
Programming Languages:
Imperative Program Construction

5. Loop Construction I

Shin-Cheng Mu

Autumn. 2024

Correct by Construction

Dijkstra: “The only effective way to raise the
confidence level of a program significantly is
to give a convincing proof of its correctness.
But one should not first make the program and
then prove its correctness, because then the re-
quirement of providing the proof would only
increase the poor programmer’s burden. On
the contrary: the programmer should . . . ”

“. . . [let] correctness proof and program grow
hand in hand: with the choice of the structure
of the correctness proof one designs a program
for which this proof is applicable.”

Deriving Programs from Specifications

• From such a specification:

con declarations
{preconditions}
prog
{postcondition}

• we hope to derive prog .

• We usually work backwards from the post condi-
tion.

• The techniques we are about to learn is mostly
about constructing loops and loop invariants.

1 Taking Conjuncts as Invariants
Conjunctive Postconditions

• When the post condition has the form P ∧ Q, one
may take one of the conjuncts as the invariant and
the other as the guard:

– {P}do ¬Q → S od {P ∧Q}.

• In some extreme cases, since P ≡ true ∧ P , one
may try:

– {True}do ¬P → S od {P}.

• E.g. to sort four variables:

{True}
do a > b → a, b := b, a
| b > c → b, c := c, b
| c > d → c, d := d , c
od
{a ⩽ b ⩽ c ⩽ d}

• Why does it terminate?

Integral Division and Reminder

• Consider the specficication:

con A,B : Int{0 ⩽ A ∧ 0 < B}
var q, r : Int
divmod
{q = A div B ∧ r = Amod B} .

• The post condition expands toA = q×B+r ∧ 0 ⩽
r ∧ r < B.

But Which Conjunct to Choose?

• q = A div B ∧ r = A mod B expands to A =
q × B + r ∧ 0 ⩽ r ∧ r < B. Denote it by R. It
leads to a number of possibilities:

• {0 ⩽ r ∧ r < B}do A ̸= q×B+ r → S od {R},

• {A = q×B+ r ∧ r < B}do 0 > r → S od {R},
or

• {A = q×B+ r ∧ 0 ⩽ r}do r ⩾ B → S od {R},
etc.

1



Computing theQuotient and the Remainder
Try A = q × B + r ∧ 0 ⩽ r as the invariant and

¬(r < B) as the guard:

q , r := 0,A
{P :A = q × B + r ∧ 0 ⩽ r}
do B ⩽ r → {P ∧ B ⩽ r}

q := q + 1
{P ′}
r := r − B
{P}

od
{P ∧ r < B}

• P is established by q, r := 0, A.

• Choose r as the bound.

• Since B > 0, try r := r −B:

P [r\r −B]

≡ A = q ×B + r −B ∧ 0 ⩽ r −B

≡ A = (q − 1)×B + r ∧ B ⩽ r.

Hmm... we almost have P ∧ B ⩽ r, apart from
that q is replaced by q − 1. Denote it by P ′.

• P ′[q\q + 1]

≡ A = (q + 1− 1)×B + r ∧ B ⩽ r

≡ A = q ×B + r ∧ B ⩽ r.

Thus we know that we want the assignment q :=
q + 1.

2 On Constructing Assignments
Updating a Variable
We will see this pattern often:

• We want to establish:

{x = E ∧ . . .}
x := x⊕ E′

{x = E ⊕ E′}

• It works because:

(x = E ⊕ E′)[x\x⊕ E′]

≡ x⊕ E′ = E ⊕ E′

⇐ x = E.

• In general, given a function f , to establish:

{x = E}
x := ...
{x = f E}

• we can use an assignment x :=f x . It works because

(x = f E )[x\f x ]
≡ f x = f E
⇐ x = E .

3 Replacing Constants by Vari-
ables

Exponentiation

• Consider the problem:

con A,B : Int {A ⩾ 0 ∧ B ⩾ 0}
var r : Int
exponentiation
{r = AB} .

• There is not much we can do with a state space con-
sisting of only one variable.

• Replacing constants by variables may yield some
possible invariants.

• Again we have several choices: r = xB , r = Ax,
r = xy , etc.

Exponentiation

• Use the invariant P0 : r = Ax, thus P0 ∧ x = B
implies the post-condition.

• Strategy: increment x in the loop. An upper bound
P1 : x ⩽ B.

• (r = Ax)[x\x+ 1] ≡ r = Ax+1. However, when
r = Ax holds, Ax+1 = A×Ax = A× r!

• Indeed,

(r = Ax+1)[r\A× r]

≡ A× r = Ax+1

⇐ r = Ax.

2



r, x := 1, 0
{r = Ax ∧ x ⩽ B, bnd : B − x}
do x ̸= B →
r := A× r
{r = Ax+1 ∧ x+ 1 ⩽ B}
x := x+ 1
od
{r = AB}

Summing Up an Array

• Another simple exercise.

• We talk about it because we need range splitting.

con N : Int {0 ⩽ N}; f : array [0..N) of Int
var x : Int
sum
{x = ⟨Σi : 0⩽i<N : f [i] ⟩}

Summing Up an Array

con N : Int {0 ⩽ N}; f : array [0..N) of Int ;

n, x := 0, 0
{P : x = ⟨Σi : 0⩽i<n : f [i] ⟩ ∧ 0 ⩽ n,

bnd : N − n}
do n ̸= N → {P ∧ n ̸= N}
x := x+ f [n]; n := n+ 1 {P} od
{x = ⟨Σi : 0⩽i<N : f [i] ⟩}

• Inv. is established by n, x := 0, 0.

• Use N − n as bound, try incrementing n:

(x = ⟨Σi : 0⩽i<n : f [i] ⟩ ∧ 0 ⩽ n)[n\n+ 1]
≡ x = ⟨Σi : 0⩽i<n+ 1 : f [i] ⟩ ∧ 0 ⩽ n+ 1
⇐ x = ⟨Σi : 0⩽i<n+ 1 : f [i] ⟩ ∧ 0 ⩽ n
≡ x = ⟨Σi : 0⩽i<n : f [i] ⟩+ f [n] ∧ 0 ⩽ n.

•

(x = ⟨Σi : 0⩽i<n : f [i] ⟩+ f [n] ∧ 0 ⩽ n)
[x\x+ f [n]]

≡ x+ f [n] = ⟨Σi : 0⩽i<n : f [i] ⟩+ f [n] ∧ 0 ⩽ n
⇐ x = ⟨Σi : 0⩽i<n : f [i] ⟩ ∧ 0 ⩽ n.

3


