
Programming Languages:
Imperative Program Construction

4. Hoare Logic and Weakest Precondition: Loop

Shin-Cheng Mu

Autumn. 2024

1 Loop and loop invariants
Loops

• Repetition takes the form do B0 → S0 | ... | Bn →
Sn od.

• If none of the guardsB0 . . . Bn evaluate to true, the
loop terminates. Otherwise one of the commands is
chosen non-deterministically, before the next itera-
tion.

• To annotate a loop (for partial correctness):

{P}
do B0 → {P ∧ B0}S0 {P}
| B1 → {P ∧ B1}S1 {P}
od
{Q ,Pf } ,

• where Pf refers to a proof of P ∧¬B0 ∧¬B1 ⇒ Q.

• P is called the loop invariant. Every loop should be
constructed with an invariant in mind!

Linear-Time Exponentiation

con N {0 ⩽ N}; var x, n : Int

x, n := 1, 0
{x = 2n}
do n ̸= N →

{x = 2n ∧ n ̸= N}
x, n := x+ x, n+ 1
{x = 2n,Pf1}

od
{x = 2N ,Pf2}

Pf1:

(x = 2n)[x, n\x+ x, n+ 1]

≡ x+ x = 2n+1

⇐ x = 2n ∧ n ̸= N

Pf2:

x = 2n ∧ n ⩽ N ∧ ¬(n ̸= N)

⇒ x = 2N

Greatest Common Divisor

• Known: gcd(x, x) = x; gcd(x, y) = gcd(y, x− y) if
x > y.

•
con A,B : int {0 < A ∧ 0 < B}
var x, y : int

x, y := A,B
{0 < x ∧ 0 < y ∧ gcd(x, y) = gcd(A,B)}
do y < x → x := x− y
| x < y → y := y − x

od
{x = gcd(A,B) ∧ y = gcd(A,B)}

•
(0 < x ∧ 0 < y ∧ gcd(x, y) = gcd(A,B))[x\x− y]

≡ 0 < x− y ∧ 0 < y ∧ gcd(x− y, y) = gcd(A,B)
⇐ 0 < x ∧ 0 < y ∧ gcd(x, y) = gcd(A,B) ∧ y < x

AWeird Equilibrium

1

• Consider the following program:

var x, y, z : int

{true, bnd : 3× (x ↑ y ↑ z)− (x+ y + z)}
do x < y → x := x+ 1
| y < z → y := y + 1
| z < x → z := z + 1

od
{x = y = z}.

• If it terminates at all, we do have x = y = z. But
why does it terminate?

1. bnd ⩾ 0, and bnd = 0 implies none of the
guards are true.

2. {x < y ∧ bnd = t}x := x+ 1 {bnd < t}.

Repetition
To annotate a loop for total correctness:

{P , bnd : t}
do B0 → {P ∧ B0}S0 {P}
| B1 → {P ∧ B1}S1 {P}
od
{Q} ,

we have got a list of things to prove:

1. P ∧ ¬B0 ∧ ¬B1 ⇒ Q,

2. for all i, {P ∧Bi}Si {P},

3. P ∧ (B0 ∨B1) ⇒ t ⩾ 0,

4. for all i, {P ∧Bi ∧ t = C}Si {t < C}.

E.g. Linear-Time Exponentiation

• What is the bound function?

con N {0 ⩽ N}; var x, n : Int

x, n := 1, 0
{x = 2n ∧ n ⩽ N, bnd : N − n}
do n ̸= N →

x, n := x+ x, n+ 1
od
{x = 2N}
]|

• x = 2n ∧ n ⩽ N ∧ n ̸= N ⇒ N − n ⩾ 0,

• {. . .∧N−n = t}x, n := x+x, n+1 {N−n < t}.

E.g. Greatest Common Divisor

• What is the bound function?

con A,B : Int {0 < A ∧ 0 < B}
var x, y : Int

x, y := A,B
{0 < x ∧ 0 < y ∧ gcd(x, y) = gcd(A,B),
bnd : x+ y}

do y < x → x := x− y
| x < y → y := y − x

od
{x = gcd(A,B) ∧ y = gcd(A,B)}
]|

• . . . ⇒ x+ y ⩾ 0,

• {. . . 0 < y∧y < x∧x+y = t}x := x−y {x+y <
t}.

2 Weakest Precondition
• What about the weakest precondition?

• Denote the program do B → S od by DO . It
should behave the same as

if B → S ;DO | ¬ B → skip fi .

• For any R, if wp DO R = X , it should satisfy

X = (B ⇒ wp S X) ∧ (¬ B ⇒ R) ,

• which is equivalent to

X = (B ∧ wp S X) ∨ (¬ B ∧ R) . (Why?)

• We let wp DO R be the strongest X satifying the
equation above.

Weakest Precondition for Loop
To be slightly more general,

• denote do B0 → S0 | B1 → S1 od by DO ,

• denote if B0 → S0 | B1 → S1 fi by IF , and

• denote B0 ∨ B1 by BB .

• For all R, wp DO R is the strongest predicate sat-
isfying

X ≡ wp IF X ∨ (R ∧ ¬ BB) .

2

A Bottom-Up Formulation

• Alternatively, let Hi denote “DO terminates, in at
most i iterations, in a state satisfying R.”

• H0 = R ∧ ¬ BB .

• Hn+1 = wp IF (Hn) ∨ (R ∧ ¬ BB).

• We may define

wp DO R = ⟨∃i : 0 ⩽ i : Hi⟩ .

• Theory on fixed points shows that the two defini-
tions are equivalent.

Relationship to Hoare Logic

• However, how does wp DO R relate to the way we
annotate loops in the previous section?

• We had a theorem about IF which justified the way
to annotate branches:

wp IF R = (B0 ⇒ wp S0 R)
∧ (B1 ⇒ wp S1 R) ∧ (B0 ∨ B1) .

• Do we have a similar result about loops?

Fundamental Invariance Theorem

Theorem Let (D ,⩽) be a partially ordered set; letC be
a subset of D such that (C , <) is well-founded. Let
t be a function on the state with value of type D .
Then

(P ∧ BB ⇒ t ∈ C) ∧
⟨∀x :: P ∧ t = x ⇒ wp IF (P ∧ t < x)⟩

⇒ (P ⇒ wp DO (P ∧ ¬ BB)) .

• Informally, (C , <) being well-founded means that
there is no infinite chain c1 > c2 > c3 ... in C .

• The Fundamental Invariance Theorem was proved
several times [Dij76, Bac81, Boo82, DvG86, Mor89].
Proving this theorem motivated developments in
many related fields.

References
[Bac81] R. J. R. Back. Proving total correctness or non-

deterministic programs in infinitary logic. Acta
Informatica, 15:223–249, 1981.

[Boo82] H. J. Boom. A weaker precondition for loops.
ACM Transactions on Programming Languages
and Systems, 4(4):668–677, 1982.

[Dij76] E. W. Dijkstra. A Discipline of Programming.
Prentice Hall, 1976.

[DvG86] E. W. Dijkstra and A. J. M. van Gasteren. A
simple fixpoint argument without the restric-
tion to continuity. Acta Informatica, 23(1):1–7,
1986. EWD 901.

[Mor89] J. M. Morris. Well-founded induction and the
invariance theorem for loops. Information Pro-
cessing Letters, 32(3):155–158, 1989.

3

