Programming Languages: Imperative Program Construction 1. Hoare Logic and Weakest Precondition: Non-Looping Constructs

Shin-Cheng Mu

Autumn Term, 2024

1 Hoare Logic

The Guarded Command Language

In this course we will talk about program construction using Dijkstra's calculus. Most of the materials are from Kaldewaij [Kal90].

• A program computing the greatest common divisor:

con A, B : Int
$$\{0 < A \land 0 < B\}$$

var x, y : Int
x, y := A, B
do $y < x \to x := x - y$
 $| x < y \to y := y - x$
od
 $\{x = y = gcd (A, B)\}$.

- Assignments denoted by :=; do denotes loops with guarded bodies.
- · Assertions delimited in curly brackets.

The Hoare Triple

- Given a program statement S and predicates P and Q, the *Hoare triple* $\{P\} S \{Q\}$ is a Boolean value.
- Operationally, {*P*} *S* {*Q*} is *True* iff. the statement *S*, when executed in a state satisfying *P*, *terminates* in a state satisfying *Q*.
- Note: in some flavours of theory, $\{P\} S \{Q\}$ need not imply termination. We will stick with the terminating version in our course.

Examples

- $\{x \ge 0 \land y \ge 0\} S \{r = x \times y\}$ is *True* iff. *S* is a program that, given non-negative *x* and *y*, terminates and stores $x \times y$ in *r*.
 - Nothing is said about values of x and y upon termination.
 - When $x \ge 0 \land y \ge 0$ does not hold, S may do anything including looping forever.
- {z ≥ 0} S {x × y = z} is True iff. S, given non-negative z, computes a factorization of z, and terminates.
- $\{x > 0\} S \{True\}$ is *True* iff. *S* is any program that terminates, provided that x > 0.

Some Properties

- $\{P\} S \{Q\}$ and $P_0 \Rightarrow P$ implies $\{P_0\} S \{Q\}$.
- $\{P\} S \{Q\}$ and $Q \Rightarrow Q_0$ implies $\{P\} S \{Q_0\}$.
- $\{P\} S \{Q\}$ and $\{P\} S \{R\}$ equivales $\{P\} S \{Q \land R\}$.
- $\{P\} S \{Q\}$ and $\{R\} S \{Q\}$ equivales $\{P \lor R\} S \{Q\}$.
- Note: "A equivales B" is another way to say "A if and only if B", also denoted by $A \equiv B$.

The No-Op Statement

• Perhaps the simplest statement: $\{P\}$ skip $\{Q\}$ iff. $P \Rightarrow Q$.

- E.g.
$$\{x > 0 \land y > 0\}$$
 skip $\{x \ge 0\}$.

- Note that the annotations need not be "exact."
- Operationally, *skip* is a statement that does nothing.
 - Why do we need a program that does nothing?
 - It is like why we need a number 0 that represents "nothing". It can be very useful sometimes.

2 Assignments

Substitution

- $P[x \setminus E]$: substituting *free* occurrences of x in P for E.
- We do so in mathematics all the time. A formal definition of substitution, however, is rather tedious.
- For this lecture we will only appeal to "common sense":

- E.g.
$$(x \leq 3)[x \setminus x - 1] \equiv x - 1 \leq 3 \equiv x \leq 4$$
.
- $(\langle \exists y : y \in \mathbb{N} : x < y \rangle \land y < x)[y \setminus y + 1]$
 $\equiv \langle \exists y : y \in \mathbb{N} : x < y \rangle \land y + 1 < x$.
- $\langle \exists y : y \in \mathbb{N} : x < y \rangle[x \setminus y]$
 $\equiv \langle \exists z : z \in \mathbb{N} : y < z \rangle$.

- The notation $[x \setminus E]$ hints at "divide by x and multiply by E."
 - We have $x[x \setminus E] = E$. Nice!
- Just in case you may see different notations in other papers...
 - Many papers use the notation [E/x]. Either way, x is the denominator.
 - Kaldewaij actually wrote [x := E], since substitution is closely related to assignments.
 - Some papers write P_E^x for $P[x \setminus E]$.

Substitution and Assignments

- Which is correct:
 - 1. $\{P\} x := E \{P[x \setminus E]\}, \text{ or }$

2.
$$\{P[x \setminus E]\} x := E \{P\}?$$

• Answer: 2! For example:

$$\begin{array}{l} \{(x \leqslant 3)[x \backslash x + 1]\} \, x := x + 1 \, \{x \leqslant 3\} \\ \equiv \ \{x + 1 \leqslant 3\} \, x := x + 1 \, \{x \leqslant 3\} \\ \equiv \ \{x \leqslant 2\} \, x := x + 1 \, \{x \leqslant 3\}. \end{array}$$

3 Sequencing

Catenation

- $\{P\} S; T \{Q\}$ equivals that there exists R such that $\{P\} S \{R\}$ and $\{R\} T \{Q\}$.
- Verify:

var x, y: Int $\{x = A \land y = B\}$ x := x - y $\{y = B \land x + y = A\}$ y := x + y $\{y - x = B \land y = A\}$ x := y - x $\{x = B \land y = A\}$

4 Selection

If-Conditionals

- Selection takes the form if $B_0 \rightarrow S_0 \mid ... \mid Bn \rightarrow Sn$ fi.
- Each B_i is called a guard; $B_i \rightarrow S_i$ is a guarded command.
- If none of the guards $B_0 ldots B_n$ evaluate to true, the program aborts. Otherwise, one of the command with a true guard is chosen *non-deterministically* and executed.

To annotate an **if** statement:

 $\begin{array}{l} \{P\} \\ \mathbf{if} \ B_0 \to \{P \land B_0\} \ S_0 \left\{Q, \mathsf{Pf}_0\right\} \\ \mid \ B_1 \to \{P \land B_1\} \ S_1 \left\{Q, \mathsf{Pf}_1\right\} \\ \mathbf{fi} \\ \left\{Q, \mathsf{Pf}_2\right\} \ , \end{array}$

where Pf_0 , Pf_1 , Pf_2 are labels referring to proofs.

- Pf₀ refers to a proof of $\{P \land B_0\} S_0 \{Q\}$;
- Pf₁ refers to a proof of $\{P \land B_1\} S_1 \{Q\}$;
- Pf₂ refers to a proof of $P \Rightarrow B_0 \lor B_1$.
- The proofs and labels are sometimes omitted if they are trivial.

Binary Maximum

- Goal: to assign $x \uparrow y$ to z. By definition, $z = x \uparrow y \equiv (z = x \lor z = y) \land x \leq z \land y \leq z$.
- Try z := x. We reason:

$$\begin{aligned} &((z = x \lor z = y) \land x \leqslant z \land y \leqslant z)[z \backslash x] \\ &\equiv (x = x \lor x = y) \land x \leqslant x \land y \leqslant x \\ &\equiv y \leqslant x, \end{aligned}$$

which hinted at using a guarded command: $y \leq x \rightarrow z := x$.

Indeed:

$$\begin{array}{l} \{ \mathit{True} \} \\ \mathbf{if} \ y \leqslant x \rightarrow \{ y \leqslant x \} \ z := x \ \{ z = x \uparrow y \} \\ \mid x \leqslant y \rightarrow \{ x \leqslant y \} \ z := y \ \{ z = x \uparrow y \} \\ \mathbf{fi} \\ \{ z = x \uparrow y \} \end{array} .$$

On Understanding Programs

• There are two ways to understand the program below:

$$\begin{array}{ll} \mathbf{if} \; B_{00} \rightarrow S_{00} \; \mid \; B_{01} \rightarrow S_{01} \; \mathbf{fi} \\ \mathbf{if} \; B_{10} \rightarrow S_{10} \; \mid \; B_{11} \rightarrow S_{11} \; \mathbf{fi} \\ \vdots \\ \mathbf{if} \; B_{n0} \rightarrow S_{n0} \; \mid \; B_{n1} \rightarrow S_{n1} \; \mathbf{fi}. \end{array}$$

- One takes effort exponential to *n*; the other is linear.
- Dijkstra: "...if we ever want to be able to compose really large programs reliably, we need a programming discipline such that the intellectual effort needed to understand a program does not grow more rapidly than in proportion to the program length." [Dijnd]

5 Weakest Precondition

State Space and Predicates

More precisely speaking ...

• A predicate on A is a function having type $A \rightarrow Bool$.

- E.g. $even :: Int \rightarrow Bool$ is a predicate on Int.

• The *state space* of a program is the states of all its variables.

- E.g. state space for the GCD program, which has two variables x and y, is $(Int \times Int)$.
- An expression having free variables can be seen as a function.
 - E.g. $x \leq y$ is a predicate (a function) with type $(Int \times Int) \rightarrow Bool$ that yields *True* for, e.g. (x, y) = (3, 4) and *False* for (x, y) = (4, 3).

In a Hoare Triple...

- In {*P*} *S* {*Q*}, *P* and *Q* shall be seen as *predicates* on the state space of the program *S*.
- E.g. In $\{z \ge 0\} S \{x \times y = z\}$, assuming that the program S uses only three variables x, y, and z.
 - The part $z \ge 0$ shall be understood as a predicate that takes x, y, and z, and returns *True* iff. $z \ge 0$.
 - The part $x \times y = z$ shall be understood as a predicate that takes x, y, and z, and returns *True* iff. $x \times y = z$.
- *True* in a Hoare triple can be understood as a predicate that returns *True* for any input; similarly with *False*.
- Let S be a program having variables x, y, z. That $\{P\} S \{Q\}$ being *True* means that if S starts running in a state such that P(x, y, z) = True, it terminates and yields a state such that Q(x, y, z) = True.

Stronger? Weaker?

- Given propositions P and Q, if $P \Rightarrow Q$, we say that Q is the *weaker* one, and P is the *stronger* one.
- Precisely speaking, *P* is *no weaker than Q* and *Q* is *no stronger than P*. But let's be a bit sloppy to avoid confusion...

Stronger and Weaker Predicates

- The convention extends to predicates. If P x ⇒ Q x for every x, Q is the *weaker* one, while P is the stronger one.
- Example: $0 \le x < 4$ is weaker than $0 \le x < 3$, which is in turn weaker than $1 \le x < 3$.

- Intuition: for first-order values, the set of values satisfying a weaker predicate is *larger* than that satisfying a stronger predicate.
- Example: *P* can be weaker than $P \land Q$ (since $(P \land Q) \Rightarrow P$); $P \lor Q$ can be weaker than *P* (since $P \Rightarrow (P \lor Q)$).
- Intuition: a weaker predicate enforces less restriction, is more tolerant, and allows more inputs/states to be *True*.

Predicate-Set Correspondence

- Functions can be hard to grasp.
- A predicate *P* is isomorphic to the set of values that satisfy the predicate at least for first order values. Therefore I tend to equate them.
- E.g. think of $x \leq 3$ as the set of values satisfying $x \leq 3$.
- *False* is the empty set, *True* is the set of all values (of the right type).
- $P \Rightarrow Q$ iff. $P \subseteq Q$.
 - A weaker predicate is a bigger set!
- $P \land Q$ corresponds to $P \cap Q$; $P \lor Q$ corresponds to $P \cup Q$.

Weakest Precondition

- Recall that the predicates in a Hoare triple need not be exact.
 - $\{x \leq 2\}$ x := x + 1 $\{x \leq 3\}$ is a valid triple.
 - So is $\{0 < x \leq 2\} x := x + 1 \{x \leq 3\}$. Note that $x \leq 2$ is weaker than $0 < x \leq 2$.
 - $x \leq 2$ is in fact the weakest (most tolerating) P such that $\{P\} x := x + 1 \{x \leq 3\}$ holds.
- Defining weakest precondition in terms of Hoare triple....
- **Definition**: given a statement *S*, its *weakest pre-condition* with respect to *Q*, denoted *wp S Q*, is the weakest predicate such that {*wp S Q*}*S*{*Q*} holds.

Predicate Transformer

wp S is a function from predicates to predicates.

- Also called a predicate transformer.
- I myself find it sometimes easier to think of a predicate transformer as a function from sets to sets.
- E.g. $wp \ S \ Q$ gives you the *largest* set P such that for all $x \in P$, running S starting from initial state x gives you a final state in Q.

Weakest Precondition: Skip and Assignment

- Weakest preconditions for *skip* and *assignment*:
- wp skip P = P.
- $wp(x := E) P = P[x \setminus E].$

Hoare Triple, Revisited

- We can do it the other way round: specify *wp* for each program construct, and define Hoare triple in terms of *wp*.
- **Definition**: $\{P\} S \{Q\}$ if and only if $P \Rightarrow wp S Q$.

Examples

• $\{x > 0\}$ skip $\{x \ge 0\}$ is valid, because:

$$\begin{array}{l} wp \; skip \; (x \ge 0) \\ \equiv & \{ \text{ definition of } wp \; \} \\ & x \ge 0 \\ \Leftarrow \; x > 0 \ . \end{array}$$

• $\{0 < x < 2\} := x + 1 \{x \leq 3\}$ is valid, because

$$wp (x := x + 1) (x \leq 3)$$

$$\equiv \{ \text{definition of } wp \} \\ (x \leq 3)[x \setminus x + 1]$$

$$\equiv x + 1 \leq 3$$

$$\Leftarrow 0 < x < 2 .$$

Sequencing and Branching

- wp(S;T) Q = wp S(wp T Q).
 - Or $wp(S; T) = wp S \cdot wp T$, where (·) denotes function composition.
- wp (if $B_0 \rightarrow S_0 \mid B_1 \rightarrow S_1$ fi) $Q = (B_0 \Rightarrow wp S_0 Q) \land (B_1 \Rightarrow wp S_1 Q) \land (B_0 \lor B_1).$

Semantics

What does a program mean?

- Denotational semantics: what a program *is*. Mapping programs to mathematical objects.
- **Operational semantics**: what a program *does*. How one program term transforms to another.
- Axiomatic semantics: what a program guarantees.
- Predicate transformer semantics can be seen as a kind of denotational semantics, and axiomatic semantics.
- The meaning of a program is a *predicate transformer*: give it a post condition Q, it tells us what precondition is sufficient to guarantee Q.
- It is a "goal oriented" semantics that is more suitable for reasoning about and constructing imperative programs.

Properties of Predicate Transformers

- wp must satisfy certain conditions.
- Strictness: $wp \ S \ False = False$.
- Monotonicity: $P \Rightarrow Q$ implies $wp \ S \ P \Rightarrow wp \ S \ Q$.
- Distributivity over Conjunction: $(wp \ S \ Q_0 \land wp \ S \ Q_1) \equiv wp \ S \ (Q_0 \land Q_1).$
- One can prove that $(wp \ S \ Q_0 \lor wp \ S \ Q_1) \Rightarrow wp \ S \ (Q_0 \lor Q_1).$
- $(wp \ S \ Q_0 \lor wp \ S \ Q_1) \equiv wp \ S \ (Q_0 \lor Q_1)$ holds only for *deterministic* programs.

6 Summary

The weakest-precondition semantics for each of the guarded command language are given below:

- wp skip Q = Q,
- $wp(x := E) Q = Q[x \setminus E],$
- wp(S;T) Q = wp S(wp T Q),
- wp (if $B_0 \rightarrow S_0 \mid B_1 \rightarrow S_1$ fi) $Q = (B_0 \Rightarrow wp S_0 Q) \land (B_1 \Rightarrow wp S_1 Q) \land (B_0 \lor B_1).$

The situation for loops is a bit complicated. Abbreviate do $B \rightarrow S$ od to DO, we have

$$wp \ DO \ Q = (B \lor Q) \land (\neg B \lor wp \ S \ (wp \ DO \ Q)) \ .$$

Based on the weakest preconditions, we have the following rules for constructs of the guarded command language.

- $\{P\}$ skip $\{Q\} \equiv P \Rightarrow Q$.
- $\{P\} x := E \{Q\} \equiv P \Rightarrow Q[x \setminus E]$ and P implies that E is defined.
- $\{P\} S; T \{Q\} \equiv (\exists R :: \{P\} S \{R\} \land \{R\} T \{Q\}).$
- $\{P\}$ if $B_0 \to S_0 \mid B_1 \to S_1$ fi $\{Q\}$ equivals
 - 1. $P \Rightarrow B_0 \lor B_1$ and 2. $\{P \land B_0\} S_0 \{Q\}$ and $\{P \land B_1\} S_1 \{Q\}$.
- $\{P\}$ do $B_0 \rightarrow S_0 \mid B_1 \rightarrow S_1$ od $\{Q\}$ follows from
 - 1. $P \wedge \neg B_0 \wedge \neg B_1 \Rightarrow Q$,
 - 2. $\{P \land B_0\} S_0 \{P\}$ and $\{P \land B_1\} S_1 \{P\}$, and
 - 3. there exists an integer function *bnd* on the state space such that
 - (a) $P \wedge (B_0 \vee B_1) \Rightarrow bnd \ge 0$,
 - (b) $\{P \land B_0 \land bnd = C\} S_0 \{bnd < C\}, and$
 - (c) $\{P \land B_1 \land bnd = C\} S_1 \{bnd < C\}.$

Statements of the guarded command language satisfy the following rules:

- $\{P\} S \{ false \} \equiv \neg P,$
- $\{P\} S \{Q\} \land (P_0 \Rightarrow P) \Rightarrow \{P_0\} S \{Q\},$
- $\{P\} S \{Q\} \land (Q \Rightarrow Q_0) \Rightarrow \{P\} S \{Q_0\},$
- $\{P\} S \{Q\} \land \{P\} S \{R\} \equiv \{P\} S \{Q \land R\},\$
- $\{P\} S \{Q\} \land \{R\} S \{Q\} \equiv \{P \lor R\} S \{Q\}.$

References

- [Dijnd] E. W. Dijkstra. On understanding programs. EWD 264, circulated privately, n.d.
- [Kal90] A. Kaldewaij. *Programming: the Derivation of Algorithms*. Prentice Hall, 1990.