
Programming Languages:
Imperative Program Construction

0. Introduction

Shin-Cheng Mu

Autumn Term, 2024

Can you Implement Binary Search?
Given a sorted array of N numbers and a key, either

locate the position where the key resides in the array,
or report that the key does not present in the array, in
O(logN) time.

• You would not expect it to be a hard programming
task.

• Jon Bentley [Ben86, pp. 35-36], however, noted:

“I’ve assigned this problem in courses
at Bell Labs and IBM. Professional pro-
grammers had a couple of hours to con-
vert the above description into a program
in the language of their choice; . . . 90%
of the programmers found bugs in their
programs.

. . .Knuth points out that while the
first binary search was published in 1946,
the first published binary search without
bugs did not appear until 1962.”

• Mike Taylor, owner of a popular blog The Rein-
vigorated Programmer, conducted this experiment
again in 2010 on his blog [Tay10]. He estimated that
around 50% of participants got the program right.

Give It a Try?

• Bentley: “The only way you’ll believe this is by
putting down this column right now and writing the
code yourself.”

• Given: an array a [0..N ) of N elements,

• that is sorted: ⟨∀i , j : 0 ⩽ i < j <N : a[i ] ⩽ a[j ]⟩.

• Find i such that a[i ] = K , or report that K is not
in the array.

Programming is Hard
We have heard about plenty of “horror story” about

software errors.

• NASA’s Mars Climate Orbiter, 1998.

– Conversion from imperial units to metric.

• Ariane 5 explosion, 1996.

– Cramming a 64-bit number into a 16-bit space.

• Baggage handling system in Heathrow Terminal 5,
2008.

– Cannot cope with “real world” situation.

• Patriot Missile system failed to detect an attack,
1991.

– Rounding error caused a delay of 1/3 second
after 100 hours.

But today let us look at a more recent bug caused by a
tiny piece of code.

The Zune Bug

• Zune: a line of portablemedia players and software,
produced by Microsoft.

• “First-generation Zunes — those with 30-gigabyte
disk drives — went silent everywhere on December
31. The cause was soon traced to calendrical code in
the device’s firmware. The bug is an interesting one,
if only because all the details, including the source
code, immediately came to light.” [Hay09] .

1



The Task

• The variable days is set to the number of days since
January 1, 1980.

• The task: what is the current year?

• Each common year has 365 days; each leap year has
366 days.

• The predicate IsLeapYear(year) yields true if
year is a leap year.

The Code That Caused All the Trouble
What’s the worst that could happen?

year = 1980;
while (days > 365) {

if (IsLeapYear(year)) {
if (days > 366) {

days -= 366;
year += 1;

}
}
else {

days -= 365;
year += 1;

}
}

In a leap year with day be 366, the program does not
terminate. That was why Zune crashed on Dec. 31, 2008,
a leap year.

Fix?

• A reader at Zuneboards.com suggested a fix: replace
(days > 366) with (days >= 366).

• The program returns the wrong year on the last day
of every leap year.

A Program That Works

year = 1980;
while (days > 365) {

if (IsLeapYear(year)) {
if (days > 366) {

days -= 366;
year += 1;

}
else break;

}
else { days -= 365;

year += 1;
}}

“... but the logic is anything but perspicuous.”

How To Ensure That a Program is Correct?
Programming is more than producing the code. At the

very least we should produce code that is correct.
But how do we ensure that the code is correct?

• Testing.

• Verification.

• Derivation.

Software Testing
A technique widely used in industry. A matured disci-

pline in its own right, which I cannot claim I know very
well.

Due to its very nature, however, testing can never be
complete.

Dijkstra: “Today a usual technique is to make
a program and then to test it. But: program
testing can be a very effective way to show the
presence of bugs, but is hopelessly inadequate
for showing their absence.” [Dij72]

Dijkstra: “The only effective way to raise the
confidence level of a program significantly is to
give a convincing proof of its correctness.”
[Dij72]

Formal Verification
To prove that a program is correct, via for-

mal/mathematical means.
Also a matured discipline, used for software whose

correctness is of vital importance.
The main difficulties:

• programs written without proofs in mind are often
hard to prove;

• programmers don’t bother to prove their code once
it is written.

Dijkstra: “But one should not first make the
program and then prove its correctness, be-
cause then the requirement of providing the
proof would only increase the poor program-
mer’s burden. On the contrary: the program-
mer should . . . ” [Dij72]

2



“. . . [let] correctness proof and program
grow hand in hand: with the choice of the
structure of the correctness proof one de-
signs a program for which this proof is ap-
plicable.” [Dij74]

Program Derivation
Developing a program and its correctness proof at the

same time.
Why?

• Programs developed with proofs in mind are easier
to prove.

• Programming is made easier too! In fact, “how to
prove the program” may give you hints on “how the
program can be written.”

Goals This Term
Formal approaches to (imperative) program construc-

tion — constructing programs with sufficient confidence
that they are correct.

• We will start with learning an imaginary program-
ming language: the Guarded Command Language.

• Starting with: given a program, how to prove that it
is correct?

– Tools: Hoare logic, weakest precondition,
predicate logic...

• Then we move on to learn about deriving programs.

– Most of the tricks will be about constructing
loops.

• If time allows, we will talk about reasoning about
heaps and pointers using separation logic.

Testing, Verification, and Derivation
We will emphasise on program derivation when pos-

sible, and switch to program verification when we have
to.
While early debates sometimes positioned testing,

verification, and derivation as rivaling techniques, I tend
to see them as related disciplines sharing common the-
ories. People in these disciplines can communicate and
learn from each other.

Textbook and Homepage

• We will not follow any textbook completely, but
most of this course are adapted from Kalde-
waij [Kal90].

• Other highly recommendedmaterials include: Dijk-
stra [Dij76], Gries [Gri81], Morgan [Mor90], Back-
house [Bac11].

• Some materials are borrowed from “(In)formal
Methods” a very recommended course given by
Prof. Carroll Morgan [Mor21].

• Prof. Yih-Kuen Tsay’s course on Software Specifi-
cation and Verification tells the verification side of
the story.

• Course homepage: https://scmu.github.io/
plip/. We might use NTU COOL too.

References
[Bac11] R. C. Backhouse. Algorithmic Problem Solving.

Wiley, 2011.

[Ben86] J. L. Bentley. Programming Pearls. Addison-
Wesley, 1986.

[Dij72] E. W. Dijkstra. The humble programmer. Com-
munications of the ACM, 15(10):859–866, 1972.
EWD 340, Turing Award lecture.

[Dij74] E. W. Dijkstra. Programming as a discipline of
mathematical nature. American Mathematical
Monthly, 81(6):608–612, May 1974. EWD 361.

[Dij76] E. W. Dijkstra. A Discipline of Programming.
Prentice Hall, 1976.

[Gri81] D. Gries. The Science of Programming. Springer
Verlag, 1981.

[Hay09] B. Hayes. The Zune Bug. http://
bit-player.org/2009/the-zune-bug, Jan-
uary 2009.

[Kal90] A. Kaldewaij. Programming: the Derivation of
Algorithms. Prentice Hall, 1990.

[Mor90] C. C. Morgan. Programming from Specifica-
tions. Prentice Hall, 1990.

3



[Mor21] C. C. Morgan. (In-)Formal Meth-
ods: the Lost Art. COMP 6721,
University of New South Wales.
http://www.cse.unsw.edu.au/ cs6721/2021T2/Web/,
2021.

[Tay10] M. Taylor. Are you one of the 10% of pro-
grammers who can write a binary search?
The Reinvigorated Programmer, https:
//reprog.wordpress.com/2010/04/19/
are-you-one-of-the-10-percent/, April
2010.

4


