))

These are initialized by h:= n. As guard we choose, of course, h # s. Since A is
postfix-closed, s := h maintains U;. A straightforward calculation yields

UAh#s A X.(h=1)# X.n = U(h:=h-1)
UAh#sAX(h—1)=Xn = U(s:=h)

Longest segments

and we obtain as solution:

[var n, s : int;

n,r,s:=0,0,0
;don #N
— |[var h : int;
h:=n
;doh #s

—if X.(h—1)# X.n — h:=h-1
] X(h-1)=Xmn —-s:=h
fi
od

]

;7= rmax (n+1-s)
n:=n+l

od

I

This program has time complexity O(N?%).

Exercises
Derive an O(N) solution to

[con N :int {N > 1}; X : array [0..N) of int;

var 7 : int;
S

{r=(maxp,q:0<p<g<N A Apg:q-p)}

I
where A.p.q is defined as
0. (Vi,j:p<i<j<gq:Xi=Xj)
1. X[p..q) is increasing.
2. (Vi:p<i<g:X.i<X(q-1))

3. (#i:p<i<qg:Xi=0)=2

121

122 Segment Problems

4. The product of any two elements of X [p..q) is at least zero.
5. X[p..q) is monotonic (i.e. ascending or descending).
6. (Zi:p<i<g:X.i)mod3=0
The following exercises are more complicated and may be skipped at first reading.

7. X[p..q) contains at most two distinct values.
8 (Vi:p<i<gq:|X.pl2Xi)

9. (V4,j:p<i<j<gq:0<Xi—-Xj<1)
10. (Vi,j:p<i<j<gq:|Xi-Xjl<1)

11 (Vi,j:p<i<j<g: Xi-Xj<1)

7.2 Shortest segments

We present only one example of a shortest segment problem. In this section we show
that the approach for longest segment problems may lead to rather complicated so-
lutions when applied to a shortest segment problem. This section may be skipped at
first reading: in Chapter 8 the same problem is solved in a much better way.

The problem is to compute the length of a shortest segment that contains at least two
zeros. It is formally specified as

[con N :int {N > 0}; X : array [0..V) of int;
var r : int;
S
{r =(minp,q:0<p<g<N A Apg:q-p)}

I
where, for 0 <p<g<N,
Apg = (#i:p<i<q:Xi=0)>2

Tt is not known whether segments satisfying A exist. When, for instance, X [0..N) does
not contain a zero then the post-condition is r = co. '

Predicate A does not hold for empty segments, is not prefix-closed and not postfix-
closed. However, A, defined by (-.A).p.¢ = —(A.p.g), does have these properties.

Shortest segments 123

The duality between longest and shortest segment problems is studied in more detail
in Chapter 8.

We may try to derive a program along the same lines as we did for longest segments,
by defining

Py: 7= (minp,q:0<p<g<n A Apq:q-p)
P: 0<n<N
Q: s=(maxp:0<p<nA Apn:p)

Redoing all calculations of Section 7.1.0 with max replaced by min and vice versa
does not work. The problem is that the ranges of the quantifications may be empty
and, hence, no distribution of + over min can be applied. We conclude that if we
want to stick to the approach of the previous sections, we should ensure that the ranges
in the quantifications are non-empty. Then all results of the preceding sections may
be used (with the replacements indicated above). Note that .A.0.n guarantees that the
ranges are non-empty. Thus, we arrive at the following program scheme:

‘establish Py A P, A Q@ A A0
{invariant: Py A P, A Q A A.0.n, bound: N —n}
don#N
— ‘establish Q(n:=n+1)’

;7:=rmin (n+1-s)

;ni=mn+l
od
{r=(minp,q:0<p<g< N A Apg:q-p)}

We postpone the discussion of ‘establish Py A Py A Q A A.0.n’ and we consider ‘establish
Q(n:=n+1)’ first. We derive

Q
= { definition of Q@ }
s=(maxp:0<p<nA Apn:p)

{ A.0.n, hence, the range is non-empty }
0<s<nAAsnA(Vp:s<p<n:-Apn)
= { definition of A}

124 Segment Problems

0<s<nA(#i:s<i<n:Xi=0)22A(#i:s<i<n:Xi=0)<2
= { calculus }
0<s<nAXs=0A(#i:s<i<n:Xi=0)=1

and, hence,

Qn:=n+1) = 0<s<n+lAXs=0A(#i:s<i<ntl:X.i=0)=1
Evidently

QAXn#0 = Q(n:=n+l)
whereas

QAXn=0= (#i:s<i<n+l:X.i=0)=2

In the latter case s should be replaced by the unique ¢, s < t < n, for which X.t = 0.
This leads to the introduction of variable ¢ with accompanying invariant Q' defined by

Q: s<t<nAXt=0
Then

QAQAXn#0 => Xs=0AXt=0A (#i:s<i<nt+l:Xi=0)=1
and

OANQ AXn=0= Xt=0AXn=0A #i:t<i<ntl:Xi=0)=1
which yields for ‘establish Q(n :=n+1)’

if Xn#0—skip | Xn=0—st:=¢t,nfl

The only thing that is left to be done is ‘establish Py A Py A Q A Q@". Let us summarize
these invariants.

P,: r=(minp,¢:0<p<g<nA Apq:q-p)
P: 0<n<N

Q: s=(maxp:0<p<nA Apn:p)

Q: s<t<nAXt=0

Shortest segments 125

When X[0..N) contains less than two zeros, these invariants cannot be established.
Thus, we perform case analysis and we introduce integer variable ¢ for which

c=(#i:0<i<n:X.i=0Ac<2A(c=2Vn=N)

is the post-condition of a repetition. Its derivation is straightforward. When ¢ < 2
then oo is assigned to r, otherwise P, @, and Q' are initialized such that

n—s = (minp,q:0<p<g<n A Apg:g-p)

Since a more elegant solution is derived in Chapter 8, we do not show the calculations,
but merely present the resulting program:

[var n,c: int;
n,c:=0,0
‘don#£NAc#2
— ifXn=0—c=ctl J]Xn#0—skip fi

sni=n+l
od
iifc<2—-ori=c ,
| c=2

— |[var s, t : int;
5:=0;do X.s#0— s:=s+1 od
it:=s+1;do X.t#0— t:=t+1 od

sni=t+1
JTI=n—§
;don # N

— if Xn#0—skip[Xm=0—s,t:=¢t,nfi
;7:=rmin(n+l-s)
jn:=n+l
od
]

126 Segment Problems

Exercises
0. Solve

[con N :int {N > 0}; X : array [0..N) of int;
{(Vi:0<i<N:0< Xi<2)}
var r : int;
S
{r=(minp,q:0<p<g<N A Apg:q-p)}

I
where A.p.q is defined as

Values 0,1, and 2 occur in X|[p..q).

Chapter 8

Slope Search

8.0 Introduction

Slope Search, also known as Saddleback Search, is a technique which is applicable to a
large class of problems that involve quantifications over two bound variables, i.e., over
an area contained in Z x Z. In most applications the term of such a quantification is
a monotonic function of the bound variables, for instance, ascending in both variables
or increasing in one variable and decreading in the other variable. Examples are the
longest and shortest segment problems discussed in Chapter 7. For these problems the
term is g — p, which is an increasing function of ¢ and a decreasing function of p.

In Section 8.1 we discuss the basic principle of the slope search and we provide
various examples of its use. In Section 8.2 slope search is applied to segment problems.

8.1 The basic principle

Let M and N be natural numbers and let array f : [0..M] x [0..N] — Z be ascending
in both arguments, i.e.,

(Vi:0<i<M: (Vj:0<j<N: fij<fi(j+1)))
AVG:0<j<N: (Vi:0<i<M: fij< f(i+1).4))

Assume that a value X occurs in f, ie.,
(34,j:0<i<MAOLFj<N: fij=X)
We are asked to derive a program that establishes for integer variables a and b

0<a<MAOLbLSNAfab=X

127

128 Slope Search

Array f is ascending in both arguments. Hence, f has its minimum in (0,0) and its
maximum in (M, N). Since X occurs in f, we have

F0.0< X < f.M.N

Having this information, it does not help much to inspect f.0.0 or f.M.N . Two other
points of [0..M] x [0..N] are possible candidates for inspection: (0, N) and (M, 0). We
consider (0, N). Since f is ascending in its first argument, we have

fON=(mini:0<i< M: fi.N)
hence,
fON>X = (Vi:0<i<M: fiN>X)

ie., when f.0.N > X then the search area may be reduced to [0..M] x [0..N—1]. Since
f is ascending in its second argument, we have

fON =(maxj:0<j < N: f0.j)
hence,
fON<X = (Vj:0<j<N:f0j<X)

i.e., when f.0.N < X then the search area may be reduced to [1..M] x [0..N].

We formalize this discussion as follows. Let I and J be such that
0<I<MANOLJLSNA A\ fIJ=X

The ‘search area’ is characterized by (I,.J) € [a..M] x [0..5] or, equivalently, we choose
as invariant for a repetition

P: 0<a<IAJLbLN

which is established by a,b:= 0, N. The reduction of the search area in terms of P is
given by the following derivations.

fab< X
= { f is ascending in its second argument, J < b}
fad <X
= {flJ=X}
a#T
= { P, in particular, a < I}
at+1<1T

The basic principle 129

and

fab>X
= { f is ascending in its first argument, a < T}
fIb>X
> {fILJ=X}
b#£J
= { P, in particular, J < b}
J<b-1

We conclude
PA fab<X = Pla:=a+1) and P A fab>X = P(b:=b-1)
This yields the following solution:

a,b:=0,N {invariant: P, bound: N —a + b}
ido fab< X —a:=a+l

I fab>X—b:=0b-1

od

{fab=X} '

This program has time complexity O(M+N). A similar program is obtained when we
choose (M, 0) as starting point. '

An operational interpretation of this technique is the following. The three-di-
mensional surface z = f.z.y has as lowest point (0,0, f.0.0) and as highest point
(M, N, f.M.N). Somewhere in between position X occurs. To find that position
one should not start at a minimum or at a maximum, but somewhere in between, for
instance, at (0, N, £.0.N) or at (M, 0, f.M.0), and move along the slope of the surface
in such a way that position X is approximated as well as possible, i.e., by going down
when the value is too high and by going up when the value is too low. Because of this
interpretation, which will not be pursued any further, this technique is called Slope
Search.

Note that the points where f attains its minimum or its maximum are not impor-
tant. The other two points, that are either the maximum of a row and the minimum of
a column, or the minimum of a row and the maximum of a column, are useful. When,
for instance, f is ascending in its first argument and descending in its second argument,
suitable invariants are 0 <a<IT A0<b<Jor I<a<MAJ<bSN.

The reduction of the search area, i.e., the reduction of the problem to a smaller
problem of the same form, usually leads to the introduction of a tail invariant. For the
above program, we have

130 Slope Search

(34,7:0<i<MAOLj<N:fij=X)

(34,5:a<i<SMAO0Lj<b: fij=X)

as tail invariant. In the following sections we use tail invariants of this form.

8.1.0 Searching

In the previous section we solved the problem of searching for a value in a two-
dimensional array, given that the value occurs in the array. In this section we consider
the following problem: we are given integers M and N, M >0 A N > 0, and integer
array f[0..M)x[0..N) such that f is ascending in both arguments. We are asked to
determine whether value X occurs in f. A formal specification is

[con M,N,X :int {M >0 A N >0}; f: array [0..M)x[0..N) of int;
{f is ascending in both arguments}
var r : bool;
S
{r=(34j:0<i<MAO<Sj<N:fij=X)}
I

Following the strategy explained in the previous section, we define ‘tail’ G.a.b for
0<a<MAOLb<LSNby

Gab = (34,5:a<i<MAOLj<b: fij=X)
In terms of G, the post-condition of the specification may be written as
R: r=G.ON
We introduce integers a and b and define tail invariant Py by
Py: VvV Gab = GO.N
The bounds for a and b are specified by invariant P; :
P: 0a<MAOLbILN

A proper initialization of Py A Py is a,b,r:= 0, N, false. For a = M V b = 0 the range
of the quantification in G is empty, hence,

The basic principle 131

PoA(a=MVb=0)
= { definitions of Py and G }
r V false = G.O.N
{ predicate calculus }
r = G.O.N
= { definition of R}
R

I

Furthermore, when r is true, then 7V G.a.b = r, hence,

rV Gab = GON
= {rvGab =r}
r = G.O.N

and we conclude P A (a=M V b=0V r) = R. Thus, we choose
aFMAbF#OA T

as guard of a repetition.
We investigate an increase of @ by 1. Assuming 0 <a <M AO0<b<N, then

G.a.b
= { definition of G'}
(3i,j:a<i<MAOLj<b: fij=X)
= {split off i = a}
G.(a+1)bV (3j:0<ji<b: faj=X)
{ f is ascending in its second argument, 0 < b—1, assuming fa.(d-1)< X}
G.(a+1).b V false
{ predicate calculus }
G.(at+1).b

1l

i

Hence,
f.a.(b-1) < X = (G.ab = G.(a+1).d)

Similarly, we have for a decrease of b by 1:

132 Slope Search

G.a.b
= { definition of G'}
(3i,j:a<i<MAO<j<b:fij=X)
{split off j =b-1}
Gafb-1) Vv Fi:a<i<M: fi(b-1)=X)

G.a.(b—1) V false
= { predicate calculus }

G.a.(b—1)
Hence,
fa.(b-1)> X = (G.a.b = G.a.(b-1))
For the remaining case f.a.(b—1) = X, we derive for 0 < a< M AO<b< N

Py A fa(b-1)=X
= { definition of P, }

(rvVGab= GON)A fa(b-1)=X
= { definition of G }

TV true = G.O.N
= { predicate calculus }
true V G.a.b = G.O.N

{ definition of Py}

Py(r := true)

These derivations lead to the following solution

[var a,b: int;
a,b,r:= 0, N,false {invariant: Py A P;, bound: M —a+b+ #.(-r)}
jdoa#M Ab#0 A —r
—if fa.(b—-1) < X - a:=a+l
} fa.(b-1)>X—b:=0b-1
[fa.(db-1) = X — r:= true
fi
od

{ f is ascending in its first argument, a < M, assuming f.a.(b—1) > X }

The basic principle 133

This program has optimal time complexity O(M+N), which is proved as follows. Let
h{0..N] be an integer array, then a program for the computation of

(3i:0<i<N:hi=X)

has at least time complexity O(NN), since any correct program will inspect all h.7 in
the case that X does not occur in h. Define array f[0..N]|x[0..N] by

fij=—-o00 ifi+j<N
fij=o00 ifi+j>N
fijg=ha ifi+j=N
Then f is ascending in both arguments and a correct program for the computation of

(3i,j:0<i<NAOLj<N:fij=X)

will inspect all f.i.(N—z) in the case that X does not occur in f.

8.1.1 Decomposition in a sum of two squares

As our second example, we derive a program for the computation of the number of

" ways in which a natural number N can be written as the sum of two squares. We

supply an annotated program together with its numbered derivations.

The first thing to do is to supply a formal specification:

[con N :int {N > 0};

var r : int;

S
{r=#=zy:0<z<y:22+y*=N)}

Il

Since x* +4? is increasing in both arguments on the domain 0 < z < y, we define G.a.b
as

Gab=(#z,y:a<z<y<b:z?+y*>=N)
and we choose as invariants

Py: 74+ Gab=(#z,y:0<z<y:z°+y*=N)
P: 0<a

134 Slope Search

In the following proofs we present the calculations for a solution.

Proof 0

G.a.b
= { definition of G }
(#z,y:a<z<y<b:z’+y*=N)
{provided a > b}

Il

0

Hence, P, A a > b implies the post-condition.

Proof 1

For the initialization, we derive for 0 < b

G.0.b
= { definition‘of G }
(#2,y:0<z<y<b:2>+y*=N)
{ range split }

{provided ¥ > N,0<b}
(#z,y:0<z<y:2’+y*=N)

Hence,

r=0Aa=0A0<bAP2N
= {see above }
r+Gab=(#z,y:0<z<y:22+y*=N)A0<Za
= { definitions of P, and P; } ‘
FPo APy

Proof 2

We investigate an increase of a by 1. For 0 < a < b, we derive

G.a.b
= { definition of G'}
(#z,y:a<z<y<b:2’+y’=N)
= {split off z =a}

(#w,y:OSzSy:m2+y2=N)—(#a:,y:OSx§y/\y>b:a:2+y2=N)

The basic principle

G.(at+1)b+(#y:a<y<b:a®+y* =N)
= {a? +y? is increasing in y, a < b}
G.(a+1).b+0 ifa®? +b* < N
{ G(atl).b+1 ifa?+b* =N

Proof 3

We investigate a decrease of b by 1. For 0 < a < b, we derive

G.ab
= { definition of G'}
(#z,y:a<z<y<b:z?+y*=N)
= {split off y =5}
Ga.(b-1)+ (#z:a<z<b:2?+0*=N)
= {z*+ b? is increasing in z, a < b}
G.a.(b—1)+0 ifa®+b¥ >N
{G.a.(b—1)+1 ifa? +b*=N

o

Solution:

| var a,b : int;
r,a:=0,0
{Linear Search:}
ib:=0;dobxb< N —b:=b+10d
{invariant: P, A Py, Proof 1, bound: b — a}
;doa<b
—ifaxa+bxb< N— a:=a+l {Proof 2}
laxa+bxb>N— b:=b-1 {Proof 3}
Jasxa+bxb=N-—ra:=r+l,a+1 {Proof 2}
la*a+bxb=N-—rb:=r+1b-1 {Proof 3}
fi
od
{r=(#2z,9:0<z<y:2°+y* = N), Proof 0}

I

135

This concludes the presentation of the solution. This program has time complexity
O(V/N). Initializing b by b:= N leads to a program that has time complexity O(N)

which is as bad as a brute force search in the area [0..v/N] X [0..//N).

136 Slope Search

One may wonder whether the two guarded commands

axa+bxb=N—>ra:=r+l,a+1
axa+bxb=N—->rb:=r+1b-1

may be replaced by
axa+bxb=N —ra,b:=7+1,a+1,b—1
The only way to find out is by calculation: assume 0 <a <b A a? + b2 = N, then

G.a.b

= {deﬁnitionk of G}
(#z,y:a<z<y<b:z®+y’=N)

= {split of y =5}
G.a.(b-1)+(#z:a<z<b:x>+b*=N)

= {split off = a in G.a.(b—1)}
G.(a4+1).(b-1)+ (#y:a<y<b-1:a*+3y*=N)

+(#zx:a<z<b:2>+b*=N)

= {2+ =N}

G.(a+1).(b-1) +1

Hence, this replacement is allowed, leading to

[var a,b : int;

r,a:=0,0]
1b:=0;:dobxb< N —b:=0b+10d
idoa<b

—ifaxa+bxb< N—oa:=at+l
Jakxa+bxb>N—b:=>b-1
la*a+bxb=N—rab:=r+l,a+1,b-1
fi

od

8.1.2 Minimal distance

Our next example is the derivation of a program for the computation of the minimal
distance of two ascending sequences. It is specified by

The basic principle 137

[con M,N :int {M >0 A N > 0};
f : array [0..M) of int {f is ascending};
g : array [0..N)of int {g is ascending};
var r : int;
S v
{r=(minz,y:0<z <M AO0<y<N:|fzx—gyl)}

] "

Note that f.z—g.y is ascending in z-and descending in y and g.y— f.z is descending in
z and ascending in y. The expression |f.z — g.y|, being equal to (f.z — g.y) max(g.y —
f.z), does not have these properties. However, as will emerge from the derivations, a
slope search still is possible. Since f.r — g.y and g.y — f.r have both ascending and
descending properties, we define G.a.bfor 0 <a <M A0 b N as:

G.a.b=(minz,y:a <z <M Ab<y<N:|fz-guyl)
The post-condition may be written as
R: r=G.00
and we propose as invariants

Py: rminG.a.b=G.0.0
P: 0<a<MAOLBILSN

These are initialized by a,b,r:= 0,0, co. Furthermore,

PyA(a=MVb=N)

= { minimum over an empty range is co }
rminoo = G.0.0

= { calculus }
r=G.0.0

This yields as guard a # M Ab# N. For 0 <a <M A 0<b< N we have

G.a.b
= { definition of G'}

(minz,y:a<z <M Ab<y<N:|fz—guy|)
= {splitoff c =a}

138 Slope Search

G.(a+1).b min (miny: b <y < N :[f.a—g.yl)
{ g is ascending, assume g.b > f.a}

G.(a+1).b min (miny: b <y < N: gy — f.a)
{ g is ascending }

G.(a+1).b min (g.b — f.a)

I

Hence,
g.b> fa = G.a.b=G.(a+1).bmin(g.b— f.a)

On account of the symmetry of the specification in f and g, we have
fa>gb = G.ab=G.a.(b+1)min(f.a — g.b)

as well. We now have all ingredients for the solution:

[[var a,b : int;
r,a,b:=00,0,0
idoa#M Ab#N
> ifgb> fa — a,r:=a+1,7rmin(g.b— f.a)
| fa>gb—br:=b+l,rmin(f.a— g.b)
fi
od

Ik

When we know how to approach these problems, the derivations are rather simple and

a program is easily constructed.

Exercises

Derive programs for the following problems.

0. [con M,N :int{M >0 A N > 0};
f : array [0..M) of int {f is increasing};
g : array [0..N) of int {g is increasing};
var r : int;
coincidence count
{r=F#2z,y:0<z<MAOLy<N:fzx=gy)}

]

The basic principle

. [con N :int {N > 0};

var r : int;
S -
{r=#z,y:0<zA0<Ly:2*+y?=N)}

]

. [con M,N :int {M >0 A N >0}; f: array [0..M)x[0..N) of int;

{f is ascending in both arguments}
var 7 : int;

S
{r=(#4,7:0<i<MAO0Lj<N:fij=0)}
I ‘
(Hint: (#i:R:hi=0)=(#i:R:hi>0)— (#i: R:hi>0)).

139

. The Welfare Crook : The sets U, V, and W are represented by increasing integer

arrays f[0..K), g[0..L), and h[0..M). Derive a program for the computation of

an element of U NV N W, given that such an element exists.

. fcon N :int {N > 0};

var 7 : bool; '
s .
{r=32y:0<zA0<y:N=2"+3)}

]

. [con M :int {M > 0}; f: array [0..M) of int;

{(Vi:0<i<M: fi>0)}

var r : int;

S
{r=#p,q:0<p<g<M:(Zi:p<i<q:fi)<T)}

I

. N points, numbered from 0 onwards, are located on a circle (in the rest of this

exercise all point numbers should be taken mod N). Point i+1 is the clockwise
neighbor of point i. An integer array, dist[0..N), is given such that dist.i is the

distance (along the circle) between points ¢ and i+1.

(i) Derive a program to determine whether there exist two points at opposite

ends of a diameter of the circle.

(ii) Derive a program for the computation of two points that have maximal

Euclidian distance.

140 Slope Search

8.2 Longest and shortest segments

In Chapter 7 we discussed longest and shortest segment problems. Longest segment
problems are of the form

[con N :int {N > 0};
var r : int;

mazseg
{r=(maxp,q:0<p<g<NAApg:q-p)}

]

where A is a predicate, typically related to some integer array X[0..N). Examples of
such predicates are

Ap.gq (Vi,j:p<i<qAp<j<g:Xi=Xj) (X[p.g)is constant)
Apg = (Vi,j:p<i<j<q:Xi<Xj) (X[p..q) is ascending)
Apqg = (#i:p<i<q:Xi=0)<60 (X[p.q) contains at most 60 zeros)

1

i

For these examples, A satisfies (0 <p<g< N)

(0) Ap.p the empty segment is an 4A-segment
(1) Apg= (Vs:p<s<gq:Aps) Ais prefix-closed
(2) Apg = (Vs:p<s<gq:As.q) Ais postfix-closed

Shortest segment problems are of the form

[con N :int {N > 0};
var r : int;
minseg
{r=(minp,q:0<p<qg<NAApg:q-p)}

I

Examples of predicates for these problems are

Apqg = (34,5,k:p<4,5,k<qg: Xi=0AXj=1AXk=2)
(values 0, 1, and 2 occur in X[p..q))
Apg= (#i:p<i<q:X.i=0)>60 (X[p..q) contains at least 60 zeros)

For these examples, A satisfies (0 <p < g < N):

Longest and shortest segments 141

(0) - App the empty segment is a —.A-segment
(1) -Apg = (Vs:p<s<q:—Aps) -Ais prefix-closed
(2) -Apg = (Vs:p<s<q:-Asg) —Ais postfix-closed

‘Note that

A satisfies (0), (1), and (2) = -A satisfies (0'), (1'), and (2')

When we have a solution to mazseg for predicates that satisfy (0) and (1), then we
have, by applying this solution to the reverse of X, a solution for predicates that satisfy
(0) and (2). A similar remark pertains to minseg.

In Section 8.2.0 we derive a program scheme for mazseg for the case that (0) and
(1) hold. In Section 8.2.1 a program scheme is derived for minseg, for which (0') and
(2') are assumed. These schemes are derived by means of the Slope Search technique.
In Section 8.2.2 we apply such a scheme to obtain a program for the computation of
the length of a shortest segment X [p..q) that contains at least two zeros, i.e.,

CApg = (#i:p<i<qg:Xi=0)2>2

The same problem was solved in Section 7.2, but that solution is not very satisfactory.

8.2.0 Longest segments
Let N > 0 and let predicate A in the range 0 < p < ¢ < N satisfy

(0) App the empty segment is an .A-segment
(1) Apg => (Vs:p<s<gq:Aps) Ais prefix-closed

We derive a program that has post-condition
R: r=(maxp,q:0<p<¢<N A Apg:q—p)

Since g—p is ascending in g and descending in p, we define G.a.b for 0 < a < b< N
by

G.ab=(maxp,q:a<p<g<NAb<qg<NA Apgq:q-p)
Then R may be formulated as
R: r=G.00

As invariants for a repetition we choose

142 Slope Search

P,: rmaxG.a.b=G.0.0
P: 05a<b<N

These may be initialized by a,b,7:= 0,0, ~co. However, since A.0.0 holds, a,b,r:=
0,0,0 is also correct. We derive

G.a.N

= { definition of G'}
(maxp:a<p< N A Ap.N:N-p)

= {assume A.a.N, N—p is descending in p, a < N }
N-a

Hence,
P,Ab=N A Aab = R(r:=rmax(N-a))

which yields b # N V ~.A.a.b as guard of the repetition. To determine a condition
under which b may be increased, we derive for 0 <a < b < N:

G.a.b
= { definition of G, split off g =5}
G.a.(b+1) max (maxp:a <p<bA Apb:b-p)
= {assume A.a.b, b—p is descending in p, a < b}
G.a.(b+1) max (b—a)

Hence,

Aab = G.a.b=G.a.(b+1)max(b—a)
Note that

PPA(B#NVYV -Aab) A Aab = b<N
For the case —.A.a.b we investigate an increase in a.

Due to (0), we have ~A.a.b = a # b, hence a < b is not violated by a:= a+1 in this
case. We derive for 0 < a <b< N A - A.ab

Longest and shortest segments 143

G.a.b
= { definition of G, split off p = a}

G.(a+1).b max (maxq:a <g< NAbSgSN A Aag: q—a)
= {a<b} |

G.(a+1).b max (maxq:b<g< N A Aa.g:q—a)
= {(1), ~A.a.b, hence, (Vg:b<g< N:-Aaq)}

G.(a+1).b

Hence,
-A.ab = G.ab=G.(at1).d

This concludes our derivation. The program scheme for mazseg is shown below. As
bound function, 2N — a — b will do.

maxseg: |vara,b:int;
a,b,r:=0,0,0
idob# N V ~Aab .
—if A.a.b— r:=rmax(b—a);b:=b+1
[~Aab—a:=atl
fi
od
.7 :=rmax (N—a)
{r = (maxp,q:0<p<qg<N A Apg:q-p)}

I

Note that we did not use the fact that ¢ — p is ascending in g, only that it is
descending in p. A closer look at the range of the quantification in the post-condition
(using the fact that A is prefix-closed) reveals that on the one hand the descendingness
plays a role and on the other hand the specific form of the range is important.

To obtain a final program, one has to replace A.a.b by a boolean expression. For
instance, we may try to add invariant ¢ = .A.a.b, which is initialized by c:= true.
Since 0 < @ < b < N, this invariant is well defined.

144 Slope Search

8.2.1 Shortest segments
We now consider minseg and we assume that 4 satisfies

(0) -=App the empty segment is a —.A-segment
(2") - Apg = (Vs:p<s<q:-Asq) =-Ais postfix-closed

The following derivation is almost a copy of the derivation presented in the previous
subsection and the reader is advised to compare both texts carefully. We define G.a.b
for 0<a<b< N by

G.ab=(minp,q:a<p<g<NAbLg<NA Apgq:q—p)
Then post-condition R may be formulated as
R: r=G.0.0
As invariants we propose

Fy: rminG.a.b=G.0.0
Pli OSGSbSN

which are established by a,b,7:=0,0,00. We derive

G.a.N
= { definition of G }
(minp:a<p< N A Ap.N:N-p)
= {assume —-A.a.N, =A is postfix-closed }

[S)
Hence,
Pg/\PlAb:N/_'A.a.b = R

which yields b # N V A.a.b as guard of the repetition. To determine a condition
under which b may be increased, we derive for 0 < a < b < N:

G.a.b
= { definition of G, split off ¢ = b}
G.a.(b+1) min (minp:a <p<b A Apb:b-p)
= {assume —A.a.b, = A is postfix-closed }
G.a.(b+1)

Longest and shortest segments 145

Hence,
-A.ab = G.ab=G.a(btl) |
Note that
PAB#NYV Aab) A ~Aab = b<N

For the case .A.a.b we investigate an increase in a.
Due to (0'), we have A.a.b = a # b, hence a < b is not violated by a:= a+1 in this
case. We derivefor 0 <a<b< N A A.ab

G.a.b
. { definition of G, split off p=a}
G.(a+1).b min (ming:a <g< N Ab<g< N A Aag:q—a)
{a<b} |
G.(a+1).b min (ming:b< ¢ < N A A.a.q:q—a)
{A.a.b, ¢ — ais ascending in ¢ }
G.(a+1).b min (b — a) !

I

Hence,
Aab = G.a.b=G.(a+1).b min (b— a)

This concludes our derivation. The program scheme for minseg is shown below. As
bound function, 2N — a — b will do.

minseg: [var a,b : int;
a,b,r:=0,0,00
idob# N V Aab
—if ~A.a.b = b:=b+1

l Aab—r:=rmin(b—a);a:=a+l
fi

od

{r=(minp,q:0<p<qg<NAApg:g-p)}

]

146 Slope Search

8.2.2 At least two zeros revisited

In this subsection we apply the scheme for minseg to obtain an algorithm for the
computation of the length of a shortest segment of integer array X[0..N) that contains

at least two zeros. For this problem

Aab = (#i:a<i<b: Xi=0)>2

Then —A holds for empty segments and —.4 is postfix-closed. To express A.a.b as

boolean expression, we introduce integer variable ¢ and accompanying invariant

Q: c=(#i:a<i<b:Xi=0)

Then A.a.b = ¢>2 and -~ A.a.b = ¢ < 2. This leads to the following solution.

[var a,b, c: int;
r,a,b,c:=00,0,0,0
;dob# NV e>2
—ife<2—> if Xb=0—-ci=ct+l1 [} X.b#£0—skip fi
;b= b+1
[e>2— r:=rmin(b—a)
;if X.a=0—-ci=c—1[] X.a##0— skip fi
;a:=a+1
fi
od

]

Compare this program with the one derived in Chapter 7.

Exercises

0. [[con N :int {N > 0}; X : array[0..N) of int;
{Vi:0<i<N:Xi>1)}
var r : int;
S
{r=(minp,g:0<p<g<NA(Zi:p<Li<g:Xi)>N:g-p)}

I

Longest and shortest segments 147

1. [con N :int {N > 1}; X : array [0..N) of int;

var r : int;
S
{r=(maxp,q:0<p<g<NAApqg:qg—p)}

I

where

Apg = (#i:p<i<q:Xi=X.(i-1) =37

. [con N :int {N > 0}; X : array [0..N) of int;

{(Vi:0<i< N:X.i>0)}
var r : int;
S
{r=(maxp,q:0<p<g<NA(Zi:p<i<g:Xi)<3:9-p)}
Il
How would you solve this problem if each element of X may be inspected only
once ?

.Let N > 0 and let X[0..N) be an integer array. Derive a program for the

computation of the length of a shortest segment that contains values 0,1, and 2.

Chapter 9

Mixed Problems

In the preceding chapters we showed how to reason about programs and how to derive
them from specifications. Arrays were only used as constants. In the final chapters
of this book we discuss array manipulations and we solve problems by introducing
auxiliary arrays.

A pumber of programming techniques have been described in these chapters. These
techniques can only be mastered by applying them to problems. To encourage the
reader, we have chosen problems that can be solved with the theory of the preceding
section. For instance, all the problems in Section 6.2 can be solved by a binary search
and all the problems in Chapter 8 can be solved by a slope search. In this chapter we
present a mix of problems. It is up to the reader to find out what strategies are most
appropriate for the problem in hand. Each problem should be studied carefully: often
more than one approach is applicable. All exercises admit a linear solution; however,
for some of them an O(log N) solution exists.

The derivation is as important as the resulting program. Both should not be compli-
cated: exploit symmetry, avoid unnecessary case analysis, introduce suitable notation
etc.

It is not necessary to complete these exercises before going on to the next chapters.
This collection is presented here because all prerequisites needed to solve these exercises
have been presented.

Some of the exercises are given by a formal specification. Others are formulated in
English. For the latter, one has to supply a formal specification first.

148

Mixed Problems

Exercises

0. [[con N :int {N > 0}; A: array [0..N)of bool;
var 7 : int;
S
{r=F#p:0<p<N:(Vi:0<i<p:Ai) = (Fi:0<i<p:Ai))}

]
1. [con N :int {N > 0}; A: array [0..N) of int;

var r : int;

S
{r=(2p,q:0<p<qg<N:Ap+Aq)}
I

2. [[con N :int {N > 0}; f : array[0..N) of int;
{f is ascending}
var r : int;
S
{r=(#p,q:0<p<p+q<N:fptq) — fp=37)}

4

]

3. For integer arrays f[0..N) and g[0..N) relation f < g is defined by

f<g = 3n:0<n<N:fn<gnAVi:0<i<n:fi=gi))

149

The relation < is called the lezicographical order. Derive for given f and g a

program that assigns to boolean variables a, b, and ¢ such values that
(@a=f=gAb=f=gA(c=T[>g)
4. Integer array f[0..N], N >0, is convez, i.e.,

(Vi:0<i< N:fi<3(f(i—1)+ f.(i+1)))

Derive a program for the computation of (3i:0 <1 < N : fi = f.(i+1)).

-150

10.

Mixed Problems

. [con N, A, B :int {N > 1}; f : array [0..N) of int;

var z : int;

S N

{6 = (Vp,g:0<p<g<N:A<(Zi:p<i<ygq:fi)<B)}
I

. In the (z,y)-plane a collection G of M circles is represented by integer array

R[0..M). Circle ¢ has centre (0,0) and radius R.4 (R.t > 0). Furthermore, a
collection L of N lines is given by integer array X[0..N). Line ¢ has equation

z = X.i. Both R and X are increasing. Derive a program for the computation
of

(i) There exists a line in L that is tangent to a circle of G.

(i) The number of intersection points of L and G.

. [con N :int {N > 0}; f: array[0..N) of int;

{f is increasing}
var r : int;
S

{r=(#=zy:0<e<y<N:fy-fa>y-z)}

]

. N points, numbered from 0 onwards, are located on a circle (in the rest of this

exercise all point numbers should be taken mod N). Point ¢+1 is the clockwise
neighbor of point ¢. An integer array, dist[0..N), is given such that dist.i is
the distance (along the circle) between points ¢ and ¢+1. Derive a program to
determine whether four of these points form a rectangle.

. Array f[0..N], N > 0, is increasing. Derive a program for the computation of

(31:0<i<N:fi=1)

[con N :int {N > 0}; f : array[0..N) of int;
var r : int;
S
{r=(#p,q:0<p<NAO<qg<N:
(#i:0<i<p: fi=0)< (#i:0<i<q: fi=1))}

11.

12.

13.

14.

15.

16.

Mixed Problems 151

For integers K and N, 0 < K < N, and integer array f[0..N), one is asked to
compute the number of segments of length K on which f is ascending.

Sets V and W are represented by increasing integer arrays f[0..M) and g[0..N),
M >0 A N > 0. Derive a program with post-condition

b=VCW

For integer array f[0..N], we have f.0 =0 A f.N # 0. Derive a program that
establishes for integer

fo=0A f(a+1)#0

For integer array X[0..N), N > 0, determine the length of a longest segment on
which X attains its maximum at most twice, i.e., a segment [p..q) for which

(#i:p<i<gq:Xi=(maxj:p<j<g:Xj)<2

For integer array X[0..N), N > 0, determine the length of a longest prefix of X
that contains zeros only.

[con A,B,N :int{A>1AB>1AN2>1}
var r : int;

S
{r = (minp,q: 1 <p< N A1< g< N:|4P - B))}

]

Chapter 10

Array Manipulations

10.0 Introduction

In the preceding chapters arrays are used as constants. We now introduce statements
that may change the value of an array. As we shall see in the following, these statements
have quite complicated definitions. Thus, precision in invariant calculations is vital.

In Section 10.1 the array assignment is introduced. It is of the form h.E := F', where
h is an array and F and F' are expressions. It differs from the ordinary assignment
in that its execution affects the value of an entire function. In the definition this is
reflected by a substitution of functions for functions.

In Section 10.2 we discuss the swap operation which interchanges two function
values. Many programming problems can be solved by means of swap operations on
the arrays involved only. Sorting is one example of such a problem. ’

10.1 Array assignments

Throughout this section N is a natural number, h[0..N) is an integer array and E
and F' are integer expressions. The array assignment is of the form h.E:= F. Its
operational interpretation is ‘replace the value of h.E by F’. Before we present a
formal definition we show by a small example how much this assignment differs from
an ordinary assignment and how easily one may draw incorrect conclusions.

Suppose h.0 = 1 and h.1 = 1. Then h.(h.1) = h.1 = 1 and statement h.(h.1):= 0
is equivalent to h.1:= 0 and will result in h.(h.1) = h.0 = 1. We conclude that

{(h0=1Ah1=1} h(h1):=0 {h.(h.1) =1}

152

Array assignments 153

is correct. This simple example shows a difference between an array assignment and

“an ordinary assignment for which we have, for example,

{true} z:= 0 {z = 0}

Apparently, h.E:= F changes the value of h but not necessarily the value of the ex-
pression h.E. To express the change in a function, we introduce the following notation.
For 0 < z < N and integer A, the function h(z:A) : [0..N) — Z is defined by

N Jha fiFfx
h(w:A)3 _{ A ifi=gz

We pronounce h(mA) as ‘h except in z where its value is A’. As an example, let A[0..3)
be defined by h.0 = 2, h.1 = 4, h.2 = 6, then h(1:5) is the function

h(1:5).0= 2
h(1:5).1=5
h(1:5).2=6

With this notational convention, h.E := F' may now be defined by
{P} h.E:=F {Q} is equivalent to [P = Q(h:= h(E:F))]

where, as usual, Q(h:= h(E:F)) denotes @ in which h is replaced by h(E:F). As an
example of the use of the rule of the array assignment, we prove

(RO=1A h1=1} h(h1):=0 {h(h1)=1}

Proof:
Assume h.0 =1 A h.1 = 1. We derive

(h.(h.1))(h:= h(h.1:0))
= { substitution }
h(h.1:0).(h(h.1:0).1)
— {h1=1}
h(1:0).(h(1:0).1)
{ definition of h(z:A), 1 =1}

h(1:0).0

= { definition of h(z:A),1# 0}
h.0

= {h0=1 }
1

154 Array Manipulations

It can be seen that for many array assignments, it is difficult to predict the outcome
without calculations. Fortunately, there are many cases in which the effect of h.E := F
can be easily computed.

In the definition of z := E conjunct def.E occurs. For array assignment h.E := F
we require that E and F' are well defined, and that the value of F is in the range of h.
More formally, def.(h.E) is defined by

[def.(h.E) = def.E A 0< E < N]

and the formal definition of h.E:= F is

{P}h.E:= F{Q} is equivalent to [P = def.F A def.(h.E) A Q(h:= h(E:F))]

In terms of weakest pre-conditions we have
[wp.(h.E:= F).Q = def.F A def.(h.E) A Q(h:= h(E:F))]

In* calculations conjunct Q(h:= h(E:F)) is the starting point. One should, however,
be aware of the other two conjuncts too.

Multiple array assignments are not allowed. If they were the program fragment
z,y:=0,0 ;h.z,hy:=0,1

would establish 4.0 = 0 or .0 = 1. This problem may be solved by the definition of an
order (for instance, from left to right) in which substitutions are performed. We prefer
to avoid it by not allowing multiple assignments in which an array assignment occurs.

We present two examples in which we use the formal definition of the array assign-
ment. Then, at the end of this section, we present the ‘simple array assignment rule’
which simplifies calculations in certain cases.

As a first example of the derivation of a program in which array assignments are
used, we solve all zeros specified by

[con N :int {N > 0};
var h : array [0..N) of int;
all zeros
{(Vi:0<i< N:hi=0)}
]

Array assignments 155

Replacement of the constant N by the integer variable n leads to invariants Py and
P1 .

Py: (Vi:0<i<n:hi=0)
P: 0<n<N

which are established by n:= 0. We investigate an increase of n by 1 and we derive,
assuming Pg A PL An#N,

(Vi:0<i<nt+l:hi=0)

= {splitoff i=n,0<n}
(Vi:0<i<n:hi=0)Ahn=0

= {P}
(Vi:0<i<n:hi=hi) ANhn=0

= { definition of h(z:A) }
(Vi:0<i<mn:hi=h(n0)i) A hn= h(n:0).n

= {import ¢ = n }
(Vi:0<i<n+l:hi=h(n:0)4)

The last line says that replacing b by h(n:0), i.e., h.n:= 0, establishes Py(n:= n+1).
This yields as solution to all zeros

| var n : int;
n:=0
idon#N
— hmn:=0
;ni=mn+l
od

J

As a second example we consider the problem of computing a frequency table for a
series of outcomes of an experiment of throwing a die. A formal specification is

[con N :int {N > 0}; X : array [0..N) of int;
{(Vi:0<i<N:1<X.i<6)}
var h : array [1..6] of int;
frequency table
{(Vi:1<i<6:hi=(#k:0<k<N:Xk=1))}

J

156 Array Manipulations

Replacement of the constant N by variable n yields invariants

Py: (Vi:1<i<6:hi=(#k:0<k<n:Xk=1))
Pi: 0<n<N

Substitution of n = 0 into P, yields
(Vi:1<i<6:hi=0)

for which we have seen a solution (viz. all zeros). For the increase of n by 1, we present
the following derivation. Assume Py A P; A n# N. For any 7, 1 < ¢ < 6, we have

(#k:0<k<n+l: Xk=1)
= {split of k=n,0< n}
(#k:0<k<n:Xk=i)+#.Xn=1)
= { case analysis }
{(#k:0§k<n:X.k=i) ifi# Xn
(#k:0<k<n:Xk=1)+1 ifi=Xn
= {h}
{hi if i # Xon
h(Xn)+1 ifi=Xm
= { definition of h(z:A) }
h(X.n:h(X.n)+1).4

Hence, A has to be replaced by h(X.n: h.(X.n)+1). We arrive at the following solution
to frequency table.

[var n : int;
n:=0
slvarm :int;m:=1;dom #7— hm:=0;m:=m+1 od]
sdon # N
— h(X.mn):=h(Xn)+1
ini=n+l
od

]I

We now introduce a simpler rule for the array assignment. As in all zeros, we often
encounter a situation in which

(Vi:0<i< N:hi=H.i)

Array assignments =157
has to be established, where expression H is such that h does not occur in H. This
may be solved by introducing integer variable n and invariant
P: 0<n<NAWMi:0<i<n:hi=H.i)
and the probiem amounts to finding integer expression F such that

{PAn#N}hn:=E{(Vi:0<i<n+l:hi=H.i)}
We derive, for 0 <n < N,

(Vi:0<4i<n+l:hi= Hi)(h:=h(n:E))
= { substitution, h does not occur in H }
(Vi:0<i<n+l:h(n:E).i=H.i)
= {split off i = n, definition of h(z:A4) }
(Vi:0<i<n:hi=Hi)ANE=Hn

Hence, we have the following rule.

Simple Array Assignment

If h does not occur in H, then
{PAn#NAE=Hn}
hn:=F
{P(n:=n+1)}

where P: 0<n< N A (Vi:0<i<n:hi=H.i)

Substitution of E = 0 yields the solution to all zeros. It may be presented as follows.

| var n : int;
n:=0
{invariant: 0 <n < N A (V4i:0<i<n:hi=0): simple array assignment}
jdon # N
— hn:=0
ini=n+1
od

{(Vi:0<i< N:hi=0)}

158 Array Manipulations

Exercises
Derive solutions for the following programming problems.

0. [con N :int {N > 1}; f: array [0..N) of int;
var h : array [0..N) of int;
summation
{Vk:0<k<N:hk=(Zi:0<i<k: fi)}
I

1. [[con N :int {N > 1}; f: array [0..N) of int;
var h : array [0..N) of int;
decomposition
{(VE:0<k<N:fk=(2i:0<i<k:hi))}
]

2. [con N :int {N > 1};
var h : array[0..N) of int;
{Vi:0<i< N:hi=Fi)}
decomposition in situ
{(Vk:OSk<N:F.k=(2i:0$i§k:h.i))}
]

Note that F'is a specification variable (cf. Section 2.0) and not a program variable.

3. [[con N :int {N > 0}; X : array [0..N) of int;
{(Vi:0<i<N:0< X< 100)}
var h: array [0..100) of int;
S
{(Vi:0§i<100:h.i=(minp:0§p<N/\X.p:i:p))}

I

4. [con N :int {N > 1}; X : array [0..N) of int;
{(Vi:0<i<N:0< X< 100)}
var r : int;
S
{r=(maxp,g:0<p<g<N A Xp=2X(4-1):q—p)}

Ik

(Hint: introduce array h[0..100) and use the previous exercise.)

Swaps 159

5. Derive a program to determine for natural IV the frequency of the decimal digits
in the decimal representation of N.

6. [[con N :int {N > 0}; X : array [0..N) of int;
var h: array [0..N) of int;
S :
{(Vi:0<i< N:hi=(maxj:0<j<i:XJj))}

]

7. Prove:

If h does not occur in H or E, then

{(Vi:i# E:hi=Hi) AN F=G(h:=h(E:F))}
hE:=F

{(Vi:i# E:hi=Hi) A hE=G}.

and

If A does not occur in H, E, or F, then
{(Vi:i# E:hi=H.i)} ¢
hE:=F '

{Vi:i# E:hi=Hi) AN h.E=F}.

10.2 Swaps

Many programming problems involving array manipulations can be solved by inter-
changing array values. Given integer array h[0..N), and integer expressions £ and F,
we abbreviate the program fragment

[varr:int; r:= h.E ;h.E:= h.F ;h.F:=r]
to

swap.E.F'
Tts informal interpretation is ‘interchange the values of h.E and h.F’. However, as in the
case of an array assignment, this operational interpretation does not help very much.

To express its meaning formally, we extend the notation h(z:A) to two arguments and
we define h(z,y : A, B) by '

160 Array Manipulations

hi fitaAity
hiz,y: A/B)i=4q A ifi==x
B ifi=y

Then swap.E.F may be characterized by

{P} swap.E.F {Q} is equivalent to
[P = def.(h.E) A def.(h.F) A Q(h:= h(E, F : h.F, h.E))]

As long as E and F' do not depend on % (i.e., h does not occur in E or F) things are
relatively easy. Otherwise, it is very difficult to predict the effect of a swap without
performing the necessary calculations. This is illustrated by the following example. Let
h.0 =0 and 2.1 = 1. Then swap.(h.0).(h.1) is equivalent to swap.0.1 which establishes
h.0 =1 and h.1 = 0. In particular, we then have h.(h.1) = h.0 = 1. Hence,

{h.(h.0) = 0} swap.(h.0).(h.1) {h.(h.1) = 0}

does not hold. So a naive operational interpretation is liable to be faulty. We leave it
as an exercise to the reader to provide a formal proof of

{h.0=0A h1=1 (hence, h.(h.0) =0)}
swap.(h.0).(h.1)
{h.(h.1) =1}

Fortunately, the situation is not so bad if we restrict ourselves to swaps of the form
swap.E.F' in which h does not occur in F or F. For this case it is easy to derive the
following rule.

Simple swap statement:

If h does not occur in E or F, then
{Vi:i#EANi#F:hi=Hi) AN hE=AA h.F =B}
swap.F.F
{Vi:i#E ANi#F:hi=Hji) ANhE=BAhF=A}

We will use this rule frequently, without explicit reference. In the following subsections
we present examples of its use.

Swaps 161

10.2.0 The Dutch National Flag

As a first example, we derive a program that swaps the values of an array with elements
red, white and blue, in such a way that its final value is in accordance with the Dutch
National Flag. Its specification is

[con N :int {N > 0};
var h : array [0..N) of [red, white, blue];
Dutch National Flag)
{3p,q:0<p<g<N:(Vi:0<i<p : h.i = red)
A(Vi:p<i<gq :hi= white)
A(Vi:q<i<N:h.i=blue) ‘
)}
I,

in which only swap operations are allowed as operations on h.

It seems hard to establish this post-condition without being able to indicate where the
final boundaries of the colours are. Therefore, we introduce variables r and w and we
derive a program with post-condition

R: (Vi:0<i<r :hi=red)
A(Vi:r <i<w:hi= white)
A(Vi:w <t < N: h.i=blue)

There are several ways in which R may be weakened. A possible invariant is (intro-
ducing integer variable b):

(Vi:0<t¢<r:hi=red)
A(Vi:7 <i<w:hi=white)
A(Vi:w <1 <b:hi=blue)
which is established by 7, w,b:= 0,0,0. This choice, however, leads to a rather com-
plicated program. We have lost too much symmetry. Since three parts have to be

determined, complete symmetry cannot be obtained. Therefore, we choose as invari-
ants Py and P, defined by

Py: PPANP, NP
P: 0<r<w<b<N

with

162 Array Manipulations

P: (Vi:0<£i<7r:hi=red)
P,: (Vi:r <i<w: h.i=white)
P,: (Vi:b< i< N:hi=blue)

P, and P, are initialized by r,w, b:= 0,0, N. Furthermore,

This yields w # b as guard of a repetition. For w < b, the elements of [w..b) are
candidates for inspection. Two choices are obvious: w and b—1. We choose w and we
discuss the other possibility later. This leads to a first approximation of the solution:

[var r,w,b: int;
m,w,b:=0,0, N {invariant P, A P;, bound b—w}
dow #b
—if hw=red — G,

] haw = white— S,
| hw=blue — S
fi

od

]

Note that

r = ‘the number of red elements that have been detected’
w — 7 = ‘the number of white elements that have been detected’
N — b = ‘the number of blue elements that have been detected’

Hence, S, will contain the statement r:= r+1 and also w:= w+1, keeping w — r
invariant. Similarly, we expect that S, will contain the statement w:= w+1 and S,
will contain b:= b—1.

Statement S, is the easiest one, since
Py A Py A haw = white = (P, A P)(w:=w+1)
Hence, for S,, we choose w:= w+1. Next we consider S,, which has h.w = blue as a

pre-condition and for which swap.w.(b—1) is appropriate. From r < w < b we infer
that swap.w.(b—1) does not affect P,, P,, or P,, and we have

Swaps 163

{PLAP,APLAw<bA h.w = blue}
swap.w.(b—1)

{P. AP, AP, Aw<bAh(b-1)= blue}
ibi=b—1

{P. AP, AP, ANw<b}

Hence, for Sy we choose swap.w.(b—1);b:= b—1. We are left with S, with pre-
condition

P.AP, AP, Aw<bA hw=red

Statement swap.w.r seems appropriate for establishing P(w = w+1), but \?vhat can
be said about h.r ? From P, we infer 7 < w = h.r = white, or, equivalently,
r =w V h.r = white. This yields two cases. :

Case (i): T=w
{P,AP, AP, AT=w<bA haw =red}
swap.w.r
{PPAPBAr=w<bA h.r = red}
sryw:=r+1,wil '
{P,APAT=w Sib, hence, P, A P, A P,}

Case (ii): h.r = white
{P,AP,AP,Aw<bA h.w =red A h.r = white}
swap.w.r
{P, A hor =red A (Vi:r+1 <i<w:hi=white) A h.w = white A P, A w<b}
s, wi=r+1,w+l
{P, AN Py AN P, AN w<b}

We conclude that swap.w.r ;7,w:= r+1,w+1 is a good choice for S,. Taking all pieces
together, we obtain the following program.

164 Array Manipulations

[var 7,w,b: int;
r,w,b:= 0,0, N {invariant P, A P;, bound b—w}
idow # b
—if haw=red — swapw.r;r,w:=r+1,w+l

[hw = white— w:=w+1
[h.w =blue — swap.w.(b—1);b:=b—1
fi

od

This program has time complexity O(N). When the colours are uniformly distributed
then N swaps are performed on the average. If one chooses to use h.(b—1) instead of
haw then a program is obtained whose execution takes N swaps on the average.

10.2.1 Rotation

In many problems that involve array manipulations the individual array elements do
not play a specific role, and these problems may often be expressed, for instance, in
terms of segments or sequences. In this subsection we solve such a problem by first

deriving an abstract program. That program is then refined into a program in terms
of array operations.

Assume that an integer array h[0..N) and integer constant K, 0 < K < N, have
been defined. The problem is to rotate h over K places, using swap operations only.
A formal specification is

[con K, N :int {0 < K < N};
var h: array [0..N) of int;
{(Vi:0<i< N:hi=H.Ji)}
rotation
{(Vi:0<i< N:h((+K)modN) = Hi)}
I,

in which only swap operations are allowed on A.

Note that H is a specification variable (cf. Section 2.0) and not a program variable,

Le., H may not occur in statements. To eliminate mod N, we rewrite post-condition
R as

(Vi:0<i< N=K :h(i+K) = Hi) A (Vi: N-K <i< N :h(i+K—N) = H.)

Swaps 165

or, equivalently,
hlK..N) = H[0..N-K) A h[0..K) = HIN-K..N)

Apparently, this problem can be stated in terms of sequences. Let us denote H [0.N-K)
by X and H{[N—K..N) by Y. Furthermore, catenation of sequences is denoted by juxta-
position, for instance, H[0..N) corresponds to XY". The empty sequence is denoted by
[], and the length of sequence U is denoted as [.U . In terms of sequences the problem
may be specified by

{h = XY}
rotation
{h= YX}

where X and Y are as defined above. When X and Y have the same length then the
post-condition can be established easily. Indeed, swapping the corresponding elements
of X and Y in h yields h = YX.

When I.X < LY then h may be written as h = XUV, where .U = [.X and
UV =Y, and we have to solve

{hZXUV/\l.U:l.X} ¢
rotation ‘

{h=UVX}

Let us denote the exchange in h, h = ABCD, of sequences B and C that have the
same length by SWAP.B.C. Then this problem may be reduced to solving S in

{(h=XUV AYX =UVX A LX = LU}

SWAP.X.U
{h=UXV}

S
{h=UVX}

i.e., XV has to be transformed into VX, a problem that is of the same form as the
original one. From this point one may start the discussion again and consider the cases
1.X < 1.V and L.V < 1.X . Such an investigation leads to the following invariant:

P: h=AUVB A YX =AVUB

ie., to establish the desired post-condition, U and V have to be interchanged. Since
initially h = XY, P is established by

166 Array Manipulations

AUV, B:=[],X,Y,[]
Furthermore, we have

PAU=[]vV=][])=>h=YX
This yields the following solution:

AU V,B:=[],X,Y,[]
{invariant P, bound: .U + .V}
doUA£[] AV £[]
—if LU > LV
— ‘split U: U =UyU; A LU, =1LV’
{h = AUU\VB A YX = AVUU,B)

;SWAP.UL.V

{h =AU VU,B A YX = AVU,U, B}
U, B:=U,, U B

{h=AUVB A YX = AVUB}

[L.V>ILU
— ‘split V:V=V,Vi ALV =T
{h = AUV,ViB A YX = AV, V,UB}

:SWAP.U.V,
{h = AV,UV,B A YX = AV,V1UBY .
;A V= AV, g
{h = AUVB A YX = AVUB}
fi
od
{h=YX}.

To .encode this algorithm in terms of array h, we represent sequences 4, U, V, and B
by integer values a, b, k, and [, such that

A = h[0..a)

B = h[b..N)

U = hla..a+k), hence, .U = k
V = hlb—1..b), hence, 1.V =1

Swaps 167

These relations are called coupling invariants. Note that a+k = b—l should be a
coupling invariant as well. In terms of a, b, k, and [, the algorithm is

[var a,b,k,1: int;
a,b k,1:=0,N,N—K, K
dok#0AL#0
—ifk>1
— |[var n : int ;n:= b= ;do n # b — swap.n.(n—I) jn:=n+1 od]
ski=k-1;b:=b-1
01>k
— |[varn : int ;n:= a;do n # a+k — swap.n.(n+k) ;n:=n+1 od |
ili=1-k;a:=atk

od
I

To determine the time complexity of this program, we add the auxiliary variable ¢ to
record the number of swaps performed during its execution. We leave out the variables
that are not relevant to this discussion. This yields

[var k,1,t: int;
k,l:=N-K K;t:=0
i dok#0AL#0
—ifk>l—ti=t+l;k:=k-1
[I>k—t:i=t+k;l:=1-k
fi
od

Il

In this program, we recognize the algorithm for the computation of a greatest common
divisor. Note that ¢ + k + [is constant during execution of the repetition. Initially, it
has value 0 + K + N — K = N, hence,

t+k+1=N

is an invariant of the repetition. What can be said about the final values of k and I ?
With respect to k and [, we have as invariant

kgedl = K ged (N-K)

168 Array Manipulations

and, since 0 ged z = £ gcd 0 = = = z+0, we have as post-condition

k+1l=Kged(N-K)=Kged N

and, since ¢ + k+ 1 = N, we conclude that N — (K ged N) swaps are performed.

Exercises

Derive solutions, with time complexity O(N), to the following problems. The only

array manipulations allowed are swaps.

0. [con N :int {N > 0};
var h : array [0..N) of int;
S
{(Ep:OSpSN:(Vi:0§i<p:h.z’§0)/\ (Vi:p<i<N:hi>0))}
I
L [[con N : int {N > 0};
var h: array [0..N) of int;
S
{(Vi:0<i<N Aimod2=0:himod2=0)
V(Vi:0<i<N Aimod2=1:himod2=1)
}
]I

2. [[conk,N :int{0 < k< N};
var h : array [0..V) of int;
S
{hk = (maxi:0<i<N:hi)}
Il

3. [[conk, N :int {0 < k < N};
var h : array [0..N) of int;
S
{@p,q:0<p<g<N:(Vi:0<i<p thi < hk)
A(Vi:p<i<gq :hi=hk)
ANVi:q<i<N:hi>hk)
)}
Il

Swaps 169

Derive solutions, with time complexity O(N?), to the following problem. The only
array manipulations allowed are swaps.

4. |[con N :int {N > 0};
var h : array [0..N) of int;
sort
{(Vi,j:0<i<j<N:hi<hj)}

Use a repetition within a repetition and choose as invariants for the outer repe-
tition Py A P; and as invariant for the inner repetition @ where

P: 0<n<N

and

(i) Po: (Vi,j:0<i<j<n:hi<hyj)
Q: (Vi:k<i<n:hi<hn)

() Py: (Vi:0<i<n:(Vj:i<j<N:hi<hj))
Q: (Vj:k<j<N:hn<hj)

(i) Pp: (Vi:0<i<n:(Vj:i<j<N:hi<hj))
Q: (Vi:n<j<k:hn<hj)

Chapter 11

Sorting

11.0 Introduction

Many prog_ramming problems involving arrays admit efficient solutions if these arrays
are ascending. Examples are Binary Search and Slope Search. This is one reason
that makes sorting algorithms interesting. Another reason is that solving the sortin
problem is a nice illustration of our programming techniques. In this chapter we discusi
sorme sorting algorithms, i.e., algorithms that establish ascendingness of an integer array
Wlthouff changing the bag (multiset) of values of the array (bags are a generalization
of sets in the sense that a bag may contain multiple occurrences of an element). The
latter requirement is met if we restrict the array operations to swaps. .

. Let h[0..N) be the integer array to be sorted. Define, for 0 <p < Nand0< g < N
inversion.p.q by N B ,

inversion.p.g = p<q A hp> hg

‘Array h is ascending’ is equivalent to (#p,q:0<p < g < N :inversion.p.q) = 0
The number of inversions is at most ' '
(#p,q 0<p<g<N: true) = (¥4:0 <4 < N :1) = IN(N-1). Swapping two
neighbours in h decreases the number of inversions by at most 1 and so we conclude:

A sgrting algorithm in which only neighbours are swapped has time com-
plexity of at least O(N?).

In Section 11.1 sorting algorithms that have time complexity O(N?) are derived
W.hat can be said about the time complexity if elements are swapped that are no?g
neighbours? To answer this question, we use the following argument. Assume that all
elements of h are different. Then there are N! (N factorial) different arrangements of

170

Introduction - 171

these elements and only one of these is ascending. Each comparison of two elements has
two possible outcomes and, hence, after k comparisons we have 2 possible outcomes.
To ensure that all N! arrangements can be distinguished, 2F must be at least N, ie.,
k > %log N!, and from mathematics (Stirling’s formula) it is known that log N! is at
least C % N log N for some C' > 0. We formulate this result as follows.

A comparison-based sorting algorithm has time complexity of at least O(Nlog N).

In Section 11.2 we present O(Nlog N) sorting algorithms. An example of a non-
comparison-based algorithm is bucket sort. This algorithm is applicable when the
values of h are within a small range, say [0..K). Using a frequency table (cf. Section
10.1), the frequency of each value that occurs in h can be computed and these values
are assigned to h in ascending order, leading to an algorithm that has time complexity

O(N+K).
The sorting problem discussed in this chapter has the following specification:

[con N :int {N > 1};
var h : array [0..V) of int;
sort
{(Vi,7:0<é<j<N:hi<hj)}
] :

in which only swap operations are allowed on h.
In solutions to this problem, we often encounter the following statement
(0<i<Nand0<j<N):

if h.i < h.j — skip
| hi> h.j— swap.i.j
fi

for which we have

Py
if h.i < h.j — skip

| hi> h.j — swap.i.j
fi

{Q}

is equivalent to

[P = Q(h:=h(i,j: himinh.j, himaxh.j))]

172 Sorting

11.1 Quadratic sorting algorithms

In this section we derive some O(NN?) sorting algorithms, not because of their usefulness,
but to illustrate the ways in which they may be derived and to show what kinds of
problems are related to sorting. One should not try to memorize them and we do
not supply average-case time complexity derivations, nor do we supply figures that
compare these sorting algorithms with respect to some test inputs.

The post-condition R of the specification of sort may be rewritten in several ways,
for instance, as

(Vi:0<i< N:h(i—1) < hi)

(Vi,j:0<i<j<N:hi<hyj)

(Vi:OSi<N—1:(Vj:i§j<N:h.i§h.j))
Each of these expressions may be generalized in several ways to obtain an invariant. In
the following subsections we choose one of these and derive a corresponding algorithm,
leading to insertion sort, selection sort, and bubble sort respectively. These are just

three of the better-known quadratic solutions. Other investigations of this kind are left
to the reader.

11.1.0 Insertion Sort

We choose as post-condition

R: (¥4,j:0<i<j<N:hi<hj)

Replacing the constant N by integer variable n yields invariants Py and P; defined by

Po: (Vi,j:0<i<j<n:hi<hj)
P1: 1S7ISN

which are established by n:= 1. As guard of a repetition we choose 7 # N and as
bound function N—n will do. For 1 <n < N , we have

Po(n:=n+1) = (V4,j:0<i<j<n+l:hi< h.5)
which equals P, apart from j = n, i.e., P, can be written as
(Vi,j:0<i<j<ntl Aj#n:hi<hj)

We generalize this expression, introducing the integer variable k, to

Quadratic sorting algorithms 173

Qo: (Vi,j:0<i<j<n+tlAj#k:hi<hyj)

which is initialized by k:= n. Furthermore, Qo A k =0 = Fp(n:=n+1) and also,
because of the transitivity of <, we have, for 1 < k < n,

Qo A h.(k—=1) < h.k = Py(n:=n+l1)
as well. Hence,
Qo A (k=0V h(k—1) < hk) = Po(n:=n+1)

For the case k > 1 A h.(k—1) > h.k we investigate a decrease of k by 1 and we derive

Qo
= { definition of Qo }
(Vi,j:0<i<j<ntl Aj#k:hi<hg)
= { definition of max }
(Vj:0<j<n+l ANj#k:hj=(maxi:0<i<j:hi))
= { range split }
(Vj:0<j<k-1:hj=(maxi»0<i<j:hi)) A
(Vj:k+1<j<ntl:hj=(maxi:0<i<j:hi)) A
h.(k—1) = (maxi:0 <i < k—1: h.i)

The first and the second conjunct of the last line of this derivation are not affected by
swap.(k—1).k . For the third conjunct, we have

h.(k—1) = (maxi: 0 < i < k—1: h.d)
= { max calculus }
h.(k—1) maxh.k = (maxi: 0 <i < k: hi)

Hence, if h.(k—1) > h.k then swap.(k—1).k establishes
h.k = (maxi:0<i<k:hui)

and it can only falsify h.(k—1) = (maxi : 0 <4 < k—1: h.g), from which we infer
{Qo A k>1 A h(k=1) > h.k} swap.(k—1).k {Qo(k:=k-1)}

One may be tempted to translate this result into the following program fragment for
‘establish Pp(n:=n+1)":

174 Sorting

[var & : int;
k:=n
;dok #0 A h.(k=1) > h.k — swap.(k—1).k ;k:= k—1 od
I

However, the guard &k # 0 A h.(k—1) > h.k is not defined for £ = 0. We solve this
problem by defining the bounds for k& by

Q: 1<k<n
and taking case k = 1 out of the repetition. This leads to

Insertion Sort

[var n : int;
n:=1
jdon # N
— [[var k : int;
k:=n

jdok #1 A h.(k—1) > h.k — swap.(k—1).k ;k:= k—1 od
;if h.0 > h.1 — swap.0.1 [| h.0 < h.1 — skip fi

I
;ni=n+l
od

J-

When this program is executed and h is initially decreasing then %N (N—1) steps are
performed. When h is initially ascending then only N steps are performed.

11.1.1 Selection Sort
We write the post-condition of sort as
R: (Vi:0<i<N:(Vj:i<j<N:hi<hyj))

We replace the first occurrence of N by integer variable n. Replacement of both
occurrences of N gives rise to Insertion Sort, as the reader may verify. Thus, we
propose invariants Py and P, defined by

By (Vi:0§i<n:(Vj:i§j<N:h.i§h.j))

P, 1 - 0 S n S N

Quadratic sorting algorithms 175

We derive for 0 < n < N:

Py(n:=n+1)
= { substitution }
(Vi:0<i<n+l:(Vj:i<j<N:hi<hy))
= {splitoffi =n,0<n<n+l}
PyA(Vj:n<j<N:hn<hj)
= { min calculus }
Py A hn=(minj:n<j<N:hj)

Hence, a possible solution to ‘establish Po(n:= n+1)’ is

[var a : int;
‘establish n <a < N A h.a = (minj:n < j < N : h.j) without changing h’

;SWap.n.a

]

Note that swap.n.a does not affect Py. A solution to the problem above is obtained by
applying Searching by Elimination (cf. mazlocation in Section 6.3) with invariant

n<a<b<N A (minj:nSj<N:h.j)=(minj:a§j§b:h.j)

Thus, we obtain the following solution, known as Selection Sort:

[var n : int;
n:=0
;don# N
— |[var a,b : int;
a,b:=n,N-1
;doa#b
—if ha<hb—-ob:=0b-1
| hb<ha—a:=a+l
fi
od
;SWap.n.a
I
ini=n+l
od

]

This program will also take %N (N—1) steps. The number of swaps is V.

176 Sorting

11.1.2 Bubble Sort

Our final example of an O(N?) sorting algorithm is known as bubble sort. We choose
the same invariants as we did for Selection Sort:

Pp: (Vi:0<i<n:(Vj:i<j<N:hi<hj))
P: 0<n<N

Then (cf. previous derivation) we have
Fy(n:=n+1) = By A hn=(minj:n <j< N :hj)

Instead of computing a location of the minimum of A[n..N), we replace in the last
expression both occurrences of n by integer variable k and we define @, and Q, by

Qo: hk=(minj:k<j<N:hyj)
Ql: TLS}CSN_].

which are established by k:= N—1. We derive

Qo
= { definition of Qo }
hk =(minj:k<j<N:hyj)
= { Leibniz }
h.(k—1)minh.k = h.(k—1) min(minj : k < j < N : h.5)
= { calculus }
h.(k=1)minh.k = (minj: k—1 < j < N : h.j)
Hence, sorting h.(k—1) and h.k establishes Qo(k:= k—1). This yields as solution a
program known as Bubble Sort, which is presented below. Execution of this program
takes %N (N—1) steps. When the selection amounts to skip in each step of the inner
repetition, we may conclude that h[n..N) is ascending, and, hence, R holds. More
precisely, we introduce boolean variable b and add invariant P, :
Py: b = h[n..N) is ascending
Then P, A b = R. To invariants Qo and Q; we add

Q2: b = hlk..N) is ascending

Quadratic sorting algorithms 177

This results in a second version of bubble sort (Bubble Sort (1)). For ascending arrays
execution of this version takes NV steps.

Bubble Sort (0)

[var n : int;
n:=10
;don# N
— |[var % : int;
k:=N-1
idok #mn
— if h.(k—1) < h.k — skip
| h.(k=1) > h.k — swap.(k—1).k
fi
od
ski=k—1
I
;ni=n+l
od

Bubble Sort (1)

[var n : int; b : bool;
n,b:= 0, false
:don#N A b
— |[var k : int;
k,b:= N—1,true
;dok#mn
— if h.(k—1) < h.k — skip
[A.(k—1) > h.k — b:= false ;swap.(k—1).k
fi
od
iki=k—-1
I
;ni=n+l

od

178 Sorting

The solutions discussed in this section are only suited for sorting relatively small
arrays (of length at most 100). In the following section we consider some more advanced
sorting algorithms.

Exercises

0. Solve:

[con N :int {N >1}; X : array[0..N) of int;
var h : array [0..N) of int;
sort
{(Vi:0<i<N:(3j:0<j<N:hj=1i))
A(Vi,§:0<i<j<N:X.(hi) < X.(hj))}
)

1. A sorting algorithm is called stable if the order of any two equal values is not
changed. In terms of the previous exercise this means that the post-condition is
to be strengthened by

i<jAXi=Xj = hi<hj
Which of the sorting algorithms of this section are stable?

2. Derivg a program that sorts N pairs lexicographically. The N pairs are (z.3,y.3)
(0 <i < N) and point (a, b) is lexicographically smaller than (c, d) if

a<cV(a=cAb<d)

3. Dérive a program that sorts integer matrix z : array[0..M) x [0..N) such that
z is ascending in both arguments.

4. De?iv_e a program that sorts integer matrix z : array [0..M) x [0.N) such that
(V4,5:0<1i<j < M:z.iis lexicographically at most z.j).

11.2 Advanced sorting algorithms

In this section we present the more practical sorting algorithms Quicksort, Mergesort
‘and Heapsort. Quicksort, invented by C.A.R. Hoare, has worst-case time complex-
ity (’)(Nz) Its average time complexity, however, is O(Nlog N). It uses O(log N)
auxiliary storage. Mergesort has worst-case time complexity O(Nlog N). It uses an

Advanced sorting algorithms 179

auxiliary array of length N. Heapsort, invented by J. Williams, also has worst-case
time complexity O(N log N), but no auxiliary array is needed.

Both Quicksort and Mergesort are more elegantly presented as recursive programs.
The bag of integers that has to be sorted is divided into two subbags and the results
of sorting these subbags are combined to obtain the sorted sequence corresponding
to the original bag. For Quicksort the division into subbags is the essential part and
for Mergesort the combination of the sorted sequences is the essential part. In this
book, however, we do not treat recursion and both programs are presented as ordinary
iterative programs.

11.2.0 Quicksort

As before, let h[0..N) be the array to be sorted. Let z = h.j for some j, 0 < j < N.
Performing the Dutch National Flag (DNF) algorithm of Section 10.2.0 with

red : hi<z

white : h.i =2

blue : h.i >z
establishes post-condition ¢

(Vi:0<i<r :hi<z)

ANViir<i<w:hi=2)

AVi:w<i<N:hi>z)
Hence, h[0..r) and h[w..N) still have to be sorted, i.e., this post-condition implies

h is ascending = h[0..r) is ascending A h[w..N) is ascending
We may apply a similar splitting to h[0..r) and h[w..N), leading to four smaller parts
that still have to be sorted. A generalization of this idea is expressed by the following
invariant:
P: h[0..N)is ascending = (Vv:v €V : his ascending on v)
where V is a set of disjoint subsegments of [0..N) and where for subsegment v:

his ascending on v = (Vi,j:i€v Ajev Ai<j:hi<hyj)

A program based on P is presented below.

180 Sorting

Vi {[0.N)}
;doV #0
— ‘choose ¢ € V'
;if length.a <1 - V:=V)\ {a}
[length.a > 2
— ‘choose j € &’
;2:=h.j
; ‘perform DNF with 2z on o’
{a=py6 AN(Vi:i€B:hi<2)
ANViii€y:hi=2)
AViii€6:hi>z2)
}
V= (V\{a}h) u{B}u {6}

od

(Why does it terminate?) To obtain a program in the guarded command language, we
have to find a suitable representation for V', and we have to refine ‘choose o € V'’ and
fchoose J € a’. The set V can be represented by two integer arrays « and y, and an
integer variable k, such that

V={lzi.yi)]0<i<k}

The DNF part splits sequence « into three parts: f, v, and §. At least one of the
segments § and 6 has a length which is at most half the length of . When ‘choose
o € V7 is refined to ‘choose an element of V' of minimal length’, we may hope that
the number of elements of V will not be too large. Indeed, let G.n be the maximum
number of elements that V' will contain if we start with a segment of length n and if
we choose in each step an element of V' of minimal length. Then

Gl=1
Gn<14+G.(ndiv2) (n>2)

from which we infer
Gn<1+3%ogn
We conclude that for z and y only arrays of length 1+2log V are needed. Since splitting

f; minimal element of V' into two parts yields a minimal element again, we represent V'
Yy

Advanced sorting algorithms 181

V={[zi.yi)|0<i<k}u{lp.q)}
such that
(Vi:0<i<k:yi—zi<y.(i—-1)—x.(i—1))
and |
(Vi:0<i<k:q—p<y.i—uxi)
Then
PAk=0Aqg-p<1 = hisascending
The value of 2log N is easily computed. For ‘choose j € [p..q)’ we choose (for the
sake of symmetry) j = (p+q)div2, i.e., z:= h.((p+¢q)div2). The complete solution

is presented below. The first part consists of the computation of the upper bound for
arrays = and y.

When this program is applied to an increasing sequence, then h[p..q) is divided
into two parts that both have length at most (¢—p)div2. Let T.n denote the time

" complexity of sorting an increasing sequence of length n in this way. We have the

following recurrence relation for T

T1=0
Tn=2T.(3n)+n forn>2

(For the Dutch National Flag n steps are needed.)
This recurrence relation has T.n = nlogn as solution: for an already increasing se-
quence execution of this program takes O(N log V) steps.

When this program is applied to an arbitrary sequence and in each step the median
of sequence h[p..q) is assigned to 2, the same recurrence relation is obtained. A linear
program for the computation of the median does exist, but its derivation is beyond the
scope of this book.

When all elements of k are different and in each step of the repetition the minimum
of hlp..q) is assigned to z, execution takes %N (N+1) steps, which is the worst-case
behavior of Quicksort. It can be shown that the average execution time over all per-
mutations of [0..N) is O(Nlog N).

The complete program is presented below.

182 Sorting

Quicksort

[var n, m : int;
n,m:=0,1{m = 2"}
jdom < N — n,m:=n+1,m*2o0d
{n >*log N}
;[[var k,p, ¢ : int; z,y : array [0..n) of int;
k,p,g:=0,0,N
;dok#£0V g—p>2
—ifg—p<1-oki=k-1;p,q=xkyk
0 g—p>2—|varr,w,b,z: int;
z:= h.((p+q)div2)
;Tw,bi=p,p,q
jdow # b — if hw < 2 — swap.raw; r,w:=r+1, w+1
| hw=2—w:=wt+l
[haw > 2 — b:=b—1; swap.bw
fi
od
yifr-p<gq-wozk=wyk=qq=r
Jg—w<r—p—oazk=p;yki=r;p=w
fi
iki=k+1

Exercises

0. Let N > 1 and let h[0..N) be an array of integers. Derive a program for the
computation of the unique element of & that occupies position k when A is sorted
(0 £ k < N), without sorting the entire array h. (Hint: use the DNF part of
Quicksort).

Advanced sorting algorithms 183

11.2.1 Mergesort

Mergesort is based on the fact that two ascending sequences can be merged into one
ascending sequence in linear time. To define the merge m of integer sequences = and

v, we use the following notation: for integer a and sequence z, the sequence consisting

of a followed by sequence x is denoted as az. The merge of two sequences is defined
by

zmy=z if yis the empty sequence
zmy=1y if z is the empty sequence
{ a(zmby) fa<hb

by =
s moy blaxmy) iftb<a

Then m has the following properties:

z is ascending A y is ascending = zmy is ascending

The bag of elements of z m y is the sum of the bags of elements of = and y

These properties enable us to use merge in a sorting algorithm. Let us first present
an algorithm for the computation of the merge of two sequences. Program merge is
specified by ‘

[con M,N :int {M >0 A N >0}; = : array [0..M)ofint; y : array [0..N) of int;
var z : array [0..M+N) of int;
merge
{z=2zmy}

Il

From the definition of m we infer that a tail invariant is appropriate (cf. Section 4.4).
Denoting catenation of sequences z and y by = ++y, we define P; by

Py: z[0..c) + (zla.M)myb..N)) = zmy
and P; by

P: 0<a<MAOLSbBSNAOLc<M+N
Then

PoA(a=MVb=N) = z[0.c)Hza.M)Hyb.N)=zmy

184 Sorting

This leads to the following solution to merge.

[var a, b, ¢ : int;
a,b,c:=0,0,0 {invariant Py A P;, bound: M —a+ N — b}
;doa# M Ab#N
—ifza<yb—zci=za;a,c:=at+l,ct+l
| yb<za— zc=yb;bc:=b+l,ct1
fi
od
jdoa # M — z.c:=z.a;a,c:=at+l,ct+1lod
jdob# N — z.c:=9.b ;bc:=b+1,c+10d
{PoANa=M A b= N, hence z = rmy}
Il

We can use merge for sorting as follows. Let a be an integer sequence of length N.
Split « into two sequences of length %N (approximately). Sort these two sequences (by
any sorting algorithm) and merge them into the sorted version of @. When we have a
sorting algorithm that takes N? steps for a sequence of length N, this approach yields
an algorithm whose execution takes iN 24 iN 2 4+ N steps, which is approximately
twice as fast as the original algorithm!

Of course (compare this to the discussion in Section 5.1), we may apply this idea
again and sort the two parts of « in the way described above, leading to an algorithm
that is approximately four times as fast as the original one. In general, we start with
sequences of length 1: for integer array h[0..N), we have that each segment Ali..i+1)
is ascending. This is generalized to
Py: (Vi:0<i:hlixk.. (i+1)*k) is ascending)
in which we define h.¢ = oo for i > N. The bound for integer k is given by
Pl 1 S k
These invariants are established by k:= 1, and

Py A k>N = his ascending

To obtain an O(Nlog N) program, we investigate the effect of k := kx2:

Advanced sorting algorithms 185

Po(klzz k«*2)
= { substitution }
(Vi:0 < i: hlikks2.. (i4+1)*k*2) is ascending)
= { calculus }
(Vi:0 <7i:h[2ixk.. (2 + 2)xk) is ascending)
= { calculus }
(Vi:0<iAimod2=0:hfixk..(i+2)xk) is ascending)

Hence, Py(k:= kx2) is established by merging, for all 7, 0 < i A imod 2 = 0, sequences
R[ixk .. (i+1)*k) and h[(i+1)*k .. (i+2)*k), and assigning the result to hlixk .. (i+2)*k).
For this purpose, we introduce integer variable n for a repetition that has invariant
Py A Qg N @y, where

Qo: (Vi:0<i<nAimod2=0:hfixk..(i+2)+k) is ascending)
Ql : 0 S n ‘

which are established by n:= 0. Furthermore,
Qo N (n+1)xk > N = Po(k:= k2)
For the sake of convenience, we introduce variables a, b, and ¢, such that

a=nxk A b= (nt+1)xk A c=((n+2)*k) min N

and we arrive at the following solution to ‘establish Po(k := kx2)":
| varn,a,b,c: int;

n,a,b,c:=0,0,k, (2¢k) min N

;dob < N

— h[a..c):= h[a..b) m h[b..c)
n,a,b,ci=n+2,a+ 2+k, b+ 2%k, (c + 2¥k) min N
od

I

Each step of this repetition takes 2k steps; since b is incremented by 2k, the ’tf)tal
number of steps is at most N. Since k is doubled at each step of the outer repetition,
the time complexity of Mergesort is O(N log N). From the program fragment above,
variable n may be removed.

186 Sorting

. The computation of h[a..b) m Alb..c) is not performed in situ: we introduce auxil-
lary array z[a..c) and hfa..c) := hla..b) m h[b..c) is implemented by

z[a..c) := h[a..b) m h[b..c)
shla..c):= 2[a..c)

The complete program is presented below.

Mergesort

[var & : int;
k=1
;dok < N —
{[var a,b, c : int;
a,b,c:=0,k, (2+k) min N

jdob < N —
[var p,q,r : int; z : array [a..c) of int;
p,¢,r:=a,ba

sdop#bAg#c
—if hp<hg—zr:=hp;rp=r+l,p+l
Jhg<hp—ozri=hg;r,q=r+1,qg+1
fi
od
jdop#b— zr:=hp;r,p:=r+l,p+lod
jdog# ¢ — zri=hg;r q:=r+1,9+10d
iri=a
ydor#c¢— hri=zr;r:=r+lod
I
;a,b,ci=a+ 2%k, b+ 2+k, (c + 2+k) min N
od
1
s k= k%2
od

Advanced sorting algorithms 187

11.2.2 Heapsort

Our final sorting algorithm is called heapsort. To make the formulas needed for its ex-
planation more manageable, we describe the algorithm for an array h[1..N} of integers.
The final algorithm is easily adapted such that it satisfies the sort specification for an
array defined on [0..N).

One of the algorithms derived in Section 12.1 is Selection Sort. In each step of the
outer repetition of Selection Sort, the minimum value of h[n..N] is determined and
interchanged with h.n.

The invariant of Selection Sort was obtained by replacing in the post-condition of
sort the constant N by variable n. A replacement of the constant 0 by variable n
results in a similar program, i.e., in

n:=N
;don #1
— ‘establish 1<a<n A ha=(maxi:1<i<n:hi)
; swap.a.n '
;ni=n—1

od
with invariants:
h[n+1..N] is ascending
(Vi,j:1<i<n An<j<N:hi<hyj)
1<n<N
A straightforward refinement of ‘establish 1 <a<nAha=(maxi:1<i<n: h.a)

yields an O(N?) algorithm. To obtain a more efficient program, we can, for instance,
strengthen the invariants with

hl=(maxi:1<i<n:hi)
This yields

n:=N
: ‘establish h.1 = (maxi:1<i<n:hi)
;don#1

— swap.l.n

~

smi=n—1
: ‘re-establish h.1 = (maxi:1<i<n:hi)
od

188 Sorting

Again, a straightforward refinement of ‘re-establish h.1 = (maxi:1< i< n : h.i)
gives rise to an O(N?) algorithm.

The idea of Heapsort is to strengthen h.1 = (maxi : 1< i < n : h.i) ‘'to the
so-called heap-condition heap.n, defined in such a way that

heap.n = h.l=(maxi:1<i<n:hi)
The resulting program Heapsort has the following structure:

n:=N
; ‘establish heap.n’
;don #1
— swap.l.n
;ni=n—1
; ‘re-establish heap.n’
od

and heap.n is defined in such a way that ‘establish heap. N’ takes O(Nlog N) steps

and ‘re-establish heap.n’ takes O(log N) steps. The result is an O(N log N) sorting
algorithm.

Thus, heap.n should satisfy
(i) heapn = h.l = (maxi:1<i<n:hi)
(ii) ‘establish heap.N’ has time complexity at most O(NlogN)

(iii) ‘re-establish heap.n’ has time complexity at most O(log N)

A possible choice for heap.n that satisfies (i) is ‘h[1..n] is descending’, but, in view
of (i), this choice begs the question. We weaken ‘h[1..n] is descending’ by defining
a partial order — of which < is a refinement. This partial order is defined on the
positive integers by

t—j = (k:k>0:j5diver =)

Verify that — is a partial order, i.e., for all 4,7,k > 1 :

i—1 (reflexivity)
i—>jJANj—k =>1i—k (transitivity)
1= jAj—i = i=j (anti-symmetry)

and that < is a refinement of —, ie.,

Advanced sorting algorithms 189

Note that the (immediate) successors of ¢ with respect to — are 2 and 2:+1.

The heap condition is defined for n, 1 <n < N, by
heapn = (Vi,5:1<i<j<nAi—j:hi>hj)
Since (Vj:1<j:1— j), requirement (i) is met:
heap.n = h.l=(maxj:1<j<n:hj)

and, since heap.n is weaker than ‘h[1..n] is descending’, we may hope that requirements
(i) and (iil) can be satisfied as well. ‘

We first discuss ‘establish heap.N’, i.e., establish
(Vi,j:lSiSjSN/\i—>j:h.z'2h.j)
A possible invariant is obtained by replacing N by variable n. However, since
(‘v’z’,j:Ndiv2<i§j§N:—|(i—>‘j))
we prefer invariants Py and P; defined by

Py: (Vi,j:n<i<j<NAi—j:hi>hj)
P]I OS’H,

which are established by n:= N div 2 and for which we have
Py, An=0 = heap.N
Since
Py(n:=n—-1) = (V4,j:n<i<j<NAi—j:hi>hj)

\

we choose (in a similar way as we did for Insertion Sort) as invariants for a repetition
that has post-condition Py(n:=n—1):

Qo: (Vi,jn<i<j<NAi—jANi#k:hi>hj)
@Q: n<k

which are initialized by k:= n, and for which we have

190 Sorting

Py(n:=n-1)
= { definition of Py }
(Vi,jin<i<j<NAi—j:hi>hj)
= { definition of Qo }
Qo A(Vj:k<j<NAk—j:hk>hj)
= { definition of max }
Qo Ahk=(maxj: k<j<NAk-—j:hj)
= { definition of —, transitivity of >}
Qo A h.k > h.(2k) maxh.(2k+1)

where we take h.i = —oo for i > N. From this derivation we conclude
Qo AN2k>N = Py(n:=n-1)

which yields 2k < N as guard for the inner repetition. Let p be such that
(p=2kV p=2k+1) A h.p=h.(2k) maxh.(2k+1)

In view of the derivation above, we consider statement
if h.k > h.p — skip [| h.k < h.p — swap.k.p fi

which establishes h.k > h.(2k) max h.(2k+1).

For any i, n <1 < k A i — k, we have, on account of Qg, h.i > h.k, h.i > h.(2k),
and h.i > h.(2k+1). Hence, swap.k.p does not affect hi > hkforn <i<k Ai— k.

Since h.p may be decreased, only
(Vi:p<j<NAp—j:hp>hj)
may be falsified (cf. the derivation of Insertion Sort), and we conclude that
if h.k < h.p— skip || h.k > h.p — swap.k.p fi

establishes Qo(k := p).

For the sake of convenience, we introduce variable ¢ with
(2k <N = ¢=2k+1) A (2k=N = ¢=N)

This leads to the following program for ‘establish heap.N’.

Advanced sorting algorithms 191

[var n : int;
n:= N div2 {invariant: P, A P}
;don #0
— |[var k, p, q : int;
k,p,q:=n,2%n,(2%n + 1) min N
{invariant: Qo A Q1 Ap=2k A ¢=(2k+1)minN}
;dop< N
—l if hp>hg—skip | hp<hg—op=qfi
| {(p=2kV p=2k+1) A hp=h.(2k)maxh.(2k+1)}
;if h.k > h.p — skip [| h.k < h.p — swap.k.p fi
s k,p,q:=p,2%p, (2%p + 1) min N
od

od

]
{heap.N}

This algorithm has time complexity O(V), which is shown as follows. Variable £ is
initialized at n and in each step of the inner repetition k is replaced by at least 2k until
2k > N. Hence, the inner repetition takes at most Zlog % steps. The total number of
steps is at most:

(En:1<n SNdin:"’log%)
~ { calculus }
N/2 2 N
/1 log 5, dx
= { calculus }
N
% / log % dz
1
{ calculus }

1 NN
= In £ dzx
1 x

Q

1.4 |
{ calculus }

A
1.4N

124

So much for ‘establish heap.N’. Annotation of the remaining part of the program
yields

192 Sorting

don #1
— {heap.n, hence, heap.(n—1)}
swap.l.n
ini=n—1

{(Vi,j:1<i<j<nAi—=jAi#1:hi>hj)}
; ‘re-establish heap.n’
od

The pre-condition of ‘re-establish heap.n’:
(Vi,j:1<i<j<nAi—jAi#L:hi>hj)

equals Qo(n, k, N:= 1,1, n), leading to a solution which is similar to the inner repetition
of the previous program:

[var k,p, q : int;
k,p,g:=1,2,3minn
;dop<n
— ifhp>hqg—skip | hp<hg—opi=qfi
;if h.k > h.p — skip || h.k < h.p — swap.k.p fi
ik, p,q:= p,2%p, (2*p + 1) minn
od
]
{heap.n}

Execution of this program fragment takes at most 2log n steps and, hence, the total time
complexity of Heapsort is O(/Nlog N). The complete algorithm is presented below.

The heap structure is used in many algorithms. Often an algorithm is derived in
terms of sets. When the operations on such a set V, say, are

V=VU{z}
and
V:=V\{z} where z=(maxi:i€V :1)

then a heap (also called a ‘max-heap’) may be used to implement these operations
efficiently.

Advanced sorting algorithms 193

Heapsort

[var = : int;
n:= Ndiv2
idon #0
— |[var k, p, q : int;
k,p,q:=mn,2%n,(2%n + 1) min N
jdop< N
— ifhp>hqg—skip | hp<hg—op=qfi
:if h.k > h.p — skip [| h.k < h.p — swap.k.p fi
1k, p,q:= p, 2+p, (2%p + 1) min N

od
1
-y ni=n—l
od
in:=N
;don #1
— | var k,p, ¢ : int;
swap.l.n ’
ini=n—1
ik,p,q:=1,2,3minn
;dop<n

— ifhp>hg—skip | hp<hg—op:= q fi
:if h.k > h.p — skip | h.k < h.p — swap.k.p fi
i k,p, q:=p,24p, (2%p + 1) minn
od

od
I

Exercises
0. Derive an O(Nlog N) program that establishes heap.V, using invariant
heapn A1<n<N

1. (Museum peak attendance). Integer arrays z[0..N) and y[0..N) are given. A
museum is visited by N people (N > 1). Person ¢, 0 <7 < N, arrives at moment

194

Sorting

x.i, is present during interval [z.i..y.7) and leaves at moment y.i. Array « is
ascending. Derive a program for the computation of the maximum number of
visitors that are simultaneously present in the museum.

Chapter 12
Auxiliary Arrays

Calculations with expressions that occur in an invariant often give rise to the introduc-
tion of (auxiliary) variables, together with an accompanying invariant (cf. Section 4.3).
In this chapter we discuss some programming problems for which these calculations
give rise to the introduction of arrays.

12.0 At most ‘K Zeros

Our first example is a segment problem (cf. Chapter 7). For integer array X[0..N) and
natural K, we are asked to derive a program for the computation of the length of a
longest segment that has at most K zeros. As an additional restriction, it is not allowed
to inspect an element of X more than once (X may, for example, be a sequential file
that can be read only once). A formal specification of the problem is

[con N,K :int{N >0 A K >0}; X : array[0..N) of int;
var r : int;)

S
{r = (maxp,q:0<p<qg<NANpg<K:q-p)}

I
where
Npg=(#i:p<i<q:Xi=0)

Note that AV.p.q < K holds for empty segments, is prefix-closed and is postfix-closed.
Following the strategy explained in Chapter 7, we introduce as invariants

195

196 Auxiliary Arrays

Py: r=(maxp,q:0<p<qg<nANpg<K:qg-p)
P: 0<n<N
Q: s=(minp:0<p<nANpn<K:p)

leading to a program of the following form.

n,r,s:=0,0,0
jdon# N
— ‘establish Q(n:=n+1)’
;7:=rmax (n+1—s)
jni=n+l
od

For Q(n:= n+1), we derive (0 < n < N)

(minp:0<p<n+l A Np.(n+1) < K : p)
= {split off p = n+1, NM(n+1).(n+1)=0, 0L K}
(minp:0<p<n A Np.(n+l) < K : p) min (n+1)

andfor0<p<n< N:

Np.(n+1) <K
= { definition of '}
#i:p<i<nt+l: Xi=0)< K
= {splitoff i =n,p<n}
Npn + #.(Xn=0)<K
= { case analysis }
Npn< K f Xn#0
{ Npn<K-1 if Xn=0

From this derivation we conclude that for the invariance of Q
(minp:0<p<n A Npn<K-1:p)
is needed. Of course, for this expression

(minp:0<p<n ANpn<K-2:p)

is needed too, and so on. Therefore, we replace integer s by integer array s[0..K], with

At most K- zeros

(Vk:0<k<K:sk=(minp:0<p<n ANpn<k:p))

For 0 < k < K, we have

(minp:0<p<n+l A Np.(n+l) < k:p)
{k > 0 implies M.n.(n+1) < k}
(minp:0<p<n ANp.(n+l) < k:p)
{ previous derivation with K replaced by k }
(minp:0<p<n ANpn<k:p) fXn#0
{ (minp:0<p<n ANpn<k-1:p) fXn=0
{@}
sk i Xn#0
{ s.(k=1) if Xn=0

and (for k = 0)

(minp:0<p<ntl A Np(n+l) <0:p)
{ case analysis, Q }
s.0 fXn#0
{n+1 fXn=0 !

This yields the following solution.

[var n :int; s : array [0..K]of int;

n:=10

i[vara:int;a:=0;doa# K+1—sa:=0;a:=atlod]

{invariant: Py A P; A Q}

;don# N

— if X.n #£ 0 — skip
[Xn=0-— |vara:int;

a:=K
sdoa# 0— s.a:=s.(a—1); a:=a—1od
;8.0:=n+1

]

bl

= rmax (n+1—s.K)
= n+l

33 oo

)

od
I

197

198 Auxiliary Arrays

When all elements of X are zero, execution of this program takes K * N steps. In
the inner repetition array s is rotated over one place. Using s as a so-called circular
array, such a rotation corresponds to a shift of the origin over one position. More
precisely, introduce integer variable h and replace Q by

Q : (Vk:OSkSK:s.(h@k)=(minp:0§p$n/\./\/.p.nSk:p))
where @ denotes addition modulo K-+1. This r%asults in

[var n : int; s : array [0..K] of int;
n,h:=0,0
i[vara:int; a:=0;doa# K+1 — s.a:=0; a:=a+lod |
;jdon#N
— if X.n # 0 — skip
| Xn=0—-h:=h®K;s.h:=n+1

fi
;7:=rmax (n+l1-s.(h ® K))
;yni=n+l

od

J-

This program has time complexity O(N + K).

12.1 Largest square under a histogram

For histogram X [0..N), i.e., integer array X for which (Vi: 0 <4 < N : X.i > 0) holds,
we are asked to compute the largest square that fits under it. A formal specification is

[con N :int {N > 0}; X : array [0..N)ofint {(Vi:0<i < N: X.i >0)};
var 7 : int;

S
{r=(maxp,q:0<p<qg< N A Apq:q-p)}

]

where
Apg = (Vi:p<i<gq:X.i>q-p)

Note that A holds for empty segments, is prefix-closed, and is postfix-closed. Hence,
we may apply the program scheme maxseg of Section 8.2:

Largest square under a histogram 199

[var a,b : int;
a,b,r:=0,0,0
idob#N V -Aab
—if A.ab— r:=rmax(b—a);b:=b+1
| ~A.ab— a:=a+l
fi
od
i7:=rmax(N—a)
{r=(maxp,g:0<p<¢<N A Apqg:q-p)}

I,

for which 0 < @ < b < N is one of the invariants. We introduce boolean variable ¢
and add

c = Aab

as an additional invariant. Since .4.0.0 holds, c is initialized at true. We consider
b:= b+1, which is guarded by A.a.b:

A.a.(b+1)
= { definition of A}
(Viia<i<btl:Xi2 b+1—a)
= {splitoffi=b,a<b}
(Vi:a<i<b:Xi2> b+l—a) A X.b>b+1-a

= { heading for A.a.b}
(Vita<i<b:Xi>b-aA Xi#b—a)AXb2btl-a
= {A.ab}

(Vi:a<i<b:Xi#b—a)A Xb>btl-a
= { express as ‘number of’ }
(#i:a<i<b:Xi=b—a)=0A Xb2b+tl-a

The value of b—a is within the range [0..NV], hence, A.a.(b+1) equals
f(b—a)=0AXb>btl-a
provided that we add additional invariant

Qo: (Vj:05j_<_N:f.j=(#i:aSi<b:X.z’=~j))

200 Auxiliary Arrays

The change from universal quantification to ‘number of’ quantification is a
general technique. The first step of the derivation above is

Aa.(b+1) = Vi:a<i<btl:Xi>btl—a)

and one might be tempted to add d = (miné :a < i < b: X.4) to the
invariants. This yields no problems to b:= b+1, but it does pose a problem
to a:= a+1, since min has no inverse. The introduction of the ‘number
of’ quantification solves this problem. Such a transition is also applicable
to existential and universal quantifications.

In the second alternative, guarded by —A.a.b, we have an increase of a by 1. Note that
—A.a.b implies a < b and, hence, X.(b—1) is well defined. For a+1 < b, we have

A.(a+1).b
= { definition of .4}

(Vi:a+l1<i<b:Xi>b—a—1)
= {split off ¢ = b—1, a+1 < b—1}

(Vi:atl <i<b-1:Xi>b—a—1) A X.(b=1) > b—a—1
= {'see below }

X.(b-1) > b—a—1

provided that (Vi :a+1 < ¢ < b—1: X.4 > b—a—1). Since A is postfix-closed, this is
implied by A.a.(b—1) and we add
Q:: Aa.(b-1)

to the invariants. Initially @, holds, the increase of b by 1 has guard A.a.b and, since
A is postfix-closed, it is not violated by a:= a+1.

For the case a+1 = b, we have

A.(a‘-l—l).b
= {a+1 = b, definition of A}

true

{(Vi:0<i<N:Xi>0)}
X.(b-1) >0
= {a+1=1b}
X.(b-1) > b—a—1

and we conclude that, in either case, A.(a+1).b = X.(b—1) > b—a—1.

The length of a longest common subsequence 201

The introduction of @, may be surprising. It is, however, from the general
program scheme of . maxseg immediately clear that for postfix-closed A, Q1
is an invariant. In many applications of this program scheme, the invariance
of A.a.(b—1) turns out to be crucial.

The statements needed for the invariance of Qo are easily derived, and we obtain the
following program.

[var a,b : int; ¢ : bool; f : array [0..N] of int;
a,b,r,c:=0,0,0,true
i[var k :int; k:=0;do k # N+1 — fk:=0;k:=Fk+1od]
;dob# N V —¢ ‘
—if ¢ — 7r:=rmax(b—a)
ie:i=f.(b—a)=0A Xb2>bt+l-a
(if Xb< N — f.(Xb)=f(Xb)+1[]Xb>N —skipfi
b= b+1
[¢ — ¢:=X.(b—-1) > b—a—-1
if Xa<N— f(Xa)=f(Xa)—1[]Xa>N —skipfi
ja:=a+l .
q .
od
;7:=rmax(N—a)

I

12.2 The length of a longest common subsequence

Our next example is a program for the computation of the length of a longest common
subsequence of two sequences. A subsequence of sequence s is obtained by removing
zero or more elements of s. A common subsequence of sequences s and t is a sub-
sequence of both s and ¢. The length of a sequence is its number of elements. We
consider two integer sequences, represented by integer arrays X[0..M) and Y'[0..N) for
which the length of a longest common subsequence has to be computed.

Let lesom.n (0< m < M A 0< n < N) denote the length of a longest common
subsequence of X[0..m) and Y'[0..n). Then

les.m.0=0
les.0.n =0

202 Auxiliary Arrays

For0<m <M A 0<n <N, we express lcs.(m+1).(n+1) as follows.
When X.m = Y.n, each common subsequence of X[0..m) and Y[0..n) can be extended
by X.m, hence,

Xm=Yn = les.(m+1).(n+1) =1+ lessm.n

When X.m # Y.n then each common subsequence of X[0..m+1) and Y[0..n+1) is
either a common subsequence of X[0..m+1) and Y[0..n) or a common subsequence of
X[0..m) and Y'[0..n+1), hence,

X.m#Yn = les.(m+1).(n+1) = les.(m+1).n max les.m.(n+1)
We conclude that lcs is formally defined by

lesm.0 =0
les.0.n =0
1+les.m.n if X.m=Yn

les.(m+1).(n+1) =
cs-(m+1).(n+1) { les.(m+1).n max les.m.(n+1) if X m#Y.n

A formal specification of the problem is

[con M,N :int {M >0 A N >0};
X : array [0..M) of int;
Y : array [0..NV) of int;
var r : int;
S
{r =les.M.N}

-

In the post-condition two constants (M and N) occur. We may replace both of them
by variables and try as invariant

r = les.m.n

This invariant is established by, for instance, r,m,n:= 0,0,0, r,m,n:= 0, M,0, or
r,m,n:=0,0, N. This indicates that this invariant is rather weak. Moreover, as guard
of a repetition, we would have m # M V n # N and, hence, inspection of X.m or Y.n
has to be guarded. In view of these problems, we replace only one of the constants by
a variable (thereby destroying the symmetry) and we consider invariant

r =les.m.N

The length of a longest common subsequence 203

which is established by r,m := 0,0. An increase of m by 1 yields expression lcs.(m+1).N
and, according to the definition of lcs, les.m.(N—1), les.m.N, and lcs.(m+1).(N-1)
are needed for its computation. The last expression gives rise to les.m.(N—2), etc.
Therefore, we introduce integer array h[0..N] and accompanying invariant

Py: (Vi:0<i< N:hi=lcs.m.i)
where the bounds for m are given by
P: 0<m<M
Then

Pym:=0) = (Vi:0<i<N:hi=0)
and

PPAm=M = hN =les.M.N
Furthermore, we have

Py(m:=m+1)
= { definition of Py}
(Vi:0<1i< N:hi=lcs.(m+1).4)

which is established by another repetition, replacing constant N by variable n with
invariants

Qo: (Vi:0<i<n:hi=les.(m+1)4) A (Vi:n<i<N:hi=les.m.i)
Q:: 0<n<N '

for which we have Py = Qo(n:= 0) and Qo A n =N = Py(m:= m+1). For
0 <n < N, we derive

Qo(n:=n+1)
= { definition of Qo }
(Vi:0<i<nt+l:hi=les(m+1).0) A (Vi:ntl <i< N:hi=les.mai)
= {split off i = n+1} , ‘
(Vi:0<i<n:hi=les(m+1).i) A (Vi:n+l <i< N:hi=les.m.i)
- A h.(n+1) =les.(m+1).(n+1)

204 Auxiliary Arrays

The first two conjuncts of the last predicate are implied by Qy, hence,
h.(n+1) = les.(m+1).(n+1)
has to be established, for which we have

les.(m+1).(n+1)
= { definition of lcs }

1+Ics.m.n fXm=Yn
{ les.(m+1).n max les.m.(n+1) if X.om #Y.n
= {Qo}
1+les.m.n ifXm=Yn
{ h.n max h.(n+1) if Xom#Yn

Evidently, we need lcs.m.n as well, and we add to the invariants
Q2: a=lesm.n
The invariance of @ is no problem: @, implies k.(n+1) = les.m.(n+1). Thus, we have

{Qo A Q1 A Q2 An#N}

if X.m =Y.n — q,h.(n+1):= h(n+1),14+a

| X-m#Y.n — a, h(n+l):=h(n+1), hnmaxh.(n+1)
fi

{(Qo A Q1 A Q3)(n:=n+1)

Since multiple assignments are not allowed when arrays are involved, local variable b
is introduced. The resulting program is presented below.

The length of a longest common subsequence

[var m : int; h : array [0..N] of int;

m:=0

ik : int; k:= 0;do k # N+1 — h.k:=0;k:= k+1lod]

{Po A P1}

sdom # M

— |[var n,a : int;
n,a:=0,0
{Qo A Q1 A @2}
;don #N
— |[var b : int;
b:= h.(n+1) ‘
f Xm=Yn— h(ntl):=1+a
| X.m #Y.n — h(n+l):= hnmaxh.(n+1)
fi :
;a:=b
|
ini=n+l
od ‘
]
ym:=m+l1
od
jr:=h.N

I

205

206 Auxiliary Arrays

12.3 A shortest segment problem

In our final example, we demonstrate how an efficient solution to a programming
problem can be obtained in a number of steps. These steps are not specific for this
particular problem but they occur in derivations of many other programming problems
as well. To illustrate these steps, we use the following segment problem.

For integer array X[0..N), N > 1, we wish to derive a program for the computation
of the length of a shortest segment in which the maximum value on that segment occurs
exactly twice. A formal specification is

[con N :int {N > 1}; X : array [0..N) of int;
var r : int;
S
{r = (minp,q:0<p<¢g< N A Apq:q—p)}

]

where
Apg = #i:p<i<g:Xi=(maxj:p<j<q:Xj))=2

The ‘shortest segment properties’ of Section 8.2 do not hold for predicate .A. Even
when we change A to

(#i:p<i<g:Xi=(maxj:p<j<qg:Xj)>2

(which does not affect the specification of S), we only have ‘~.A holds for empty
segments’. As a consequence, we need a different approach to solve this problem.

A shortest segment [p..g] that satisfies A is characterized by
0<p<g<NAXp=XgA(Mi:p<i<g:Xi<X.q)

It has length ¢+1—p. Hence, we may rewrite the post-condition of the specification as
r=(minp,q:0<p<qg< N A B.p.q:q+i—p)

where
Bpg = Xp=Xqg A (Vi:p<i<qg:Xi<Xgq)

Replacing the constant NV by integer variable n leads to

A shortest segment problem 207
Py: r=(minp,g:0<p<g<n A Bp.g:qg+l-p)
P: 1<n<N

which are established by n,7:= 1, 00. For Py(n:= n+1), a straightforward derivation
yields the expression

(minp:0<p<n A Xp=XnA (Vi:p<i<n:X.i<X.n):n—|—1—p)
The equation
p: 0<p<nAXp=XnANi:p<i<n:X.i<Xmn) (%)
has at most one solution; if it exists, then it equals the solution of
p: 0<p<nAXp>XnANMiip<i<n:X.i<Xun)
This equation also has at most one solution; if it exists, then it equals the solution of
p: 0<p<nA(p=0V Xp>Xn)A (Vi:»p<i<n:X.i<X.n)
This equation has, sincg n > 1, precisely one solution, viz.
(minp:0§p<n/\(Vi:p%i<n:X.i<X.n):p)
So, for s defined by
(s=0V Xs>Xn)A0<s<nA(Vi:s<i<n:Xi<Xn)
we have

X.s=X.n = sis the solution of (*)
X.s # X.n = (%) has no solution

The relation

(s=0VXs>Xn)A0<s<nA (Viis<i<n:Xi<Xmn)
is established by a repetition that is guarded by s # 0 A X.s < X.n and has invariant
Q: 0<s<nA(Mirs<i<n:X.i<Xmn)

This leads to the first solution:

208 Auxiliary Arrays

[var n : int;
n,r:=1,00
{invariant: Py A P;, bound: N—n}
idon #N
— |[var s : int;
s:=n—1
{invariant: @, bound: s}
;dos#0A X.s<Xmn— s:=s—1od
;if X.s = Xon — r:= rmin (n+1—s)
| X.s # X.n — skip
fi
|
;jni=n+1
od
1

For increasing X, execution of the inner repetition takes n—1 steps and, hence, this
program has time complexity O(N?). A more efficient program is obtained when s can
be decreased by more than one. We reconsider the definition of s and we define for
1<j<N

fi=(minp:0<p<jA(Vi:p<i<j:Xi<X.j):p)

The program fragment

s:=n—-1
{Q:0<s<nA(Vi:s<i<n:Xi<Xmn)}
;dos#O0A Xs< Xn— s:=s—1od

establishes s = f.n. We derive

QANs#0ANXs<Xmn

= { definition of @}
Virs<i<n:Xi<Xn)AO<s<nAXs<Xn

= { definition of f}
(Vits<i<n:Xi<Xn)A0<s<nAXs<Xn
AVi:fs<i<s:Xi<Xs)ANO0<L fs<s

=> { transitivity of <}

A shortest segment problem 209

(Vi:fs<i<n:Xi<Xn)AO0L fs<n
= { definition of @ }
Q(s:= f.9)

Hence, s:= s—1 may be replaced by s:= f.s. We introduce integer array f{1..N) and
accompanying invariant

Py: (Vj:1<j<n:fj=(minp:0<p<jA (Vi:p<i<j:Xi<Xj):p))
This leads to the second solution:

[var n : int; f: array[1..N) of int;
n,r:=1,00
{invariant: Py A P, A P,, bound: N—n}
;don# N
— |[var s : int;
s:=n—1
{invariant: @, bound: s}
idos#0 A Xs<X;n—s:=fsod
s fn= s
if X.s = X.n — r:=rmin (n+1-s)
| X.s # X.n — skip
fi
]
ini=mn+l
od
]

To determine its time complexity, we add the ghost variable k to the inner repetition.
We leave out the statements that are irrelevant for this discussion and obtain

n:=1
jdon #N
— s:=n—1;k:=0
1dos#0A Xs< Xmn—s:=fs;k:=k+lod
i fni=s
ini=n+l
od

210 Auxiliary Arrays

An invariant of the inner Tepetition is

s=fF(n—1) A (Vi:0<i<k: fi(n—1)#0)
where fi.x is defined by

fPz=z and ftlz= f(f'x)fori>0.

Since 0 < f.x < z for ¢ > 0, sequence f'.(n—1) is a decreasing sequence with final
element 0. Let a denote the length of this sequence, i.e., add integer variable a and
invariant

a=(mini: >0 A fi.(n—1)=0:1)
where f.0 is defined as 0. The inner repetition has post-condition
s=fl(n=1) A s=fn A (Vi:0<i<k:fi(n—1)#0)
For i > 1, we have
fin
= { definition of % i > 1}
f7(fn)
= {s=fnAs=fr(n-1)}
VAN ANCESY)
= { definition of '}
fi+k_1.(n—1)

and, hence,

(mini:i>0 A fin=0:4)
= {f’n=nandn+#0}
(mini:i>1A fin=0:49)
= { derivation above }
(mini:i>1 A fi*51 (n—1) = 0:)
= {dummy change: i:=i—k+1}
(mini:i>k A fi(n—1)=0:i—k+1)
= {(Vi:0<i<k:fi(n-1)#0)}
(mini:i>0 A fi(n—1) =0:i—k+1)
= { definition of a }
a—k+1

A shortest segment problem 211

This leads to

n,a:=1,0
;don #N
— s:=n—17k:=0

dos#0A Xs<Xmn—s:=fs;k:=k+lod

;a:=a—k+1
s fni=s
;ni=n+l

od

In each step of the outer repetition a is incremented by 1 and decremented by the
number of steps of the inner repetition. Since the outer repetition takes N—1 steps,
the final value of a equals

N — 1 — (the total number of steps of the inner repetition)

From the invariance of a > 0, we conclude that the total number of steps of the inner
repetition is at most N—1. Hence, the program is linear.

Although the second program is quite satisfactory, there is another interesting trans-
formation possible. From the invariance of

s = fk.(n-1)

we infer that only the values of sequence f*.(n—1), 1 < ¢ < a are needed for the
computation of f.n. Moreover, sequence fi.n is obtained from sequence f.(n—1) by
removing the first k elements and adding the value of s in front of it. An easy way to
record the sequence f*.(n—1) is by the introduction of an integer array h[0..N) with
accompanying invariant of the outer repetition:

(Vi:1<i<a: h(a—i) = fi.(n—1))

This yields the third solution:

212 Auxiliary Arrays ., -

[var n,a: int; h: array [0..N) of int;
n,a,r:=1,0,00 »
;don # N
— |[var s : int;
s:=n—1 .
jdos#0 A Xs< Xmn—a:=a—1;s:=haod
sha:=s;a:=a+1
;if X.5=X.n - r:= rmin(nt+1-s)
[X.s# X.n— skip
fi
I
gni=n+l
od o
)

This program has the same complexity as the second solution. The main difference
is that array h may be implemented as a so-called stack: elements are added and
removed from its ‘top’ and only the storage that is-needed (i.e., the maximal value
that a may have) is used. Some people prefer the third solution. Since the second
solution is obtained in a more calculational way, we prefer that.

Exercises

Solve the following programming problems.

0. [[con N :int{N > 0}; X : array[0..N) of int;
var r : int;
S .
{r=(minp,q:0<p<g< N A Apg:q-p)}

I

where A.p.q is defined by .

Apg= (Vi:0<i<60:(3j:p<j<q:Xj=i)

A shortest segment problem 213

1. (Balanced segments)

[con N :int {N >0}; X : array [0..N) of int;
var r : int;
S
{r = (maxp,q:0<p<qg<N A Apg:q-p)}

I

where A.p.q is defined by

Apg = (#i:p<i<g:Xi=0)=(#i1:p<i<qg:Xi=1)

. Let N be a natural number. A partition of N is a bag of positive integers that

has sum N. For example, 4 has the following partitions:

[4], [1,3], [2,2], [1,1,2], and [1,1,1,1].

One is asked to derive an O(N?) program for the computation of the number of

partitions of natural number N.

(Hint: define for natural p and ¢ function C.p.q by
C.p.q = ‘the number of partitions of ¢ in which each element is at most p’

and derive a suitable recurrence relation for C.)

. Derive an O(N) program for the computation of the number of subsequences of

integer array X[0..N) that equal the sequence 0..K (0 < N A 0 < K).

. (Longest upsequence) Derive an O(N log N) program for the computation of the

length of a longest increasing subsequence of the integer array X[0..N), N > 1.

. A partition of a set V is a collection of non-empty subsets of V' whose union

equals V. For example, the partitions of {a, b, c} are

{{a,b,c}}, {{a, 0}, {c}}, {{a}, {b,c}}, {{a, ¢}, {b}}, and {{a}, {0}, {c}}-

Derive a program for the computation of the number of partitions of a set of N, -
N > 0, elements.

. (Largest rectangle) For integer N, N > 1, and histogram X[0..N), i.e.,

(Vi:0<i< N:X.i>0), oneis asked to derive a program for the computation
of the size of a rectangle that fits under X and that has maximal area.

Index

abort, 16

absorption, 6

all elements different, 119

all zeros, 111

annotation, 22

array, 40

array assignment, 152
multiple, 154

ascending, 48

assignment, 17
multiple, 18

associative, 44

associativity, 6

at least two zeros, 146

at most K zeros, 195

at most ten zeros, 117

auxiliary arrays, 195

balanced segments, 213

Binary Search, 100, 102

bool, 13

bound function, 30

bound variable, 9

Bounded Linear Search, 95, 96
bubble sort, 176

bucket sort, 171

catenation, 20
celebrity, 107

circular array, 198
coincidence count, 138
commutative, 44
commutativity, 6
complement rule, 7
con, 39

214

conjunction, 4
constant, 38

convex, 149

coupling invariant, 167
credit, 71

De Morgan, 6
decreasing, 48

def, 19

descending, 48
Dijkstra, Edsger W., 29
disjunction, 4
distributivity, 6

div, 18

divmod, 83

dummy, 9

Dutch National Flag, 161

efficiency, 51
equivalence, 4, 6
ezponentiation, 57, 77

false-true rules, 6
Fibolucci, 82, 91
Fibonacci, 63, 88
frequency table, 155
function application, 40
fusc, 79

ghost variable, 86

greatest common divisor, 29
guard, 23

guarded command, 23

guarded command language, 13

h-sequence, 80

heap condition, 189
Heapsort, 193

idempotence; 6
identity, 44
implication, 4, 6
increasing, 48
inference rule, 13
inner block, 38
insertion sort, 174
int, 13

Invariance Theorem, 31
invariant, 29
inversion, 170

largest rectangle, 213

largest square under a histogram, 198

lcm, 56

left-minimal segments, 115
Leibniz’s Rule, 5
lexicographical order, 149
linear combinations, 88
Linear Search, 94

longest common subsequence, 201

longest segments, 110
longest upsequence, 213

max, 45

mazimum occurs twice, 206

mazlocation, 106
maxseg, 143
mazsegsum, 67
merge, 183
Mergesort, 186

min, 45

minimal distance, 136
minseg, 145

mod, 18

monotonic, 122

museum peak attendance, 193

negation, 4, 6
non-determinism, 15

Index

number of, 48
0, 51

partition, 213
post-condition, 13
postfix-closed, 111
pre-condition, 13
weakest, 15
predicate, 4
predicate transformer, 14
prefix-closed, 111

quantification, 44
existential, 8
universal, 8

Quicksort, 182

range, 9, 45
empty, 9
non-empty, 9

rotation, 164

Saddleback Search, 127
scope, 40
searching, 92

Searching by Elimination, 105, 106

segment, 40

segment problems, 110, 140
selection, 23

selection sort, 175
semi-colon, 21

shortest segments, 122
Simple Array Assignment, 157
simple swap statement, 160
skip, 16

Slope Search, 127

sorting, 170

specification variables, 13
square root, 55, 87, 102
square brackets, 5, 10
stable, 178

stack, 212

215

216 Index

starting pit location, 109
state space, 4, 13
statement, 13

stronger, 7

strongest solution, 8
subsequence, 201
substitution, 8

sum of two squares, 133
swap, 159

tail invariant, 74
tail recursion, 73
Teacher’s Manual, x
term, 9, 45
termination, 30
type, 13

var, 13

weaker, 7
weakest solution, 7
Welfare Crook, 139

zero, 46

