Programming Languages:
Imperative Program Construction
6. Loop Construction Il: Strengthening the Invariant

Shin-Cheng Mu

Autumn, 2024

1 Maximum Segment Sum « How do we know we want 0 < n < N? It can be
forced by our development later. But let’s expedite
A classical problem: given an array of integers, find the pace.

largest possible sum of a consecutive segment. o
« Initialisation: n,r := 0, 0.

con N:Int {0 <N} « Use N — n as the bound.

con f :array [0..N) of Int
S « To decrease the bound, let n := n + 1 be the last
{r=(1pqg:0<p<qg<N:sumpq)} statement of the loop.

We get this program.

con N:Int {0 < N}

Details That Matter con f :array [0..N) of Int
var r,n: Int

where sum p ¢ = (Xi:p < i< q: f[i]).

« Note the use of < and < in the specification. r,n:=0,0
) . ‘ {PAQ,bnd:N—n}
« Therange in sum p qis p < ¢ < ¢. It computes the don#N— 777:n:=n+1o0d
sum of f [p..q) — not including f[q]! (r=(pg:0< ]; <q<N:sumpq)
» Therefore when p = ¢, sum p q computes the sum Now we need to construct the 777 part.

of an empty segment.

Constructing the Loop Body
How to construct the 777 part?

{PANQANR#N}

« In the postcondition we have p < ¢ — we allow
empty segments in our solution!

« We must have ¢ < N instead of ¢ < N. Otherwise 299
segments containing the rightmost element would -
not be valid solutions. {(P A @)r\n+1]}
n:=mn++1
{PnQ}

Previously Introduced Techniques

« Replace N by n. Use P A @) as the invariant, where Constructing Assignments
How do you construct such an assignment?

=r= <g<n:sum ,
=0 <<n£§]v Srsd ra {r=0pq:0<p<g<n:sumpq) A
QAn#N)
ro= 1777
« Use = (n = N) as guard. This way we immedi- {(P A Q)n\n+1]}
ately have that P A @ A n = N imply the desired n:=n+1

postcondition. {P A Q}



Recall what we have learnt: if from (P A Q)[n\n + 1] Things to note:

we can infer that « Calculation for other patterns of ranges (e.g. 0 <

r=(Tpqg:0<p<g<n:sumpq ®F , p < q¢ < n+ 1) are slightly different. Watch out!
the statement 77?7 couldbe r:=r @ E. « In practice, the “splitting off” step is but one quick
step. We do not do the reasoning above in such de-
Examining the Expression tail.
T bout P 1 Iculat i
o reason about Pln\n + 1], we calculate (assuming « We show you the details above for expository pur-
PAQAnNn#N): pose

(tpq:0<p<qg<n:sump q)n\n+1]
=(tpg:0<p<g<n+l:sumpq)
= {split off ¢ = n + 1, see next slide }

(Tpg:0<p<g<n:sumpq)?

tp:0<p<(n+1):sump(n+1))

= {Py} Strengthening the Invariant

rt(tp:0<p<(n+1):sump(n+1)) . Knowing that we need to update r with (1 p : 0 <
p < (n+1):sum p (n+ 1)), let us store it in some
variable! Introduce a new variable s, and strengthen the
ri=rt(p:0<p<(n+1):sump(n+1)) . invariantto Py A P1 A Q, where

« In other problems we may see slightly different
ranges, such as 0 < p < ¢ < n + 1. The result of
splitting is different too. Take extra care!

Therefore we wish to update r by:

But (1 p:0<p<(n+1):sump(n+1))cannot be Po=r=(Tpq:0<p<g<n:sumpq),
computed in one step! Pi=s={tp:0<p<n:sumpn),
We could compute (+ p : 0 < p < (n+ 1) Q =0<n<N.

sum p (n+ 1)) in a loop...or can we store it in another

variable?
Maximum Suffix Sum
Splitting Off? « That s, while 7 is the maximum segment sum so far,
Let us look at the step “split off ¢ = n + 1” in more s is the maximum suffix sum so far.
detail:

« We discover the need of this concept through sym-

0<p<qg<n+1 bolic calculation.

=0<p<gng<n+1

=0<p<gA(g<nVg=n+1) « This is a pattern for many “segment problems”: to
=0<p<gAqg<n)V(0<p<ghg=n+1) solve a problem about segments, solve a suffix prob-
=0<p<qg<nVv(O0<p<ghg=n+1). lem for all prefixes.

Without information about n, nothing guarantees that Q: Why don’t welet s = (t p: 0 < p < n+1:
theranges0 < p<g<nand0<p<gAg=n+1 sum p (n+1))?
are not empty. It does not matter yet, for now.

Therefore we have: A: For this example you will run into some problems.

The details are left as an exercise. But in general it

(tpq:0<p<qg<n+1l:sumpyq) is not always a bad idea.

= {previous calculation }
(Tpg:0<p<qg<nV
O<p<gAhg=n+1):sumpq)
= {range split (8.16) }

Constructing the Loop Body
Therefore, a possible strategy would be:

(tTpq:0<p<g<n:sumpq)t {PoAPyAOSn<NAn#N}
tpg:0<p<ghg=n+1:sumpq) s:= 777

= {nesting (8.20) } {Po A Pi[n\n+1]A0<n+1< N}

(tpg:0<p<g<n:isumpq)t ri=rts
(Tgig=n+1:(tp:0<p<q:sumpq)) {(PoAPLAOS n< N)[n\n+ 1]}

= {one-point rule } ni=n+1

(tpq:0<p<qg<n:sumpq)? {PoAPLAO<Sn <N}

tp:0<p<n+l:sump(n+1)).



Updating the Prefix Sum

Recall Py =s={(1p:0<p<n:sumpn).

Thus, {P1} s:= 7 {Py[n\n + 1]} is satisfied by s :=

Tp:0<p<n:sumpn)n\n+1]
="Tp:0<p<n+1l:sump(n+1))
= {splittingoffp=n+1}

(tp:0<p<n:sump(n+1)7

sum (n+1) (n+1)
= {[n+1.n+1)isanempty range}

(tp:0<p<n:sump(n+1))10
= {splitting off i = n in sum }
(tp:0<p<n:sumpnt fla])) 10
= {distributivity }
(tp:0<p<n:sumpn)+fn])1o0.

(s + f[n]) 10.

Splitting Off — Things to Watch Out

We look at the step “splitting off i = n” in detail. See

the range calculation:

Compare this to the previous range calculation. This

p<Li<n+1
=p<iA(i<nVi=n)
=p<i<nV(p<LiNi=n)
= {weneed0 < n!'}

pLi<nVi=n

time we completely remove p < i.

It allows us to perform one-point rule, without nesting:

sum p (n+1)
=(Zi:p<i<n+1l:f[i])
= {range calculation }
(Xi:p<i<nVi=n:f[i)
=&irp<i<n:fli])+(EBi:i=mn:f[i])
= {one-point rule}

ip<i<n:fli])+fln] .

However, that means

we need toreducep < i Ai=ntoi=n.

That is, p < ¢ does not put more constraints on
¢ = n. In particular, ¢ = n, when conjuncted with
p < i, cannot reduce to False,

or, p < n cannot be an empty range.

Since in the outer quantification we have 0 < p <
n, we need 0 < n.

That is why we need 0 < n in the invariant!

Lesson: as long as the quantification is around, we
do not care whether the range is empty. We do have to
check that the range is not empty when the one-point
rule leaves no remaining quantifications.

The requirement we need to ensure that the range is
not empty are often added to the loop invariant.

A Key Property

« The last step labelled “distributivity” uses a rule
mentioned before: provided that —occurs(i, F') and
R non-empty:

F+{(1i:R:S)=(1ti:R:F+S5)
F+(li:R:8)=(li:R:F+S5) .

« The rules are valid because addition distributes into
maximum/minimum:

z+(ytez)=(z+y) T(z+2),
z+(ylz)=(@+y)l

« That is the key property that allows us to have an
efficient algorithm for the maximum segment sum
problem!

« Through calculation, we not only have an algorithm,
but also identified the key property that makes it
work, which we can generalise to other problems.

Derived Program

con N : Int {0 < N}
con f :array [0..N) of Int
var r,s,n: Int

r,s,n:=0,0,0

{Po APy AQ,bnd: N —n}

don#N —
s:=(s+f[n]) 10
r=r7s
n:=n-+1

od

{r=(pqg:0<p<g<N:sumpq)}

Po=r=(Tpq:0<p<g<mn:isumpyq)) ,
Pi=s=("Tp:0<p<n:sumpn)) ,
Q =0<n<N



“Strengthening”?

« We stay that the invariant Py A P; A @
is “stronger” than P A () because the former
promises more.

« The resulting loop computes values for two vari-
ables rather than one.

« However, the program ends up being quicker be-
cause more results from the previous iteration of the
loop can be utilised.

« It is a common phenomena: a generalised theorem
is easier to prove.

« We will see another way to generalise the invariant
in the rest of the course.

Lessons Learnt?
Let the symbols do the work!

« We discover how to strengthen the invariant by cal-
culating and finding out what is missing.

« Expressions are your friend, and blind guessing can
be minimised. We always get some clue from the
expressions.

« Since we rely only on the symbols, the same calcu-
lation/algorithm can be generalised to other prob-
lems (e.g. as long as the same distributivity propery
holds).

If we remove the pre/postconditions and the invariant,
can you tell us what the program does?

« Without the assertions, programs mean nothing.
The assertions are what matter about the program.

« Structured programming is not about mak-
ing (the operational parts of) code easier to

read/understand.

« Such efforts are bound to end in vain: even a sim-
ple three-line loop can be hard to understand if the
assertions, encoding the intentions of the program-
mer, are stripped away.

« Instead, structured programming is about organis-
ing the code around the structure of the proofs.

« Once the pre/postconditions are given, and the in-
variants and bounds are determined, one can derive
the code accordingly.

o It is pointless arguing, for example, “using a break
here makes the code easier to read”

« One shall not need to “understand® the operational
parts of the code, but to check whether it meets the
specification.

2 No. of Pairs in an Array

Consider constructing the following program:

con N :Int {0 < N};a:array [0..N) of Int
var r: Int

S
{r=(#ij:0<i<j<N:a[i] <OAal[j] >0)}

Previously Introduced Techniques

« Replace N by n. Use P A @ as the invariant, where

P=r=(#i,j:0<i<j<n:
ali] <O Aalj] = 0),
Q=0<n<N.

« Use = (n = N) as guard. This way we immedi-
ately have that P A @ A n = N imply the desired
postcondition.

« Initialisation: n,r := 0, 0.
« Use N — n as the bound.

« To decrease the bound, let n := n + 1 be the last
statement of the loop.

We get this program.

con N :Int {0 < N};a:array [0..N) of Int
var r,n: Int

r,n:=0,0

{PAQ,bnd: N —n}
don#N — ..;n:=n+1o0d
{r=(#ij:0<i<j<N:ali] <O0Aalj]=0)}

Now we need to construct the ... part.

Constructing the Loop Body
How to construct the ... part?

{PAQANR#N}

{(PAQ)[n\n+1]}
n:=n-+1

{PAQ}



No. of Pairs in an Array

To reason about P[n\n + 1], we calculate (assuming
PAQAR#N):

(#i,7:0<i<j<n+1:a[i]<0Aalj] >0)
= { split off j = n, see the next slide }
(#i,7:0<i<j<n:ali] <OAa[j] =0)+
(#i:0<i<n:a[il <0Aaln] 20)
= {P}
r+(#i:0<i<n:alil <0Aa[n] >0)
T, if a[n] < 0;
{rJr(#z <i<mn:ali] <0), ifaln] >0.

Let us try storing (#i : 0 < i < n: ali] < 0) in another
variable?

Splitting Off?
For expository purpose let us exam how the splitting
was done:

0<i<j<n+1
=0<i<jAj<n+1
=0<i<jA(<nVj=n)
=0<i<jAj<n)VO0<K<i<jAj=n)
=0<i<j<nVO0<K<i<jAj=n).

Without information on n, either of the ranges could be
empty.

A Frequent Pattern

We may see this pattern often. For some %, we need to
calculate:

(*xij:0<i<j<n+1:R)
{ previous calculation }
(*¢1j:0<i<j<nV(0<
=(ij:0<i<j<n:R)x
(*¥ij:0<i<jAj=n:R)

{ nesting (8.20) }
(xij:0<i<j<n:R)*
(xj:j=mn:(xi:0<i<j:R))
{ one-point rule }
(xij:0<i<j<n:R)*
(xi:0<i<n:R[j\n]) .

i<jANj=mn):R)

Calculation for other ranges (e.g. 0 <
slightly different. Watch out!

1 <j<n+1)are

Strengthening the Invariant

New plan: define

Po=r={(#i,j:0<i<j<n:
ali] <0 Aalj] = 0),
P=s=(#i:0<i<n:afi| <0),
Q=0<n<N,
and try to derive
con N : Int {N > 0}; a: array [0..N) of Int
var n,r, s : Int
n,r,s:=0,0,0
{Po N PpL AN Q,bnd : N —n}
don#N —...n:=n+1od
{r=(#4,j:0<i<j<N:ali] <0Aa[j] >20)}

Update the New Variable

(#i:0<i<n:ali] <0)n\n+1]
(#i:0<i<n+1:ali] <0)

{ split off i = n (assuming 0 < n) }
(#i:0<i<n:ali] <0)+#(a[n] <0)
{ P}

s+ #(aln] <

s
s+1

Resulting Program

0)

if a[n] > 0,
if a[n] < 0.

AN >0}
n,r,s:=0,0,0
{(PoAPLAQ,bnd: N —n}
don#N = {P AP ANQAN#N}
if a[n] <0 — skip
laln] >20—r:=r+s
fi
{Po[n\n+1]APLAQANn#N}
if a[n] >0 — skip
[aln] <0—s:=s+1

fi

{(Py APy AQ)[n\n+1]}

n:=n+1

od

{r=(#1,7:0<i<j<N:a[i) <0Aalj] >0)}



Resulting Program

Since Py A Py AQ An # N is a common precondition
for the if’s (the second if does not use Py), they can be
combined:

AN >0}
n,r,s:=0,0,0
{PoANPLANQ,bnd : N —n}
don# N —-{PhbANPIANQANn#N}
if a[n]<0—s:=s5+1
| aln]=0—=r,s:=r+ss+1
| aln]>0—=r:=r+s

fi
{(PoAPLAQ)[n\n + 1]}
n:=n-+1

od

{r=(#i,j:0<i<j<N:a[i]<0Aalj] >0)}

However, from the point of view of program deriva-
tion, the first program is totally fine.

It closely matches the structure of proofs. If one
tries to understand a program by how its proof proceeds

(which is the way a program should be understood),
rather than trying to read it operationally, one may ar-
gue that first program is easier to understand.

Isn’t It Getting A Bit Too Complicated?

+ Quantifier and indexes manipulation tend to get
very long and tedious.

- Expect to see even longer expressions later!

« To certain extent, it is a restriction of the data struc-
ture we are using. With arrays we have to manipu-
late the indexes.

« Is it possible to use higher-level data structures?
Lists? Trees?

— Heap-allocated data structure with pointers is
a horrifying beast!

- Trying to be more abstract lead to further de-
velopments in programming languages, e.g.
algebraic datatypes.



