Programming Languages:

Imperative Program Construction
5. Loop Construction |

Shin-Cheng Mu

Autumn. 2024

Correct by Construction

Dijkstra: “The only effective way to raise the
confidence level of a program significantly is
to give a convincing proof of its correctness.
But one should not first make the program and
then prove its correctness, because then the re-
quirement of providing the proof would only
increase the poor programmer’s burden. On
the contrary: the programmer should ...”

“...[let] correctness proof and program grow
hand in hand: with the choice of the structure
of the correctness proof one designs a program
for which this proof is applicable.”

Deriving Programs from Specifications
« From such a specification:

con declarations
{preconditions}

prog
{postcondition}

« we hope to derive prog.

« We usually work backwards from the post condi-
tion.

« The techniques we are about to learn is mostly
about constructing loops and loop invariants.

1 Taking Conjuncts as Invariants
Conjunctive Postconditions

« When the post condition has the form P A (), one
may take one of the conjuncts as the invariant and
the other as the guard:

- {P}do-Q — Sod{P AQ}.

+ In some extreme cases, since P = true A P, one
may try:
- {True}do -P — S od {P}.
« E.g. to sort four variables:
{True}
doa>b—a,b:=0b,a
| b>c—b,c:i=c¢,b
| ¢>d—c,d:=d,c
od
{a<b<e<d}

« Why does it terminate?

Integral Division and Reminder

« Consider the specficication:

con A, B:Int{0 < AAN0 < B}
var q,r : Int

divmod

{¢=Adiv BAr=Amod B} .

« The post condition expandsto A = gx B+7r A 0 <
r Ar<B.

But Which Conjunct to Choose?

«q=AdivB A r = Amod B expands to A =
gxB+7r AN0<r A r < B. Denoteitby R. It
leads to a number of possibilities:

«{0<rAr<B}doA#gxB+r— Sod{R},
«{A=gxB+r Ar<B}do0>r— Sod{R},

or

«{A=g¢xB+r A0<r}dor > B— Sod{R},
etc.

Computing the Quotient and the Remainder
Try A = ¢ x B+ r A0 < r as the invariant and
—(r < B) as the guard:

q,r:=0A
{P:A=gxB+rA0<r}
doB<r—{PAB<r}

g:=q+1
{P'}
r.=r—2nB
{r}

od

{P ANr<B}

« P s established by ¢,r := 0, A.

« Choose r as the bound.

« Since B> 0,tryr :=r — B:

P[r\r — B
= A=gxB+r—-BANO0OLr—=B
=A=(q-1)xB+r ANB<r.

Hmm... we almost have P A B < r, apart from
that g is replaced by ¢ — 1. Denote it by P’.

’ P'lg\q +1]
=A=(@+1-1)xB+r AN B<r
= A=gqxB+r N B<r

Thus we know that we want the assignment ¢ :=
q+ 1
2 On Constructing Assignments

Updating a Variable
We will see this pattern often:

« We want to establish:

{r=F AN ...}
r:=xOF
{r=F&®F'}

« It works because:

(x=E®E)z\z® E']
=2x0F =E¢F
< z=F

« In general, given a function f, to establish:

{z = B}

(z=f E}

+ we can use an assignment z:=f z. It works because

(z=f E)[z\f z]
frz=fF
r=F.

ol

3 Replacing Constants by Vari-

ables

Exponentiation

+ Consider the problem:

conA,B:Int {A>0 A B>0}
var r : Int
exponentiation

{r=AB} .

« There is not much we can do with a state space con-
sisting of only one variable.

« Replacing constants by variables may yield some
possible invariants.

« Again we have several choices: r = 2%, r = A%,
r=aY, etc.

Exponentiation

« Use the invariant Py : r = A*, thus Py A © = B
implies the post-condition.

« Strategy: increment z in the loop. An upper bound
Pz <B.

« (r = A%[z\z+1] = r = A", However, when
r = A% holds, A*t1 = A x A = A x 7!

« Indeed,

(r=A"TH[r\A x 7]
= Axr=A""!
<= r= A"

r,x:=1,0

= Aw < B,b d : B_
{r A n x} con N : Int {0 < N}; f:array [0.N) of Int;

doz # B —
re=AXxr 0.0
= ATt A 1< B & =1,
ir.:erl v) {P:2x=(%i:0<i<n: f[i]) A 0<n,
od bnd : N —n}
{r = AP} don# N —={PAn#N}

x:=x+ f[n]; n:=n+1 {P}od
{z = (3i: 0<i<N : f[i])}

Summing Up an Array « Inv. is established by n, x := 0, 0.

« Use N — n as bound, try incrementing n:

« Another simple exercise.
(x =(Zi:0<i<n: f[i]) A 0< n)n\n+1]

+ We talk about it because we need range splitting,. = r=(Xi:0<i<n+1:f[[]) ANO<n+1
< z=(Xi:0<i<n+1:f[i]) AO<n
= z=(Xi:0<i<n: f[i])+ fl[n] A 0< n.
con N : Int {0 < N}; f:array [0.N) of Int *
var z : Int (x = (%i:0<i<n: fli])+ fln] A 0<n)
sum [z\x + f[n]]

{z = (%i:0<i<N : f[i])} z+ f[n] = (%i: 0<i<n: f[i]) + f[n] A 0<n

z=(%i:0<i<n: f[i]) A 0<n.

Sl

Summing Up an Array

