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Materials of this part of the course are adapted from
Gries and Schneider [GS93]. Axioms and theorems are
numbered according to the book.

1 Synatx and Evaluation of
Boolean Expressions

Syntax

• Boolean expressions are constructed from

– constants True and False ,

– boolean variables, which can be associated
(only) with values True and False ,

– boolean operators ≡, ̸≡, ¬, ∨, ∧, ⇒, and⇐.

• True and False are often called boolean values.

• A boolean expression is said to be of type boolean.

Unary Operators

id ¬
True True True False False
False True False True False

Binary Operators
See Figure 1.

• ∧: “and”, also called conjunction (合取).

• ∨: “or”, also called disjunction (析取).

• =: equality (等於). In this book we give it an-
other symbol ≡, called equivalence (等價), whose
operands are called equivalents, for reasons to be ex-
plained later.

• ̸= and ̸≡: inequality and inequivalence. Many peo-
ple do not know that ̸= is also xor (exclusive or).

• ⇒: implication (蘊含). Expression b ⇒ c is read as “b
implies c” or “if b then c”, where b is the antecedent
(前件、前事) and c the consequent (後件、後果).

– Note that b ⇒ c is True when b is False .

• ⇐: consequence. Expression b ⇐ c is read a “b fol-
lows from c”, where b is the consequent and c is the
antecedent. b ⇐ c is equivalent to c ⇒ b

– Many people are not aware that⇐ occurs very
often in proofs.

• nand and nor stands for “not and” and “not or”.
Expression b nand c is¬(b∧c) and b nor c is¬(b∨c).
Useful when you study digital circuits.

• precedence: See the table in the handouts. Basi-
cally, ∧ binds tighter than ∨, like × binds tighter
than +. Note also that = has a high precedence,
while ≡ has a ver low precedence.

2 Satisfiability, Validity, andDual-
ity

Using Truth Tables to Evaluate Boolean Expres-
sions

How do you evaluate p ∨ (q ∧ ¬r)?
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Figure 1: Binary Boolean Operators

p q r ¬r q ∧ ¬r p ∨ (q ∧ ¬r)
T T T F F T
T T F T T T
T F T F F T
T F F T F T
F T T F F F
F T F T T T
F F T F F F
F F F T F F

How do you determine whether p∨ (q∧¬r) = (p∨
q) ∧ (p ∨ ¬r)?

Satisfiability and Validity

• A boolean expression P is satisfiable in state S if its
value is True in state S;

• P is satisfiable (可滿足) if there exists some S in
which P is satisfiable;

• and P is valid (有效) if it is satisfiable in every state.

• A valid expression is called a tautology (重言式、恆
真式、套套邏輯).

• Tautologies are of interest to us, because they rep-
resent universal truth: some property holds, regard-
less of the context.

Satisfiability and Validity

• Example: p ∨ q is satisfible in any state having
(p,True) (or (q,True)), thus it is satisfible. It
is not valid, however, since it is falsified in state
[(p,False), (q,False)].

• Examples of tautologies (valid expressions):

True True ≡ True
p ∨ True p ∨ q ≡ q ∨ p
p ∨ ¬p (p ≡ q) ≡ (q ≡ p)
¬(p ∧ False) ¬(p ∨ q) ≡ ¬p ∧ ¬q

Semantics v.s. Syntax

• As mentioned before, we are mainly interested in
tautologies, since they represent universal truth.

• How to determinewhether an expression (e.g. ¬(p∧
q) ≡ ¬p ∨ ¬q) is a tautology?

– One may build a truth table — in effect, try all
possibilities, and see whether the expression
evaluates to True in all states.

• This is a semantical approach.

Semantics (語意)

• What an expression “means”. Or, what the “value”
of an expression is.

• In our current logic (propositional logic), each ex-
pression evaluates to either True or False .

– To be more precise, each expression is a func-
tion from states to True or False .

– Validity of an expression can be checked
by enumerating all possible states and see
whether the expression always evaluate to
True .

• A good property of propositional logic: we can al-
ways decide whether an expression is valid.

• However, this approach does not extend to more
complex logic, say, a logic that involves natural
numbers.

A Syntactical (語法) Approach

• A formal system: a collection of symbols, and some
rules to manipulate the symbols.

• A calculus: a formal system designed for reason-
ing; a method or process of reasoning by calculation
with symbols.
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Formal Deduction Systems for Logic

• There are a number of formal deduction systems for
various kinds of logic.

– A collection of axioms (公理) — things that are
believed to be true without doubts.

– A collection of rules that, given true proposi-
tions, guarantee to produce true propositions.

• To prove a theorem (show that it is valid) is to show
that the theorem can be derived, from the axioms,
using the given rules.

• Example of such systems: natural deduction, se-
quent calculus, etc.

– You’d see natural deduction in my Functional
Programming course since it is closely related
to types.

• All of them are syntactical rules to manipulate ex-
pression with.

• After designing a formal system, one has to verify,
against the semantics, that the system is sound, and
preferably, complete.

Calculational Logic

• For a number of reasons, in this course we advocate
a more algebraic formal system: calculational logic.

• The axioms are expressions like: True ≡ (p ≡ p),
(p ≡ q) ≡ (q ≡ p), etc. There are a lot of them, and
we will discuss them one bye one.

• The inference rules are mainly Substitution (1.1),
Transitivity (1.4), and Leibniz (1.5).

• A theorem (定理) is either an axiom, or an expression
that, using the inference rules, proved to be equal to
an axiom or a previously proved theorem.

Reminder: Substitution, Transitivity, and Leibniz

(1.1) Substitution: E
E[v\F ]

(1.4) Transitivity: X = Y Y = Z
X = Z

(1.5) Leibniz: X = Y
E[z\X] = E[z\Y ]

3 Equivalence and True
Conjunctional Equality

• What does it mean when I write a = b = c?

• We usually think of it as an abbreviation of a = b∧
b = c (which, by transitivity, also gives us a = c).

• It is a useful abbreviation to have. In E0 = E1 =
. . . = En < En+1 one immediately see that any
two expressions inE0 . . . En are equal, and they are
all smaller thanEn+1. That is lots of information in
one expression.

Associative Equality

• But, (p = q) = r, when the variables are boolean
values, may also be interpreted as “evaluate p = q
to a boolean value, and compare the result with r”.

• For example, (False = False) = True evaluates to
True = True , which is True .

• Surprisingly, this definition of equality is associa-
tive: (p = q) = r is always equal to p = (q = r).

• Associativity of equality will turn out to be very use-
ful later: it also allows us to compactly represent
lots of information in a short axiom.

• We thus denote it using a different symbol: ≡.

Equality v.s. Equivalence

• When we write = we mean ordinary, conjunctive
equality (等於).

• Another symbol, ≡, referred to as “equivalence” (等
價), denotes equality in the associative sense.

– p ≡ q is read as “p equivals q”.

• ((p ≡ q) ≡ r) = (p ≡ (q ≡ r)).

– We may thus just write p ≡ q ≡ r.

• It is convenience to assign it a very low precedence.

• Compare:

– False ≡ False ≡ True evaluates to True ,
while

– False = False = True is an abbreviation of
False = False ∧ False = True , which evalu-
ates to False .
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3.1 Axioms Regarding Equivalence

Associativity (結合律) and Symmetry (對稱性) of≡

(3.1) Axiom, Associativity of ≡:

((p ≡ q) ≡ r) ≡ (p ≡ (q ≡ r))

• As mentioned before, (3.1) allows us to write p ≡
q ≡ r.

(3.2) Axiom, Symmetry of ≡: p ≡ q ≡ q ≡ p

• When read as (p ≡ q) ≡ (q ≡ p), it allows us to
freely swap positions of terms connected by ≡.

• When read as p ≡ (q ≡ q ≡ p), it allows us to
rewrite q ≡ q ≡ p to p, and vice versa.

Example of Associativity of ≡

• Consider m+ n is Even ≡ m is Even ≡ n is even.

– When parenthesized as m+ n is Even ≡
(m is Even ≡ n is even), it says that m + n
is even exacly when bothm and n are even.

– When parenthesized as (m+ n is Even ≡
m is Even) ≡ n is even, it says that adding n
to m does not change the parity of m exacly
when n is even.

• It actually covers four cases:

– ((m+n is even) and (m is even) and (n is even)),
or

– ((m+n is odd) and (m is odd) and (n is even)),
or

– ((m+n is odd) and (m is even) and (n is odd)),
or

– ((m+n is even) and (m is odd) and (n is odd)).

We can thus see how associativity makes one ex-
pression so concise and expressive!

Our First Proof
Task: prove p ≡ p ≡ q ≡ q.

Proof:

p ≡ p ≡ q ≡ q

= { Symmetry of ≡ (3.2) —

replace p ≡ q ≡ q by p }
p ≡ p

= { Symmetry of ≡ (3.2) —

replace p by q ≡ q ≡ p }
p ≡ q ≡ q ≡ p

• The expression has been shown to be equal to an
axiom (3.2). Thus it is proved.

• This is not the only possible proof. We use this ex-
ample to demonstrate the use of associativity of ≡.

Identity of ≡

(3.3) Axiom, Identity of ≡: True ≡ p ≡ p

• When read as True ≡ (p ≡ p) it says that p always
equivals itself, that is, ≡ is reflexive.

• When read as (True ≡ p) ≡ p, it shows that True
is an identity element of≡. 1 It allows us to remove
occurrences of True ≡ in an expression.

• Given (3.1) and (3.2), we also have p ≡ (True ≡ p),
(p ≡ True) ≡ p, etc.

Sequences of Equivalences

• Consider p ≡ p ≡ q ≡ p ≡ r ≡ q.

– With (3.1) and (3.2) it can be transformed to
p ≡ p ≡ p ≡ q ≡ q ≡ r.

– With (3.1) and (3.3) we may simplify it to:
True ≡ p ≡ True ≡ r.

– which further simplifies to p ≡ r.

– In general, in P0 ≡ P1 ≡ . . . Pn, any Pi that
occurs an even number of times is removed,
while any Pj that occurs an odd number of
times is replaced by a single occurrence.

• P0 ≡ P1 ≡ . . . Pn is True exactly when an even
number of Pi are False .

– By identity of≡ (3.3), each False ≡ False can
be rewritten to True .

1I is a identity element (單位元素), or a unit of a binary operation
◦ if x ◦ I = I ◦ x = x, for all x. The identity element of + is 0, and
that of · is 1.
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Two Theorems

(3.4) True

(3.5) Reflexivity of ≡: p ≡ p

• We prove (3.4) below:

True

= { Identity of ≡ (3.3), with p := True }

True ≡ True

= { Identity of ≡ (3.3) —

replace the 2nd True }
True ≡ p ≡ p — Identity of ≡ (3.3)

• Prove (3.5) as an exercise!

3.2 Some Words on Proof Format
Proving a Theorem

• As mentioned before, to prove a theorem is to show
that it equals an axiom or a previously established
theorem.

P

= { Property (i.j), with p := X }

P1

= { Property (k.l), with q := Y }

:

= Pn — Property (m.n)

• “Property (i.j)” is the name and number of each the-
orem/axiom used. You can give only the name, or
the number, when it is obvious.

• “with p := X” specifies how property (i,j) is instan-
tiated. It indicates an application of Substitution
(1.1). Can be omitted when obvious.

• If a sub-expression is rewritten by the hint, there is
an implicit application of Leibniz (1.5)

• Chained equality is an application of Transitivity
(1.4).

• Pn is an (instance of) established theorem (m,n). It
can be omitted when it is obvious (e.g. when Pn is
True).

• You can also proceed the entire calculation the
other way round —- start from a theorem and reach
P , depending on which direction is easier.

Proving an Equivalence

• When proving an equivalence P ≡ Q, we can use a
simplified format:

P

= { Property (i.j), with p := X }

P1

= { Property (k.l), with q := Y }

:

= Q

• It can always be transformed to a proof in the orig-
inal format:

P ≡ P

= { Property (i.j), with p := X }

P ≡ P1

= { Property (k.l), with q := Y }

:

= P ≡ Q

4 Negation, Inequivalence, and
False

Definitions
Two axioms regarding negation. The first defines ¬

and False , and the second defines inequality ̸≡.2

¬p ≡ p ≡ False
(3.15) Axiom, Definition of False :

(p ̸≡ q) ≡ ¬(p ≡ q)
(3.10) Axiom, Definition of ̸≡:

Theorems Relating ≡, ̸≡, ¬
See Figure 2.

Distributivity of ¬ over ≡

2The textbook takes (3.8) and (3.9) as axioms. I choose (3.15) as
an axiom, in my opinion a more useful property, following [Bac11]. It
allows both (3.8) and (3.9) to be theorems.
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(3.8) False ≡ ¬True
(3.9) Distributivity of ¬ over ≡ : ¬(p ≡ q) ≡ ¬p ≡ q

(3.11) ¬p ≡ q ≡ p ≡ ¬q
(3.12) Double negation : ¬¬p ≡ p

(3.13) Negation of False : ¬False ≡ True

(3.14) (p ̸≡ q) ≡ ¬p ≡ q

(3.16) Symmetry of ̸≡ : (p ̸≡ q) ≡ (q ̸≡ p)

(3.17) Associativity of ̸≡ : ((p ̸≡ q) ̸≡ r) ≡ (p ̸≡ (q ̸≡ r))

(3.18) Mutual associativity : ((p ̸≡ q) ≡ r) ≡ (p ̸≡ (q ≡ r))

(3.19) Mutual interchangeability : p ̸≡ q ≡ r ≡ p ≡ q ̸≡ r

Figure 2: Theorems Relating ≡ and ¬.

Proving (3.9).

¬(p ≡ q)

= { (3.15) }

p ≡ q ≡ False

= { Symmetry and Associativity of ≡ }

p ≡ False ≡ q

= { (3.15) }

¬p ≡ q

Sequence of ≡ and ̸≡

• (3.11) is an important law that allows us to shunt ¬
(and thus ̸≡) around.

• Mutual associativity (3.17) and (3.18) allows us to
omit parentheses in sequence of ≡ and ̸≡.

• Mutual associativity (3.19) allows us to exchange
adjacent ≡ and ̸≡.

Sequences of ≡ and ̸≡

• Consider p ≡ p ≡ q ≡ ¬p ≡ r ≡ ¬q.

– With the associativity laws it can be trans-
formed to p ≡ p ≡ ¬p ≡ q ≡ ¬q ≡ r.

– With (3.15) wemay simplify it to: p ≡ False ≡
False ≡ r.

– which further simplifies to p ≡ True ≡ r, and
p ≡ r.

• Moreover,

– None or both of p and q is True : p ≡ q.

– Exactly one of p and q is True : p ̸≡ q.

– 0, 2, or 4 of p, q, r, s are True : p ≡ q ≡ r ≡ s.

– 1 or 3 of p, q, r, s are True : ¬(p ≡ q ≡ r ≡ s).

4.1 Heuristics in Proofs

Heuristic of Structural Matching
Identify applicable theorems by matching the struc-

ture of expressions or subexpressions. The operators
that appear in a boolean expression and the shape of its
subexpressions can focus the choice of theorems to be
used in manipulating it.

Avoid Repeating the Same Expression.
Principle: structure proofs to avoid repeating the

same expression on many lines.

Heuristic of Definition Elimination
To prove a theorem concerning an operator ◦ that is

defined in terms of another, say •, expand the definition
of ◦ to arrive at a formula that contains •; exploit prop-
ertis of • to manipulate the formula, and then (possibly)
reintroduce ◦ using its definition.

5 Disjunction

Definitions
The disjunction operator ∨ is defined by the following
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five axioms. 3

(3.24) Axiom, Symmetry of ∨ : p ∨ q ≡ q ∨ p

(3.25) Axiom, Associativity of ∨ :

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

(3.26) Axiom, Idempotency of ∨ : p ∨ p ≡ p

(3.27) Axiom, Distributivity of ∨ over ≡ :

p ∨ (q ≡ r) ≡ p ∨ q ≡ p ∨ r

(3.28) Axiom, Excluded Middle : p ∨ ¬p

Basic Properties of ∨ 4

(3.29) Zero of ∨: p ∨ True ≡ True

(3.30) Identity of ∨ : p ∨ False ≡ p

(3.31) Distributivity of ∨ over ∨ :

p ∨ (q ∨ r) ≡ (p ∨ q) ∨ (p ∨ r)

(3.32) p ∨ q ≡ p ∨ ¬q ≡ p

Example: proving (3.29) Zero of ∨
(3.29) p ∨ True ≡ True

Proof.

p ∨ True

= { (3.3) }

p ∨ (p ≡ p)

= { (3.27) }

p ∨ p ≡ p ∨ p

= { (3.3) }

True

Example: proving (3.29) Zero of ∨
The proof could have gone the other way round. But

the first step would be “pulling a rabbit out of a hat!”

3A binary operator ◦ is idempotent (等冪) if x ◦ x = x for all x.
Multiplication · and addition + are not idempotent, but ∨ and ∧ are.

4Z is a zero of a binary operation ◦ if x ◦ Z = Z ◦ x = Z , for all
x. The term comes from the fact that 0 is the zero of ·.

Proof.

True

= { (3.3) }

p ∨ p ≡ p ∨ p

= { (3.27) }

p ∨ (p ≡ p)

= { (3.3) }

p ∨ True

Proof Heuristics and Principles

Heuristic: To prove P ≡ Q, transform the expression
with the most structure into the other.

Principle: Structure the proof tominimize the number
of rabbits pulled out of a hat — make each step seem
obvious, based on the structure of the expression and the
goal of the manipulation.

6 Conjunction

The Golden Rule

(3.35) Axiom, Golden rule : p∧ q ≡ p ≡ q ≡ p∨ q

• We can see it as a definition of ∧: p∧ q ≡ (p ≡ q ≡
p ∨ q).

• Or (p ≡ q) ≡ (p ∧ q ≡ p ∨ q), meaning that p and
q are equal if their conjunction and disjunction are
equal.

• Or wemay use it to transform p∧q ≡ p to q ≡ p∨q,
and vice versa.

• It is the only axiom we need regarding ∧.

Basic Properties of ∧
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(3.36) Symmetry of ∧ : p ∧ q ≡ q ∧ p

(3.37) Associativity of ∧ :

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

(3.38) Idempotency of ∧ : p ∧ p ≡ p

(3.39) Identity of ∧ : p ∧ True ≡ p

(3.40) Zero of ∧ : p ∧ False ≡ False

(3.41) Distributivity of ∧ over ∧ :

p ∧ (q ∧ r) ≡ (p ∧ q) ∧ (p ∧ r)

(3.42) Contradiction : p ∧ ¬p ≡ False

Theorems relating ∧ and ∨

(3.43) Absorption : (a) p ∧ (p ∨ q) ≡ p

(b) p ∨ (p ∧ q) ≡ p

(3.44) Absorption : (a) p ∧ (¬p ∨ q) ≡ p ∧ q

(b) p ∨ (¬p ∧ q) ≡ p ∨ q

(3.45) Distributivity of ∨ over ∧ :

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

(3.46) Distributivity of ∧ over ∨ :

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

(3.47) De Morgan : (a) ¬(p ∧ q) ≡ ¬p ∨ ¬q
(b) ¬(p ∨ q) ≡ ¬p ∧ ¬q

Propositions as Sets

• To make sense of and to memorize the absorption
laws, it helps to know that propositions are isomor-
phic to sets of states that satisfy the proposition.

• That is, a boolean expression E can be seen as the
set of states that satisfy E.

• Disjunction (∨) is set union (∪); conjunction (∧) is
intersection (∩); negation (¬) is set compliment.

• Indeed, p ∩ (p ∪ q) equals p. The same with other
absorption laws.

• True is the set of all states — all states satisfyTrue .
False is the empty set — nothing satisfies False .

Theorems relating ∧ and ≡

(3.48) p ∧ q ≡ p ∧ ¬q ≡ ¬p
(3.49) p ∧ (q ≡ r) ≡ p ∧ q ≡ p ∧ r ≡ p

(3.50) p ∧ (q ≡ p) ≡ p ∧ q

(3.51) Replacement :
(p ≡ q) ∧ (r ≡ p) ≡ (p ≡ q) ∧ (r ≡ q)

Alternative Definitions of ≡ and ̸≡

(3.52) Definition of ≡ : p ≡ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q)
(3.53) Exclusive or : p ̸≡ q ≡ (¬p ∧ q) ∨ (p ∧ ¬q)

Proving (3.37) Associativity of ∧

(3.37) (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
Proof

(p ∧ q) ∧ r

= { (3.35) }

p ≡ q ≡ p ∨ q ≡ r ≡ (p ≡ q ≡ p ∨ q) ∨ r

= { (3.27) }

p ≡ q ≡ r ≡ p ∨ q ≡ p ∨ r ≡ q ∨ r ≡ p ∨ q ∨ r

But this property is useful on its own! We will prove it
as a lemma.

(p ∧ q) ∧ r ≡
(3.55)

p ≡ q ≡ r ≡ p ∨ q ≡ p ∨ r ≡ q ∨ r ≡ p ∨ q ∨ r

Proof: as in the previous slide.

Proving (3.37) Associativity of ∧, again

(3.37) (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
Proof

p ∧ (q ∧ r)

= { (3.36) }

(q ∧ r) ∧ p

= { (3.55) }

q ≡ r ≡ p ≡ q ∨ r ≡ q ∨ p ≡ r ∨ p ≡ q ∨ r ∨ p

= { (3.24) and (3.2) }

p ≡ q ≡ r ≡ p ∨ q ≡ p ∨ r ≡ q ∨ r ≡ p ∨ q ∨ r

= { (3.55) }

(p ∧ q) ∧ r
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Using Lemmas

Principle: Lemmas can provide structure, bring to
light interesting facts, and ultimately shorten a proof. 5

Heuristic
Theorems stated in terms of ≡ can be parsed in many

ways. Exploit this ability.

7 Implication

Definition of Implication

(3.57) Axiom, Definition of implication :

p ⇒ q ≡ p ∨ q ≡ q

(3.58) Axiom, Consequences : p ⇐ q ≡ q ⇒ p

Implication is Set Inclusion

• To understand the definition (3.57), again it helps to
see propositions as sets.

• p ⇒ q is understood as “if a state is in p, then it is
in q”. That is, p is a subset of q.

• Certainly, p ∪ q equals q exacly when p is a subset
of q.

• But there are other definitions too!

Rewriting Implication

(3.59) Definition of implication :

p ⇒ q ≡ ¬p ∨ q

(3.60) Definition of implication :

p ⇒ q ≡ p ≡ p ∧ q

(3.61) Contrapositive : p ⇒ q ≡ ¬q ⇒ ¬p

5A lemma is an auxiliary theorem used in a proof of some other the-
orem. The difference between “lemma” and “theorem” is in the eye of
the beholder. The theorem is the thing we are interested in; the lemma
is just a small theorem needed in its proof. However, some lemmas
turn out later to be important on its own.

A Puzzle Using Contraposition
Six pencils stand in a pencil vase. Some pencils has a

rubber eraser on one end, some do not. It is also assumed
that a pencil is either just sharpened, or used.

The vase is opaque, so you could only see one end of
each pencil. The six pencils you see now are respectively

1. without an eraser,

2. with an eraser,

3. used,

4. sharp,

5. sharp, and

6. with an eraser.

Some one claims that “all pencils with an eraser are
used.” To verify her claim, howmany pencils do you have
to pull out of the vase to check?

Miscellaneous Theorems About Implication

(3.62) p ⇒ (q ≡ r) ≡ p ∧ q ≡ p ∧ r

(3.63) Distributivity of⇒ over ≡ :

p ⇒ (q ≡ r) ≡ p ⇒ q ≡ p ⇒ r

(3.64) p ⇒ (q ⇒ r) ≡ (p ⇒ q) ⇒ (p ⇒ r)

(3.65) Shunting : p ∧ q ⇒ r ≡ p ⇒ (q ⇒ r)

(3.66) p ∧ (p ⇒ q) ≡ p ∧ q

(3.67) p ∧ (q ⇒ p) ≡ p

(3.68) p ∨ (p ⇒ q) ≡ True

(3.69) p ∨ (q ⇒ p) ≡ q ⇒ p

(3.70) p ∨ q ⇒ p ∧ q ≡ p ≡ q

Implication and Boolean Constants

(3.71) Reflexivity of⇒ : p ⇒ p ≡ True

(3.72) Right zero of⇒ : p ⇒ True ≡ True

(3.73) Left identity of ⇒ : True ⇒ p ≡ p

(3.74) p ⇒ False ≡ ¬p
(3.75) False ⇒ p ≡ True
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Weakening, Strengthening, and Modus Ponens6

(3.76)Weakening, Strengthening :

(a) p ⇒ p ∨ q

(b) p ∧ q ⇒ p

(c) p ∧ q ⇒ p ∨ q

(d) p ∨ (q ∧ r) ⇒ p ∨ q

(e) p ∧ q ⇒ p ∧ (q ∨ r)

(3.77) Modus ponens : p ∧ (p ⇒ q) ⇒ q

Forms of Case Analysis

(3.78) (p ⇒ r) ∧ (q ⇒ r) ≡ (p ∨ q ⇒ r)

(3.79) (p ⇒ r) ∧ (¬p ⇒ r) ≡ r

Proving Implication by Deduction
There is another way to prove p ⇒ q, inspired by nat-

ural deduction: if we can prove q, assuming that p is an
established property, that is,

q

= { ... }

...

= { p }

...

= { ... }

True

then we have proved p ⇒ q. In practice, many implica-
tions are proved this way.

Mutual Implication and Transitivity

(3.80)Mutual implication :

(p ⇒ q) ∧ (q ⇒ p) ≡ p ≡ q

(3.81) Antisymmetry :

(p ⇒ q) ∧ (q ⇒ p) ⇒ (p ≡ q)

(3.82) Transitivity :

(a) (p ⇒ q) ∧ (q ⇒ r) ⇒ (p ⇒ r)

(b) (p ≡ q) ∧ (q ⇒ r) ⇒ (p ⇒ r)

(c) (p ⇒ q) ∧ (q ≡ r) ⇒ (p ⇒ r)

6If P ⇒ Q, we say that P is stronger thanQ andQ is weaker than
P . The strongest formula is False , and the weakest formula is True .

Inequality Reasoning
Transitivity allows us to prove an implication p ⇒ q

in yet another way.

q

= { ... }

...

⇐ { ... }

...

⇐ { ... }

p

Common Pitfalls
What is wrong with the following reasoning?

(¬p ⇒ p) ∧ q

= { ¬p ⇒ p does not hold }

False ∧ q

= { (3.40) }

False .

• ¬p ⇒ p is not False !

• ¬p ⇒ p is not valid. That is, it is not True for some
values of p; meanwhile, False is notTrue for all val-
ues of p.

• In fact, we have

¬p ⇒ p

= ¬(¬p) ∨ p

= p ∨ p

= p .

Common Pitfalls

• Is it correct that x > 0 ⇒ x ⩾ 2 = False?

• In fact,

x > 0 ⇒ x ⩾ 2

= ¬(x > 0) ∨ x ⩾ 2

= x ⩽ 0 ∨ x ⩾ 2 .

7.1 Leibniz’s Rule as an Axiom

(3.83) Axiom, Leibniz :

(e = f) ⇒ (E[z\e] = E[z\F ])
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Rules of Substitution

(3.84) Substitution :

(a) (e = f) ∧ Ez
e ≡ (e = f) ∧ Ez

F

(b) (e = f) ⇒ Ez
e ≡ (e = f) ⇒ Ez

F

(c) q ∧ (e = f) ⇒ Ez
e ≡ q ∧ (e = f) ⇒ Ez

F

Replacing Variables by Boolean Constants

(3.85) Replace by True :

(a) p ⇒ Ez
p ≡ p ⇒ Ez

True

(b) q ∧ p ⇒ Ez
p ≡ q ∧ p ⇒ Ez

True

(3.86) Replace by False :

(a) Ez
p ⇒ p ≡ Ez

False ⇒ p

(b) Ez
p ⇒ p ∨ q ≡ Ez

False ⇒ p ∨ q

(3.87) Replace by True : p ∧ Ez
p ≡ p ∧ Ez

True

(3.88) Replace by False : p ∨ Ez
p ≡ p ∨ Ez

False

(3.89) Shannon :

Ez
p ≡ (p ∧ Ez

True) ∨ (¬p ∧ Ez
False)
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A Table of Precedence
1. [x\E] (substitution, highest precedence)

2. (function application)

3. unary prefix operators: + − ¬#

4. × / div mod

5. + − ∪ ∩

6. ↑ ↓

7. = < > ∈ ⊂ ⊆ ⊃ ⊇

8. ∨ ∧

9. ⇒⇐

10. ≡ (lowest precedence)

All nonassociative binary infix operators associate to
the left, ◁, and ⇒, except for ⇒, which associate to the
right.

Some operators may have a slash / through them to
denote negation— e.g. b ̸≡ c is an abbreviation for¬(b ≡
c).
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