
Programming Languages:
Imperative Program Construction

1. Hoare Logic and Weakest Precondition:
Non-Looping Constructs

Shin-Cheng Mu

Autumn Term, 2024

1 Hoare Logic

The Guarded Command Language
In this course we will talk about program construction

using Dijkstra’s calculus. Most of the materials are from
Kaldewaij [Kal90].

• A program computing the greatest common divisor:

con A,B : Int {0<A ∧ 0< B}
var x , y : Int

x , y :=A,B
do y < x → x := x − y
| x < y → y := y − x
od
{x = y = gcd (A,B)} .

• Assignments denoted by :=; do denotes loops with
guarded bodies.

• Assertions delimited in curly brackets.

The Hoare Triple

• Given a program statement S and predicates P and
Q , the Hoare triple {P}S {Q} is a Boolean value.

• Operationally, {P}S {Q} isTrue iff. the statement
S , when executed in a state satisfying P , terminates
in a state satisfying Q .

• Note: in some flavours of theory, {P}S {Q} need
not imply termination. We will stick with the ter-
minating version in our course.

Examples

• {x ⩾ 0 ∧ y ⩾ 0}S {r = x × y} is True iff. S is
a program that, given non-negative x and y , termi-
nates and stores x × y in r .

– Nothing is said about values of x and y upon
termination.

– When x ⩾ 0 ∧ y ⩾ 0 does not hold, S may
do anything — including looping forever.

• {z ⩾ 0}S {x × y = z} is True iff. S , given non-
negative z , computes a factorization of z , and ter-
minates.

• {x >0}S {True} isTrue iff. S is any program that
terminates, provided that x > 0.

Some Properties

• {P}S {Q} and P0 ⇒ P implies {P0}S {Q}.

• {P}S {Q} and Q ⇒ Q0 implies {P}S {Q0}.

• {P}S {Q} and {P}S {R} equivales {P}S {Q ∧
R}.

• {P}S {Q} and {R}S {Q} equivales {P ∨
R}S {Q}.

• Note: “A equivales B” is another way to say “A if
and only if B”, also denoted by A ≡ B .

The No-Op Statement

• Perhaps the simplest statement: {P} skip {Q} iff.
P ⇒ Q .

– E.g. {x > 0 ∧ y > 0} skip {x ⩾ 0}.

1

– Note that the annotations need not be “exact.”

• Operationally, skip is a statement that does noth-
ing.

– Whydowe need a program that does nothing?

– It is like why we need a number 0 that repre-
sents “nothing”. It can be very useful some-
times.

2 Assignments
Substitution

• P [x\E]: substituting free occurrences of x in P for
E.

• We do so in mathematics all the time. A formal def-
inition of substitution, however, is rather tedious.

• For this lecture we will only appeal to “common
sense”:

– E.g. (x ⩽ 3)[x\x− 1] ≡ x− 1 ⩽ 3 ≡ x ⩽ 4.

– (⟨∃y : y ∈ N : x < y⟩ ∧ y < x)[y\y + 1]

≡ ⟨∃y : y ∈ N : x < y⟩ ∧ y + 1 < x.
– ⟨∃y : y ∈ N : x < y⟩[x\y]

≡ ⟨∃z : z ∈ N : y < z⟩.

• The notation [x\E] hints at “divide by x and multi-
ply by E .”

– We have x [x\E] = E . Nice!

• Just in case you may see different notations in other
papers...

– Many papers use the notation [E/x]. Either
way, x is the denominator.

– Kaldewaij actually wrote [x := E], since sub-
stitution is closely related to assignments.

– Some papers write P x
E for P [x\E].

Substitution and Assignments

• Which is correct:

1. {P} x := E {P [x\E]}, or
2. {P [x\E]} x := E {P}?

• Answer: 2! For example:

{(x ⩽ 3)[x\x+ 1]}x := x+ 1 {x ⩽ 3}
≡ {x+ 1 ⩽ 3}x := x+ 1 {x ⩽ 3}
≡ {x ⩽ 2}x := x+ 1 {x ⩽ 3}.

3 Sequencing
Catenation

• {P}S;T {Q} equivals that there existsR such that
{P}S {R} and {R}T {Q}.

• Verify:

var x , y : Int

{x = A ∧ y = B}
x := x − y
{y = B ∧ x + y = A}
y := x + y
{y − x = B ∧ y = A}
x := y − x
{x = B ∧ y = A}

4 Selection
If-Conditionals

• Selection takes the form if B0 → S0 | ... | Bn →
Sn fi.

• EachBi is called a guard; Bi → Si is a guarded com-
mand.

• If none of the guardsB0 . . . Bn evaluate to true, the
program aborts. Otherwise, one of the command
with a true guard is chosen non-deterministically
and executed.

To annotate an if statement:

{P}
if B0 → {P ∧ B0}S0 {Q ,Pf0}
| B1 → {P ∧ B1}S1 {Q ,Pf1}
fi
{Q ,Pf2} ,

where Pf0, Pf1, Pf2 are labels referring to proofs.

• Pf0 refers to a proof of {P ∧ B0}S0 {Q};

• Pf1 refers to a proof of {P ∧ B1}S1 {Q};

• Pf2 refers to a proof of P ⇒ B0 ∨ B1.

• The proofs and labels are sometimes omitted if they
are trivial.

2

Binary Maximum

• Goal: to assign x ↑ y to z. By definition, z = x ↑
y ≡ (z = x ∨ z = y) ∧ x ⩽ z ∧ y ⩽ z.

• Try z := x. We reason:

((z = x ∨ z = y) ∧ x ⩽ z ∧ y ⩽ z)[z\x]
≡ (x = x ∨ x = y) ∧ x ⩽ x ∧ y ⩽ x

≡ y ⩽ x,

which hinted at using a guarded command: y ⩽
x → z := x.

• Indeed:

{True}
if y ⩽ x → {y ⩽ x} z := x {z = x ↑ y}
| x ⩽ y → {x ⩽ y} z := y {z = x ↑ y}
fi
{z = x ↑ y} .

On Understanding Programs

• There are two ways to understand the program be-
low:

if B00 → S00 | B01 → S01 fi
if B10 → S10 | B11 → S11 fi

:
if Bn0 → Sn0 | Bn1 → Sn1 fi.

• One takes effort exponential to n; the other is linear.

• Dijkstra: “. . . if we ever want to be able to com-
pose really large programs reliably, we need a pro-
gramming discipline such that the intellectual ef-
fort needed to understand a program does not grow
more rapidly than in proportion to the program
length.” [Dijnd]

5 Weakest Precondition
State Space and Predicates
More precisely speaking...

• A predicate on A is a function having type A →
Bool .

– E.g. even :: Int → Bool is a predicate on Int .

• The state space of a program is the states of all its
variables.

– E.g. state space for the GCD program, which
has two variables x and y , is (Int × Int).

• An expression having free variables can be seen as
a function.

– E.g. x ⩽ y is a predicate (a function) with type
(Int × Int) → Bool that yields True for, e.g.
(x , y) = (3, 4) and False for (x , y) = (4, 3).

In a Hoare Triple...

• In {P}S {Q}, P and Q shall be seen as predicates
on the state space of the program S .

• E.g. In {z ⩾ 0}S {x × y = z}, assuming that the
program S uses only three variables x , y , and z .

– The part z ⩾ 0 shall be understood as a pred-
icate that takes x , y , and z , and returns True
iff. z ⩾ 0.

– The part x × y = z shall be understood as a
predicate that takes x , y , and z , and returns
True iff. x × y = z .

• True in a Hoare triple can be understood as a pred-
icate that returnsTrue for any input; similarly with
False .

• Let S be a program having variables x , y , z . That
{P}S {Q} being True means that if S starts run-
ning in a state such that P (x , y , z) = True , it ter-
minates and yields a state such that Q (x , y , z) =
True .

Stronger? Weaker?

• Given propositionsP andQ , ifP ⇒ Q , we say that
Q is the weaker one, and P is the stronger one.

• Precisely speaking, P is no weaker than Q and Q is
no stronger than P . But let’s be a bit sloppy to avoid
confusion...

Stronger and Weaker Predicates

• The convention extends to predicates. If P x ⇒
Q x for every x ,Q is the weaker one, while P is the
stronger one.

• Example: 0 ⩽ x<4 is weaker than 0 ⩽ x<3, which
is in turn weaker than 1 ⩽ x < 3.

3

– Intuition: for first-order values, the set of val-
ues satisfying aweaker predicate is larger than
that satisfying a stronger predicate.

• Example: P can be weaker than P ∧ Q (since (P ∧
Q) ⇒ P); P ∨ Q can be weaker than P (since
P ⇒ (P ∨ Q)).

• Intuition: a weaker predicate enforces less restric-
tion, is more tolerant, and allowsmore inputs/states
to be True .

Predicate-Set Correspondence

• Functions can be hard to grasp.

• A predicate P is isomorphic to the set of values that
satisfy the predicate — at least for first order values.
Therefore I tend to equate them.

• E.g. think of x ⩽ 3 as the set of values satisfying
x ⩽ 3.

• False is the empty set, True is the set of all values
(of the right type).

• P ⇒ Q iff. P ⊆ Q .

– A weaker predicate is a bigger set!

• P ∧ Q corresponds to P ∩ Q ; P ∨ Q corresponds
to P ∪ Q .

Weakest Precondition

• Recall that the predicates in a Hoare triple need not
be exact.

– {x ⩽ 2} x := x + 1 {x ⩽ 3} is a valid triple.

– So is {0 < x ⩽ 2} x := x + 1 {x ⩽ 3}. Note
that x ⩽ 2 is weaker than 0< x ⩽ 2.

– x ⩽ 2 is in fact the weakest (most tolerating)
P such that {P} x := x + 1 {x ⩽ 3} holds.

• Defining weakest precondition in terms of Hoare
triple....

• Definition: given a statement S, its weakest pre-
condition with respect to Q, denoted wp S Q , is
the weakest predicate such that {wp S Q}S {Q}
holds.

Predicate Transformer
wp S is a function from predicates to predicates.

• Also called a predicate transformer.

• I myself find it sometimes easier to think of a pred-
icate transformer as a function from sets to sets.

• E.g. wp S Q gives you the largest set P such that
for all x ∈ P , running S starting from initial state
x gives you a final state in Q .

Weakest Precondition: Skip and Assignment

• Weakest preconditions for skip and assignment :

• wp skip P = P .

• wp (x := E) P = P [x\E].

Hoare Triple, Revisited

• We can do it the other way round: specify wp for
each program construct, and define Hoare triple in
terms of wp.

• Definition: {P}S {Q} if and only if P ⇒
wp S Q .

Examples

• {x > 0} skip {x ⩾ 0} is valid, because:

wp skip (x ⩾ 0)
≡ { definition of wp }

x ⩾ 0
⇐ x > 0 .

• {0< x < 2} x := x + 1 {x ⩽ 3} is valid, because

wp (x := x + 1) (x ⩽ 3)
≡ { definition of wp }

(x ⩽ 3)[x\x + 1]
≡ x + 1 ⩽ 3
⇐ 0< x < 2 .

Sequencing and Branching

• wp (S ;T) Q = wp S (wp T Q).

– Or wp (S ;T) = wp S · wp T , where (·) de-
notes function composition.

• wp (if B0 → S0 | B1 → S1 fi) Q = (B0 ⇒
wp S0 Q) ∧ (B1 ⇒ wp S1 Q) ∧ (B0 ∨ B1).

4

Semantics
What does a program mean?

• Denotational semantics: what a program is.
Mapping programs to mathematical objects.

• Operational semantics: what a program does.
How one program term transforms to another.

• Axiomatic semantics: what a program guarantees.

• Predicate transformer semantics can be seen as a
kind of denotational semantics, and axiomatic se-
mantics.

• Themeaning of a program is a predicate transformer:
give it a post conditionQ, it tells us what precondi-
tion is sufficient to guarantee Q.

• It is a “goal oriented” semantics that is more suit-
able for reasoning about and constructing impera-
tive programs.

Properties of Predicate Transformers

• wp must satisfy certain conditions.

• Strictness: wp S False = False .

• Monotonicity: P ⇒ Q implies wp S P ⇒
wp S Q .

• Distributivity over Conjunction: (wp S Q0 ∧
wp S Q1) ≡ wp S (Q0 ∧ Q1).

• One can prove that (wp S Q0 ∨ wp S Q1) ⇒
wp S (Q0 ∨ Q1).

• (wp S Q0 ∨ wp S Q1) ≡ wp S (Q0 ∨ Q1) holds
only for deterministic programs.

6 Summary
The weakest-precondition semantics for each of the
guarded command language are given below:

• wp skip Q = Q ,

• wp (x := E) Q = Q [x\E],

• wp (S ;T) Q = wp S (wp T Q),

• wp (if B0 → S0 | B1 → S1 fi) Q = (B0 ⇒
wp S0 Q) ∧ (B1 ⇒ wp S1 Q) ∧ (B0 ∨ B1).

The situation for loops is a bit complicated. Abbreviate
do B → S od to DO , we have

wp DO Q = (B ∨Q)∧ (¬B ∨wp S (wp DO Q)) .

Based on the weakest preconditions, we have the fol-
lowing rules for constructs of the guarded command lan-
guage.

• {P} skip {Q} ≡ P ⇒ Q.

• {P}x := E {Q} ≡ P ⇒ Q[x\E] and P implies
that E is defined.

• {P}S;T {Q} ≡ (∃R :: {P}S {R}∧{R}T {Q}).

• {P} if B0 → S0 | B1 → S1 fi {Q} equivals

1. P ⇒ B0 ∨B1 and

2. {P ∧B0}S0 {Q} and {P ∧B1}S1 {Q}.

• {P}do B0 → S0 | B1 → S1 od {Q} follows
from

1. P ∧ ¬B0 ∧ ¬B1 ⇒ Q,

2. {P ∧B0}S0 {P} and {P ∧B1}S1 {P}, and
3. there exists an integer function bnd on the

state space such that

(a) P ∧ (B0 ∨B1) ⇒ bnd ⩾ 0,
(b) {P ∧B0 ∧ bnd = C}S0 {bnd < C}, and
(c) {P ∧B1 ∧ bnd = C}S1 {bnd < C}.

Statements of the guarded command language satisfy
the following rules:

• {P}S {false} ≡ ¬P ,

• {P}S {Q} ∧ (P0 ⇒ P) ⇒ {P0}S {Q},

• {P}S {Q} ∧ (Q ⇒ Q0) ⇒ {P}S {Q0},

• {P}S {Q} ∧ {P}S {R} ≡ {P}S {Q ∧R},

• {P}S {Q} ∧ {R}S {Q} ≡ {P ∨R}S {Q}.

References
[Dijnd] E. W. Dijkstra. On understanding programs.

EWD 264, circulated privately, n.d.

[Kal90] A. Kaldewaij. Programming: the Derivation of Al-
gorithms. Prentice Hall, 1990.

5

