
Programming Languages:
Imperative Program Construction

3. Quantifications

Shin-Cheng Mu

Autumn Term, 2024

Materials of this part of the course are adapted from
Gries and Schneider [GS93]. Axioms and theorems are
numbered according to the book. Some additional rules
are taken from Kaldewaij [Kal90].

1 Synatx and Interpretation of
Quantification

Summation, Dummy Variables

• We have all seen quantifed expressions like this:∑n
i=1 e,

– which denotes e[i\1] + e[i\2] + . . . e[i\n].

– Example:
∑3

i=1 i
2 = 12 + 22 + 32.

• Note that the variable i is a dummy variable (虛擬
變數). It is different from an ordinary variable — its
value is not drawn from the state. Instead it is a
“local” variable.

• Name of the dummy variable does not matter. E.g.∑3
i=1 i

2 =
∑3

j=1 j
2

• The usual notation for quantifiers is confusing at
times, however.

– 1 +
∑3

n=1 n
2 is 15.

– Should
∑3

n=1 n
2 + 1 be 15 or 17?

– Should
∑3

n=1 1 + n2 be 17 or 3 + n2?

• Similar problems occurs in conventional notations
for logic.

– It is sometimes not clear whether ∀x.P x ∧Q
denotes (∀x.P x) ∧Q or (∀x.P x ∧Q).

A Linear Notation
Instead of

∑n
i=1 e, we use a linear notation:

⟨Σi : 1 ⩽ i ⩽ n : e ⟩

for several reasons:

• it is clearer that Σi declares a dummy variable i.

• The parentheses makes the scope of i clear.

• You can write more general ranges:

– ⟨Σi : 1 ⩽ i ⩽ 7 ∧ even i : i ⟩ = 2 + 4 + 6,

– ⟨Σi : 1 ⩽ i ⩽ 7 ∧ odd i : 2 × i ⟩ = 2 × 1 +
2× 3 + 2× 5 + 2× 7.

• And it extends easily to more variables:

– ⟨Σi, j : 1 ⩽ i ⩽ 2 ∧ 3 ⩽ j ⩽ 4 : ij ⟩ =
13 + 14 + 23 + 24.

This notation is sometimes called the Eindhoven nota-
tion, named after the university where many advocates
came from.

A review of this choice of notation (alone with some
others) was given by Dijkstra [Dij00].

1.1 A General Notation for Quantified
Expressions

Generalizing to Other Operators

• Let ⋆ be any binary operator that is

– symmetric: b ⋆ c = c ⋆ b, and

– associative: (b ⋆ c) ⋆ d = b ⋆ (c ⋆ d), and has
an

– identity u: u ⋆ b = b = b ⋆ u.

1



• We allow the general quantification (量詞, 量化句)
over ⋆:

⟨ ⋆x, y : R : P ⟩

It informally means “for all the x, y such that R is
True , collect all the P and apply ⋆ to them.”.

– Variables x and y are distinct. They are called
the bound variables, or the dummies, of the
quantification. There may be one or more
dummies.

– Note that x and y should be restricted by their
types. For this course, we assume that their
types can be inferred by the context.

– R: an boolean expression, the range of the
quantification. When it is omitted, as in ⟨ ⋆x ::
P ⟩, we mean R = True .

– P : an expression, the body of the quantifica-
tion. The type of the result of the quantifica-
tion is the type of P .

Examples

⟨+i : 0 ⩽ i < 4 : i× 8 ⟩ =
0× 8 + 1× 8 + 2× 8 + 3× 8

⟨×i : 0 ⩽ i < 3 : i+ (i+ 1) ⟩ =
(0 + 1)× (1 + 2)× (2 + 3)

⟨ ∧i : 0 ⩽ i < 2 : i× d ̸= 6 ⟩ =
0× d ̸= 6 ∧ 1× d ̸= 6

⟨ ∨i : 0 ⩽ i < 21 : b[i] = 0 ⟩ =
b[0] = 0 ∨ . . . ∨ b[20] = 0

Conventions
To relate to more familiar symbols, we bow to the con-

vention and write

⟨+x : R : P ⟩ as ⟨Σx : R : P ⟩
⟨×x : R : P ⟩ as ⟨Πx : R : P ⟩
⟨ ∨x : R : P ⟩ as ⟨ ∃x : R : P ⟩
⟨ ∧x : R : P ⟩ as ⟨ ∀x : R : P ⟩

1.2 Scope
Free v.s. Bound Variables

• Consider ⟨ ∀i :: x × i = 0 ⟩, which asserts that x
multiplied by any integer equals 0. The value of this

expression depends on x, which is in the state, but
not i: writing ⟨ ∀j :: x × j = 0 ⟩ means the same
thing.

• Occurrences of x in such expression are said to be
free.

– All occurrences of a variable in an expression
without quantifications are free. For example,
all variables in expressions in Chapter 3 are
free.

• The scope of the dummy i is the range and body of
the expression.

• Occurrences of i in the scope are said to be bound.

Free v.s. Bound Occurrences

• Note that being free or bound is not a property of
not variables, but occurrences of variables.

• In i > 0 ∨ ⟨ ∀i : 0 ⩽ i : x × i = 0 ⟩, the leftmost
occurrence of i (in i > 0) is free.

• The variable i is used in two different ways. The first
(i.e. free) occurrence of i refer to a different variable
than the other (i.e. bound) occurrences.

• The expression is equivalent to i > 0 ∨ ⟨ ∀j : 0 ⩽
j : x× j = 0 ⟩.

• Similar to local variables in programming lan-
guages. Algol 60 (in 1960) was the first program-
ming language to introduce full scoping rules for lo-
cal variables, while such scoping rules were used in
logic dating back to 1885, by Charles Sanders Peirce.

Free Occurrences, Formally
Formal definitions of free and bound occurrences are

rather tedious. Let us try.
(8.9) Definition

1. The occurrence of i in the expression i is free.

2. If an occurrence of i is free in E, the same occur-
rence is also free in (E), in f(. . . , E, . . .), and in
⟨ ⋆x : E : F ⟩ and in ⟨ ⋆x : F : E ⟩ if i is not x.

(8.9)’Definition occurs(v, e) isTrue iff. v occurs free
at least once in e.

In general, both v and e could be sets. In that case,
occurs(v, e) means at least one variable in v occurs free
at least once in e.

2



Bound Occurrences, Formally
(8.10) Definition

1. Let an occurrence of i be free in E. That occurrence
of i is bound in ⟨ ⋆i : E : F ⟩ or ⟨ ⋆i : F : E ⟩.

2. If an occurrence of i is bound in E, the same occur-
rence is also bound (to the same dummy) in (E), in
f(. . . , E, . . .), ⟨ ⋆x : E : F ⟩ and in ⟨ ⋆x : F : E ⟩.

Examples
Consider the equation:

i+ j + ⟨Σi : 1 ⩽ i ⩽ 10 : b[i]j ⟩+
⟨Σi : 1 ⩽ i ⩽ 10 : ⟨Σj : 1 ⩽ j ⩽ 10 : c[i, j] ⟩ ⟩

1.3 Textual Substitution Revisited

(8.11) Provided that ¬occurs(y, {x, F}),

⟨ ⋆y : R : P ⟩[x\F ] = ⟨ ⋆y : R[x\F ] : P [x\F ] ⟩

• The caveat means that if y occurs free in x or F , it
has to be replaced by a fresh dummy variable (using
(8.21)) before we can perform the substitution.

• In a sense, bound occurrences are “protected” from
alien substitutions. Their names are replaced, and
thus never touched by an alien substitution.

Examples

⟨Σx : 1 ⩽ x ⩽ 2 : y ⟩[y\y + z] =

⟨Σx : 1 ⩽ x ⩽ 2 : y + z ⟩
⟨Σi : 0 ⩽ i < n : b[i] = n ⟩[n\m] =

⟨Σi : 0 ⩽ i < m : b[i] = m ⟩
⟨Σy : 0 ⩽ y < n : b[y] = n ⟩[n\y] =

⟨Σj : 0 ⩽ j < y : b[j] = y ⟩
⟨Σy : 0 ⩽ y < n : b[y] = n ⟩[y\m] =

⟨Σj : 0 ⩽ j < n : b[j] = n ⟩

2 Rules AboutQuantification
• Since x + x = 2 × x, we would expect this to be
true:

⟨Σx : R : x+ x ⟩ = ⟨Σx : R : 2× x ⟩

• However, the current Leibniz rule does not allow us
to prove the quality. In the attempt below:

x+ x = 2× x

⟨Σx : R : z ⟩[z\x+ x] = ⟨Σx : R : z ⟩[z\2× x]

– Since x is protected in (8.11), the conclusion
simplifies to ⟨Σy : . . . : x+ x ⟩ = ⟨Σy : . . . :
2× x ⟩.

Additional Leibniz Rule
The following additional rules allow substitution of

equals for equals in the range and body of a quantifi-
cation:s

(8.12) Leibniz:
P = Q

⟨ ⋆x : E[z\P ] : S ⟩ = ⟨ ⋆x : E[z\Q] : S ⟩

R ⇒ P = Q

⟨ ⋆x : R : E[z\P ] ⟩ = ⟨ ⋆x : R : E[z\Q] ⟩

Defining Axioms

(8.13) Axiom, Empty range :

⟨ ⋆x : False : P ⟩ = u ,

where u is the identity of ⋆

(8.14) Axiom, One-point rule :

⟨ ⋆x : x = E : P ⟩ = P [x\E] ,

provided that ¬occurs(x,E)

Example of one-point rule:

⟨Σx : x = 3 : x2 ⟩ = 32

Distributivity

(8.15) Axiom, Distributivity :

⟨ ⋆x : R : P ⟩ ⋆ ⟨ ⋆x : R : Q ⟩ = ⟨ ⋆x : R : P ⋆ Q ⟩ ,

provided that P,Q : Bool or R is finite

Example of distributivity:

⟨Σi : i2 < 9 : i2 ⟩+ ⟨Σi : i2 < 9 : i3 ⟩ =
⟨Σi : i2 < 9 : i2 + i3 ⟩

3



For an non-example showing why R must be finite
when the type of P and Q are not (e.g. P,Q : Int ), con-
sider:

0

= ⟨Σi : 0 ⩽ i : 0 ⟩
= { 0 = i + (-i) }

⟨Σi : 0 ⩽ i : i+ (−i) ⟩
= { distributivity without restriction }

⟨Σi : 0 ⩽ i : i ⟩+ ⟨Σi : 0 ⩽ i : −i ⟩

The last line is undefined because both sums are infi-
nite.

2.1 Range Split

(8.16) Axiom, Range split :
⟨ ⋆x : R ∨ S : P ⟩ = ⟨ ⋆x : R : P ⟩ ⋆ ⟨ ⋆x : S : P ⟩ ,

provided R ∧ S ≡ False and

P : Bool or R and S are finite

The restriction that R ∧ S ≡ False ensures that an
operand that satisfies both R and S is not accumulated
twice in the RHS.

For the more general case, we may add the repeated
operands to the RHS:

(8.17) Axiom, Range split :
⟨ ⋆x : R ∨ S : P ⟩ ⋆ ⟨ ⋆x : R ∧ S : P ⟩ =
⟨ ⋆x : R : P ⟩ ⋆ ⟨ ⋆x : S : P ⟩ ,

provided P : Bool or R and S are finite

If ⋆ is idempotent, that is e ⋆ e = e for all e, it does not
matter how many times e is accumulated.

(8.18) Axiom, Range split for idempotent ⋆ :

⟨ ⋆x : R ∨ S : P ⟩ =
⟨ ⋆x : R : P ⟩ ⋆ ⟨ ⋆x : S : P ⟩ ,

provided that ⋆ is idempotent

2.2 Manipulating Dummies
Nested quantifications with the same operator can be
interchanged:

(8.19) Axiom, Interchange of dummies :
⟨ ⋆x : R : ⟨ ⋆y : Q : P ⟩ ⟩ =
⟨ ⋆y : Q : ⟨ ⋆x : R : P ⟩ ⟩ ,

provided that ⋆ is idempotent, or

R and Q are finite,

¬occurs(y,R), and ¬occurs(x,Q)

How a single quantification over a list of dummies can
be viewed as a nested quantification:

(8.20) Axiom, Nesting :

⟨ ⋆x, y : R ∧Q : P ⟩ = ⟨ ⋆x : R : ⟨ ⋆y : Q : P ⟩ ⟩ ,
provided ¬occurs(y,R)

A dummy can be replaced by a fresh dummy.

(8.21) Axiom, Renaming :

⟨ ⋆x : R : P ⟩ = ⟨ ⋆y : R[x\y] : P [x\y] ⟩ ,
provided ¬occurs(y, {R,P})

The restrictions with ¬occur in axioms (8.19), (8.20),
and (8.21) ensure that an expression that contains an oc-
currence of a dummy is not moved outside (or inside) the
scope of that dummy.

A More General Renaming

• Consider ⟨Σi : 2 ⩽ i ⩽ 10 : i2 ⟩.

• We may rewrite this expression so that the range
starts at 0 instead of 2: ⟨Σk : 0 ⩽ k ⩽ 8 : (k+2)2 ⟩.

• Note the relationship: i = k + 2, and k = i− 2.

• The second expression is ⟨Σk : (2 ⩽ i ⩽
10)[i\k + 2] : (i2)[i\k + 2] ⟩.

(8.22) Change of dummy :

⟨ ⋆x : R : P ⟩ = ⟨ ⋆y : R[x\f y] : P [x\f y] ⟩ ,
provided ¬occurs(y, {R,P}),
and f has an inverse

• f has an inverse: x = f y ≡ y = f−1 x.

4



Proving (8.22)

Proof.

⟨ ⋆y : R[x\f y] : P [x\f y] ⟩
= { one-point rule (8.14) }

⟨ ⋆y : R[x\f y] : ⟨ ⋆x : x = f y : P ⟩ ⟩
= { nesting (8.20), ¬occurs(x,R[x\f y]) }

⟨ ⋆x, y : R[x\f y] ∧ (x = f y) : P ⟩
= { (3.84a) }

⟨ ⋆x, y : R[x\x] ∧ (x = f y) : P ⟩
= { since R[x\x] = R }

⟨ ⋆x, y : R ∧ (x = f y) : P ⟩
= { nesting (8.20), ¬occurs(y,R) }

⟨ ⋆x : R : ⟨ ⋆y : x = f y : P ⟩ ⟩
= { assumption: x = f y ≡ y = f−1 x }

⟨ ⋆x : R : ⟨ ⋆y : y = f−1 x : P ⟩ ⟩
= { one-point rule (8.14) }

⟨ ⋆x : R : P [y\f−1 x] ⟩
= { since ¬occurs(y, P ) }

⟨ ⋆x : R : P ⟩

The proof is not as hard as it may appear at first, be-
cause each step is almost forced by the shape of the ex-
pression at that point and the shape of the final goal. In
several steps there is only one choice.

1. The first step is the hardest. In retrospect, it is the
only rule that can be applied.

2. Step 2: moving dummy x to the outside gets us
closer to the final form.

3. R[x\f y]must be removed at some point. The sub-
stitution in step 3 and 4 makes it possible.

4. After step 5 we get a quantification in x alone.

5. The quantification in y can only be removed using
the one-point rule. To prepare for that we need y =
f−1 x.

3 Rules for Specific Operators
ExistentialQuantification

Trading :

⟨ ∃i : R ∧ S : P ⟩ = ⟨ ∃i : R : S ∧ P ⟩
Distributivity :

Q ∧ ⟨ ∃i : R : S ⟩ = ⟨ ∃i : R : Q ∧ S ⟩ ,

provided ¬occurs(i, Q)

Q ∨ ⟨ ∃i : R : S ⟩ = ⟨ ∃i : R : Q ∨ S ⟩ ,

provided ¬occurs(i, Q) and R non-empty

UniversalQuantification

Trading :

⟨ ∀i : R ∧ S : P ⟩ = ⟨ ∀i : R : S ⇒ P ⟩
Distributivity :

Q ∨ ⟨ ∀i : R : S ⟩ = ⟨ ∀i : R : Q ∨ S ⟩ ,

provided ¬occurs(i, Q)

Q ∧ ⟨ ∀i : R : S ⟩ = ⟨ ∀i : R : Q ∧ S ⟩ ,

provided ¬occurs(i, Q) and R non-empty

de Morgan :

¬⟨ ∃i : R : S ⟩ = ⟨ ∀i : R : ¬S ⟩

Minimum and Maximum
More distributivity. Provided that ¬occurs(i, F ):

F ↓ ⟨ ↑ i : R : S ⟩ = ⟨ ↑ i : R : F ↓ S ⟩
F ↑ ⟨ ↓ i : R : S ⟩ = ⟨ ↓ i : R : F ↑ S ⟩

Provided that ¬occurs(i, F ) and R non-empty:

F + ⟨ ↑ i : R : S ⟩ = ⟨ ↑ i : R : F + S ⟩
F + ⟨ ↓ i : R : S ⟩ = ⟨ ↓ i : R : F + S ⟩

For F ⩾ 0, ¬occurs(i, F ) and R non-empty:

F × ⟨ ↑ i : R : S ⟩ = ⟨ ↑ i : R : F × S ⟩
F × ⟨ ↓ i : R : S ⟩ = ⟨ ↓ i : R : F × S ⟩
− ⟨ ↑ i : R : S ⟩ = ⟨ ↓ i : R : −S ⟩

Upper/Lower Bounds
Least upper bound and greatest lower bound:

S x = ⟨ ↑ i : R i : S i ⟩ ≡
R x ∧ ⟨ ∀i : R i : S i ⩽ S x ⟩

S x = ⟨ ↑ i : R i : S i ⟩ ≡
R x ∧ ⟨ ∀i : R i : S i ⩽ S x ⟩

5



Number Of ...
Let ⟨#i : R i : S i ⟩ denote “the number of i in range

R i such that S i is true”.
Definition

1. Function# : Bool → Int is defined by#False = 0
and # True = 1.

2. ⟨#i : R i : S i ⟩ = ⟨Σi : R i : #(S i) ⟩.

4 Manipulating Ranges

(8.23) Theorem, Split off term : for n : Nat ,

(a) ⟨ ⋆i : 0 ⩽ i < n+ 1 : P ⟩
= ⟨ ⋆i : 0 ⩽ i < n : P ⟩ ⋆ P [i\n]

(b) ⟨ ⋆i : 0 ⩽ i < n+ 1 : P ⟩
= P [i\0] ⋆ ⟨ ⋆i : 0 < i < n+ 1 : P ⟩

Important: notice that by n : Nat we are assuming
that 0 ⩽ n, therefore the range 0 ⩽ i < n + 1 is never
empty.
There is a more general variation that is less used in

this course:

(8.23)′ Theorem, Split off term :

for m,n : Nat such that m ⩽ n,

(a) ⟨ ⋆i : m ⩽ i < n+ 1 : P ⟩
= ⟨ ⋆i : m ⩽ i < n : P ⟩ ⋆ P [i\n]

(b) ⟨ ⋆i : m ⩽ i < n+ 1 : P ⟩
= P [i\m] ⋆ ⟨ ⋆i : m < i < n+ 1 : P ⟩

Proof of (8.23a)

Proof.

⟨ ⋆i : 0 ⩽ i < n+ 1 : P ⟩
= { 0 ⩽ i < n+ 1 ≡ 0 ⩽ i < n ∨ i = n }

⟨ ⋆i : 0 ⩽ i < n ∨ i = n : P ⟩
= { range split (8.16),

since 0 ⩽ i < n ∧ i = n ≡ False }
⟨ ⋆i : 0 ⩽ i < n : P ⟩ ⋆ ⟨ ⋆i : i = n : P ⟩

= { one-point rule (8.14) }

⟨ ⋆i : 0 ⩽ i < n : P ⟩ ⋆ P [i\n]

An Assumed Property about Arithmetics

In the proof of (8.23a) we used the following theorem
regarding natural numbers:

(8.24)

b ⩽ c ⩽ d ⇒ (b ⩽ i < d ≡ b ⩽ i < c ∨ c ⩽ i < d)

In a course on discrete mathematics, such properties are
justified by axioms for arithmetics (see Chapter 15 of
Gries and Schneider [GS93].) For this course, we just
take them as granted.

Examples

Let 0 ⩽ n.

⟨Σi : 0 ⩽ i < n+ 1 : b[i] ⟩ =
⟨Σi : 0 ⩽ i < n : b[i] ⟩+ b[n]

⟨Πi : 0 ⩽ i < n+ 1 : b[i] ⟩ =
b[0]× ⟨Πi : 0 < i < n+ 1 : b[i] ⟩

⟨ ∀i : 0 ⩽ i ⩽ n : b[i] = 0 ⟩ =
⟨ ∀i : 0 ⩽ i < n : b[i] = 0 ⟩ ∧ b[n] = 0

⟨Πi : 0 ⩽ i ⩽ n : b[i] ⟩ =
b[0]× ⟨Πi : 0 < i ⩽ n : b[i] ⟩

Example: Sum of a Triangular Array

Let 0 ⩽ n. Consider the following expression:

(8.25) ⟨Σi, j : 0 ⩽ i ⩽ j < n+ 1 : c[i, j] ⟩

It is the sum of a triangular portion of an array.

We will show that it equals

⟨Σi, j : 0 ⩽ i ⩽ j < n : c[i, j] ⟩+
⟨Σi : 0 ⩽ i ⩽ n : c[i, n] ⟩

That is, we can compute the sum of the last row and the
sum of the rest of the triangle, before adding them.

To Split the Range . . .

. . .we note that ⩽ and < is used conjunctively. That
is, a ⩽ b < c is an abbreviation of a ⩽ b and b < c.

6



We reason:

0 ⩽ i ⩽ j < n+ 1

= { remove abbreivation }

0 ⩽ i ⩽ j ∧ j < n+ 1

= { j < n+ 1 ≡ j < n ∨ j = n }

0 ⩽ i ⩽ j ∧ (j < n ∨ j = n)

= { distributivity (3.46) }

(0 ⩽ i ⩽ j ∧ j < n) ∨ (0 ⩽ i ⩽ j ∧ j = n)

= { use abbreivation }

(0 ⩽ i ⩽ j < n) ∨ (0 ⩽ i ⩽ j ∧ j = n)

The Calculation
We can now manipulate (8.25):

⟨Σi, j : 0 ⩽ i ⩽ j < n+ 1 : c[i, j] ⟩
= { the proof above }

⟨Σi, j : (0 ⩽ i ⩽ j < n)∨
(0 ⩽ i ⩽ j ∧ j = n) : c[i, j] ⟩

= { range split (8.16) }

⟨Σi, j : 0 ⩽ i ⩽ j < n : c[i, j] ⟩+
⟨Σi, j : 0 ⩽ i ⩽ j ∧ j = n : c[i, j] ⟩

= { nesting (8.20) }

⟨Σi, j : 0 ⩽ i ⩽ j < n : c[i, j] ⟩+
⟨Σj : j = n : ⟨Σi : 0 ⩽ i ⩽ j : c[i, j] ⟩ ⟩

= { one-point rule (8.14) }

⟨Σi, j : 0 ⩽ i ⩽ j < n : c[i, j] ⟩+
⟨Σi : 0 ⩽ i ⩽ n : c[i, n] ⟩

The calculation looks tedious, but is familiar to people
in this field, and can be considered trivial. In practice,
such manipulation is usually quickly condensed in one
step:

⟨Σi, j : 0 ⩽ i ⩽ j < n+ 1 : c[i, j] ⟩
= { range split (8.16); one-point rule (8.14) }

⟨Σi, j : 0 ⩽ i ⩽ j < n : c[i, j] ⟩+
⟨Σi : 0 ⩽ i ⩽ n : c[i, n] ⟩

References

[Dij00] E. W. Dijkstra. The notational conventions I
adopted, and why. EWD 1300, 2000.

[GS93] D. Gries and F. B. Schneider. A Logical Approach
to Discrete Math. Springer, October 22, 1993.

[Kal90] A. Kaldewaij. Programming: the Derivation of Al-
gorithms. Prentice Hall, 1990.

7


