
Programming Languages:
Imperative Program Construction

6. Loop Construction II: Strengthening the Invariant

Shin-Cheng Mu

Autumn, 2024

1 Maximum Segment Sum
A classical problem: given an array of integers, find
largest possible sum of a consecutive segment.

con N : Int {0 ⩽ N }
con f : array [0..N ) of Int

S
{r = ⟨↑ p q : 0 ⩽ p ⩽ q ⩽ N : sum p q⟩}

where sum p q = ⟨Σi : p ⩽ i < q : f [i ]⟩.

Details That Matter

• Note the use of ⩽ and < in the specification.

• The range in sum p q is p ⩽ i < q . It computes the
sum of f [p..q) — not including f [q ]!

• Therefore when p = q , sum p q computes the sum
of an empty segment.

• In the postcondition we have p ⩽ q — we allow
empty segments in our solution!

• We must have q ⩽ N instead of q < N . Otherwise
segments containing the rightmost element would
not be valid solutions.

Previously Introduced Techniques

• ReplaceN by n . Use P ∧ Q as the invariant, where

P ≡ r = ⟨↑ p q : 0 ⩽ p ⩽ q ⩽ n : sum p q⟩ ,
Q ≡ 0 ⩽ n ⩽ N .

• Use ¬ (n = N ) as guard. This way we immedi-
ately have that P ∧ Q ∧ n = N imply the desired
postcondition.

• How do we know we want 0 ⩽ n ⩽ N ? It can be
forced by our development later. But let’s expedite
the pace.

• Initialisation: n, r := 0, 0.

• Use N − n as the bound.

• To decrease the bound, let n := n + 1 be the last
statement of the loop.

We get this program.

con N : Int {0 ⩽ N }
con f : array [0..N ) of Int
var r ,n : Int

r ,n := 0, 0
{P ∧ Q , bnd :N − n}
do n ̸= N → ??? ;n := n + 1 od
{r = ⟨↑ p q : 0 ⩽ p ⩽ q ⩽ N : sum p q⟩}

Now we need to construct the ??? part.

Constructing the Loop Body
How to construct the ??? part?

{P ∧ Q ∧ n ̸= N }
???
{(P ∧ Q)[n\n + 1]}
n := n + 1
{P ∧ Q}

Constructing Assignments
How do you construct such an assignment?

{r = ⟨↑ p q : 0 ⩽ p ⩽ q ⩽ n : sum p q⟩ ∧
Q ∧ n ̸= N }

r := ???
{(P ∧ Q)[n\n + 1]}
n := n + 1
{P ∧ Q}

1



Recall what we have learnt: if from (P ∧ Q)[n\n + 1]
we can infer that

r = ⟨↑ p q : 0 ⩽ p ⩽ q ⩽ n : sum p q⟩ ⊕ E ,

the statement ??? could be r := r ⊕ E .

Examining the Expression
To reason about P [n\n + 1], we calculate (assuming

P ∧ Q ∧ n ̸= N ):

⟨↑ p q : 0 ⩽ p ⩽ q ⩽ n : sum p q⟩[n\n + 1]
= ⟨↑ p q : 0 ⩽ p ⩽ q ⩽ n + 1 : sum p q⟩
= { split off q = n + 1, see next slide }

⟨↑ p q : 0 ⩽ p ⩽ q ⩽ n : sum p q⟩ ↑
⟨↑ p : 0 ⩽ p ⩽ (n + 1) : sum p (n + 1)⟩

= { P0 }
r ↑ ⟨↑ p : 0 ⩽ p ⩽ (n + 1) : sum p (n + 1)⟩ .

Therefore we wish to update r by:

r := r ↑ ⟨↑ p : 0 ⩽ p ⩽ (n + 1) : sum p (n + 1)⟩ .

But ⟨↑ p : 0 ⩽ p ⩽ (n + 1) : sum p (n + 1)⟩ cannot be
computed in one step!
We could compute ⟨↑ p : 0 ⩽ p ⩽ (n + 1) :

sum p (n + 1)⟩ in a loop. . . or can we store it in another
variable?

Splitting Off?
Let us look at the step “split off q = n + 1” in more

detail:

0 ⩽ p ⩽ q ⩽ n + 1
= 0 ⩽ p ⩽ q ∧ q ⩽ n + 1
= 0 ⩽ p ⩽ q ∧ (q ⩽ n ∨ q = n + 1)
= (0 ⩽ p ⩽ q ∧ q ⩽ n) ∨ (0 ⩽ p ⩽ q ∧ q = n + 1)
= 0 ⩽ p ⩽ q ⩽ n ∨ (0 ⩽ p ⩽ q ∧ q = n + 1) .

Without information about n , nothing guarantees that
the ranges 0 ⩽ p ⩽ q ⩽ n and 0 ⩽ p ⩽ q ∧ q = n + 1
are not empty. It does not matter yet, for now.
Therefore we have:

⟨↑ p q : 0 ⩽ p ⩽ q ⩽ n + 1 : sum p q⟩
= { previous calculation }
⟨↑ p q : 0 ⩽ p ⩽ q ⩽ n ∨

(0 ⩽ p ⩽ q ∧ q = n + 1) : sum p q⟩
= { range split (8.16) }
⟨↑ p q : 0 ⩽ p ⩽ q ⩽ n : sum p q⟩ ↑

⟨↑ p q : 0 ⩽ p ⩽ q ∧ q = n + 1 : sum p q⟩
= { nesting (8.20) }
⟨↑ p q : 0 ⩽ p ⩽ q ⩽ n : sum p q⟩ ↑

⟨↑ q : q = n + 1 : ⟨↑ p : 0 ⩽ p ⩽ q : sum p q⟩⟩
= { one-point rule }
⟨↑ p q : 0 ⩽ p ⩽ q ⩽ n : sum p q⟩ ↑

⟨↑ p : 0 ⩽ p ⩽ n + 1 : sum p (n + 1)⟩ .

Things to note:

• Calculation for other patterns of ranges (e.g. 0 ⩽
p ⩽ q ⩽ n + 1) are slightly different. Watch out!

• In practice, the “splitting off” step is but one quick
step. We do not do the reasoning above in such de-
tail.

• We show you the details above for expository pur-
pose.

• In other problems we may see slightly different
ranges, such as 0 ⩽ p < q < n + 1. The result of
splitting is different too. Take extra care!

Strengthening the Invariant
Knowing that we need to update r with ⟨↑ p : 0 ⩽

p ⩽ (n + 1) : sum p (n + 1)⟩, let us store it in some
variable! Introduce a new variable s , and strengthen the
invariant to P0 ∧ P1 ∧ Q , where

P0 ≡ r = ⟨↑ p q : 0 ⩽ p ⩽ q ⩽ n : sum p q⟩ ,
P1 ≡ s = ⟨↑ p : 0 ⩽ p ⩽ n : sum p n⟩ ,
Q ≡ 0 ⩽ n ⩽ N .

Maximum Suffix Sum

• That is, while r is the maximum segment sum so far,
s is the maximum suffix sum so far.

• We discover the need of this concept through sym-
bolic calculation.

• This is a pattern for many “segment problems”: to
solve a problem about segments, solve a suffix prob-
lem for all prefixes.

Q: Why don’t we let s = ⟨↑ p : 0 ⩽ p ⩽ n + 1 :
sum p (n + 1)⟩?

A: For this example you will run into some problems.
The details are left as an exercise. But in general it
is not always a bad idea.

Constructing the Loop Body
Therefore, a possible strategy would be:

{P0 ∧ P1 ∧ 0 ⩽ n ⩽ N ∧ n ̸= N }
s := ???
{P0 ∧ P1[n\n + 1] ∧ 0 ⩽ n + 1 ⩽ N }
r := r ↑ s
{(P0 ∧ P1 ∧ 0 ⩽ n ⩽ N )[n\n + 1]}
n := n + 1
{P0 ∧ P1 ∧ 0 ⩽ n ⩽ N }

2



Updating the Prefix Sum
Recall P1 ≡ s = ⟨↑ p : 0 ⩽ p ⩽ n : sum p n⟩.

⟨↑ p : 0 ⩽ p ⩽ n : sum p n⟩[n\n + 1]
= ⟨↑ p : 0 ⩽ p ⩽ n + 1 : sum p (n + 1)⟩
= { splitting off p = n + 1 }

⟨↑ p : 0 ⩽ p ⩽ n : sum p (n + 1)⟩ ↑
sum (n + 1) (n + 1)

= { [n + 1..n + 1) is an empty range }
⟨↑ p : 0 ⩽ p ⩽ n : sum p (n + 1)⟩ ↑ 0

= { splitting off i = n in sum }
⟨↑ p : 0 ⩽ p ⩽ n : sum p n + f [n]⟩) ↑ 0

= { distributivity }
(⟨↑ p : 0 ⩽ p ⩽ n : sum p n⟩+ f [n]) ↑ 0 .

Thus, {P1} s := ? {P1[n\n + 1]} is satisfied by s :=
(s + f [n]) ↑ 0.

Splitting Off — Things to Watch Out
We look at the step “splitting off i = n” in detail. See

the range calculation:

p ⩽ i < n + 1
= p ⩽ i ∧ (i < n ∨ i = n)
= p ⩽ i < n ∨ (p ⩽ i ∧ i = n)
= { we need 0 ⩽ n ! }

p ⩽ i < n ∨ i = n

Compare this to the previous range calculation. This
time we completely remove p ⩽ i .

It allows us to perform one-point rule, without nesting:

sum p (n + 1)
= ⟨Σi : p ⩽ i < n + 1 : f [i ]⟩
= { range calculation }

⟨Σi : p ⩽ i < n ∨ i = n : f [i ]⟩
= ⟨Σi : p ⩽ i < n : f [i ]⟩+ ⟨Σi : i = n : f [i ]⟩
= { one-point rule }

⟨Σi : p ⩽ i < n : f [i ]⟩+ f [n] .

However, that means

• we need to reduce p ⩽ i ∧ i = n to i = n .

• That is, p ⩽ i does not put more constraints on
i = n . In particular, i = n , when conjuncted with
p ⩽ i , cannot reduce to False ,

• or, p ⩽ n cannot be an empty range.

• Since in the outer quantification we have 0 ⩽ p ⩽
n , we need 0 ⩽ n .

That is why we need 0 ⩽ n in the invariant!
Lesson: as long as the quantification is around, we

do not care whether the range is empty. We do have to
check that the range is not empty when the one-point
rule leaves no remaining quantifications.

The requirement we need to ensure that the range is
not empty are often added to the loop invariant.

A Key Property

• The last step labelled “distributivity” uses a rule
mentioned before: provided that ¬occurs(i, F ) and
R non-empty:

F + ⟨ ↑ i : R : S ⟩ = ⟨ ↑ i : R : F + S ⟩
F + ⟨ ↓ i : R : S ⟩ = ⟨ ↓ i : R : F + S ⟩ .

• The rules are valid because addition distributes into
maximum/minimum:

x + (y ↑ z ) = (x + y) ↑ (x + z ) ,
x + (y ↓ z ) = (x + y) ↓ (x + z ) .

• That is the key property that allows us to have an
efficient algorithm for the maximum segment sum
problem!

• Through calculation, we not only have an algorithm,
but also identified the key property that makes it
work, which we can generalise to other problems.

Derived Program

con N : Int {0 ⩽ N }
con f : array [0..N ) of Int
var r , s,n : Int

r , s,n := 0, 0, 0
{P0 ∧ P1 ∧ Q , bnd :N − n}
do n ̸= N →
s := (s + f [n]) ↑ 0
r := r ↑ s
n := n + 1

od
{r = ⟨↑ p q : 0 ⩽ p ⩽ q ⩽ N : sum p q⟩}

P0 ≡ r = ⟨↑ p q : 0 ⩽ p ⩽ q ⩽ n : sum p q⟩) ,
P1 ≡ s = ⟨↑ p : 0 ⩽ p ⩽ n : sum p n⟩) ,
Q ≡ 0 ⩽ n ⩽ N .

3



“Strengthening”?

• We stay that the invariant P0 ∧ P1 ∧ Q
is “stronger” than P ∧ Q because the former
promises more.

• The resulting loop computes values for two vari-
ables rather than one.

• However, the program ends up being quicker be-
causemore results from the previous iteration of the
loop can be utilised.

• It is a common phenomena: a generalised theorem
is easier to prove.

• We will see another way to generalise the invariant
in the rest of the course.

Lessons Learnt?
Let the symbols do the work!

• We discover how to strengthen the invariant by cal-
culating and finding out what is missing.

• Expressions are your friend, and blind guessing can
be minimised. We always get some clue from the
expressions.

• Since we rely only on the symbols, the same calcu-
lation/algorithm can be generalised to other prob-
lems (e.g. as long as the same distributivity propery
holds).

If we remove the pre/postconditions and the invariant,
can you tell us what the program does?

• Without the assertions, programs mean nothing.
The assertions are what matter about the program.

• Structured programming is not about mak-
ing (the operational parts of) code easier to
read/understand.

• Such efforts are bound to end in vain: even a sim-
ple three-line loop can be hard to understand if the
assertions, encoding the intentions of the program-
mer, are stripped away.

• Instead, structured programming is about organis-
ing the code around the structure of the proofs.

• Once the pre/postconditions are given, and the in-
variants and bounds are determined, one can derive
the code accordingly.

• It is pointless arguing, for example, “using a break
here makes the code easier to read.”

• One shall not need to “understand“ the operational
parts of the code, but to check whether it meets the
specification.

2 No. of Pairs in an Array
Consider constructing the following program:

con N : Int {0 ⩽ N }; a : array [0..N ) of Int
var r : Int

S
{r = ⟨#i j : 0 ⩽ i < j <N : a[i ] ⩽ 0 ∧ a[j ] ⩾ 0⟩}

Previously Introduced Techniques

• ReplaceN by n . Use P ∧ Q as the invariant, where

P ≡ r = ⟨#i, j : 0 ⩽ i < j < n :

a[i] ⩽ 0 ∧ a[j] ⩾ 0 ⟩,
Q ≡ 0 ⩽ n ⩽ N .

• Use ¬ (n = N ) as guard. This way we immedi-
ately have that P ∧ Q ∧ n = N imply the desired
postcondition.

• Initialisation: n, r := 0, 0.

• Use N − n as the bound.

• To decrease the bound, let n := n + 1 be the last
statement of the loop.

We get this program.

con N : Int {0 ⩽ N }; a : array [0..N ) of Int
var r ,n : Int

r ,n := 0, 0
{P ∧ Q , bnd :N − n}
do n ̸= N → ...;n := n + 1 od
{r = ⟨#i j : 0 ⩽ i < j <N : a[i ] ⩽ 0 ∧ a[j ] ⩾ 0⟩}

Now we need to construct the ... part.

Constructing the Loop Body
How to construct the ... part?

{P ∧ Q ∧ n ̸= N }
...
{(P ∧ Q)[n\n + 1]}
n := n + 1
{P ∧ Q}

4



No. of Pairs in an Array
To reason about P [n\n + 1], we calculate (assuming

P ∧ Q ∧ n ̸= N ):

⟨#i, j : 0 ⩽ i < j < n+ 1 : a[i] ⩽ 0 ∧ a[j] ⩾ 0 ⟩
= { split off j = n, see the next slide }

⟨#i, j : 0 ⩽ i < j < n : a[i] ⩽ 0 ∧ a[j] ⩾ 0 ⟩+
⟨#i : 0 ⩽ i < n : a[i] ⩽ 0 ∧ a[n] ⩾ 0 ⟩

= { P }

r + ⟨#i : 0 ⩽ i < n : a[i] ⩽ 0 ∧ a[n] ⩾ 0 ⟩

=

{
r, if a[n] < 0;
r + ⟨#i : 0 ⩽ i < n : a[i] ⩽ 0 ⟩, if a[n] ⩾ 0.

Let us try storing ⟨#i : 0 ⩽ i < n : a[i] ⩽ 0 ⟩ in another
variable?

Splitting Off?
For expository purpose let us exam how the splitting

was done:

0 ⩽ i < j < n + 1
= 0 ⩽ i < j ∧ j < n + 1
= 0 ⩽ i < j ∧ (j < n ∨ j = n)
= (0 ⩽ i < j ∧ j < n) ∨ (0 ⩽ i < j ∧ j = n)
= 0 ⩽ i < j < n ∨ (0 ⩽ i < j ∧ j = n) .

Without information on n , either of the ranges could be
empty.

A Frequent Pattern
Wemay see this pattern often. For some ⋆, we need to

calculate:

⟨⋆i j : 0 ⩽ i < j < n + 1 : R⟩
= { previous calculation }

⟨⋆i j : 0 ⩽ i < j < n ∨ (0 ⩽ i < j ∧ j = n) : R⟩
= ⟨⋆i j : 0 ⩽ i < j < n : R⟩ ⋆

⟨⋆i j : 0 ⩽ i < j ∧ j = n : R⟩
= { nesting (8.20) }

⟨⋆i j : 0 ⩽ i < j < n : R⟩ ⋆
⟨⋆j : j = n : ⟨⋆i : 0 ⩽ i < j : R⟩⟩

= { one-point rule }
⟨⋆i j : 0 ⩽ i < j < n : R⟩ ⋆
⟨⋆i : 0 ⩽ i < n : R[j\n]⟩ .

Calculation for other ranges (e.g. 0 ⩽ i ⩽ j ⩽ n+1) are
slightly different. Watch out!

Strengthening the Invariant

New plan: define

P0 ≡ r = ⟨#i, j : 0 ⩽ i < j < n :

a[i] ⩽ 0 ∧ a[j] ⩾ 0 ⟩,
P1 ≡ s = ⟨#i : 0 ⩽ i < n : a[i] ⩽ 0 ⟩,
Q ≡ 0 ⩽ n ⩽ N ,

and try to derive

con N : Int {N ⩾ 0}; a : array [0..N)of Int
var n, r, s : Int

n, r, s := 0, 0, 0
{P0 ∧ P1 ∧ Q, bnd : N − n}
do n ̸= N → . . . n := n+ 1 od
{r = ⟨#i, j : 0 ⩽ i < j < N : a[i] ⩽ 0 ∧ a[j] ⩾ 0 ⟩}

Update the New Variable

⟨#i : 0 ⩽ i < n : a[i] ⩽ 0 ⟩[n\n+ 1]

= ⟨#i : 0 ⩽ i < n+ 1 : a[i] ⩽ 0 ⟩
= { split off i = n (assuming 0 ⩽ n) }

⟨#i : 0 ⩽ i < n : a[i] ⩽ 0 ⟩+#(a[n] ⩽ 0)

= { P1 }

s+#(a[n] ⩽ 0)

=

{
s if a[n] > 0,
s+ 1 if a[n] ⩽ 0.

Resulting Program

. . . {N ⩾ 0}
n, r, s := 0, 0, 0
{P0 ∧ P1 ∧Q, bnd : N − n}
do n ̸= N → {P0 ∧ P1 ∧Q ∧ n ̸= N}
if a[n] < 0 → skip
| a[n] ⩾ 0 → r := r + s

fi
{P0[n\n+ 1] ∧ P1 ∧Q ∧ n ̸= N}
if a[n] > 0 → skip
| a[n] ⩽ 0 → s := s+ 1

fi
{(P0 ∧ P1 ∧Q)[n\n+ 1]}
n := n+ 1

od
{r = ⟨#i, j : 0 ⩽ i < j < N : a[i] ⩽ 0 ∧ a[j] ⩾ 0 ⟩}

5



Resulting Program
Since P0 ∧P1 ∧Q∧n ̸= N is a common precondition

for the if ’s (the second if does not use P0), they can be
combined:

. . . {N ⩾ 0}
n, r, s := 0, 0, 0
{P0 ∧ P1 ∧Q, bnd : N − n}
do n ̸= N → {P0 ∧ P1 ∧Q ∧ n ̸= N}

if a[n] < 0 → s := s+ 1
| a[n] = 0 → r, s := r + s, s+ 1
| a[n] > 0 → r := r + s
fi
{(P0 ∧ P1 ∧Q)[n\n+ 1]}
n := n+ 1

od
{r = ⟨#i, j : 0 ⩽ i < j < N : a[i] ⩽ 0 ∧ a[j] ⩾ 0 ⟩}

However, from the point of view of program deriva-
tion, the first program is totally fine.
It closely matches the structure of proofs. If one

tries to understand a program by how its proof proceeds

(which is the way a program should be understood),
rather than trying to read it operationally, one may ar-
gue that first program is easier to understand.

Isn’t It Getting A Bit Too Complicated?

• Quantifier and indexes manipulation tend to get
very long and tedious.

– Expect to see even longer expressions later!

• To certain extent, it is a restriction of the data struc-
ture we are using. With arrays we have to manipu-
late the indexes.

• Is it possible to use higher-level data structures?
Lists? Trees?

– Heap-allocated data structure with pointers is
a horrifying beast!

– Trying to be more abstract lead to further de-
velopments in programming languages, e.g.
algebraic datatypes.

6


