Programming Languages:
Imperative Program Construction
8. Case Studies

Shin-Cheng Mu

Autumn Term, 2024

1 Faster Division con A,B:Int {0 < AA0< B}
var q,r, b, k: Int

Quotient and Remainder
{0<kAb=2FxBAA<D}

« Recall the problem: {A:qxb+r/\0<r<b/\
0<kAb=2Fx B, bnd: b}

con A,B:Int {0 < AAN0< B} dob+B —..od
V?arqw:fnt {A=g¢xB+rA0<r<B}

{A=¢xB+rA0<r<B}.

Generating 2¢ x B

« Recall: recognising the postcondition as a conjunc-
tion,weuse A = g x B+7r A 0 < r astheinvariant
and = (r < B) as the guard.

« It is easy to satisfy b = 2¥ x B A A < b.

b,k:=B,0
. dob<A—=bk:=bx2k+10d
« The program we came up with: (0<kAb=2Fx BAA<Db)
qg,7:=0,4
=gx r S T,onacr « What are the loop invariant and the bound?
{A B+rA0<Lr bnd:r} h he loop d the bound?
doB<r—gqg:=q+1
ri=r—2DB « Initialisation for the next loop easily follows:
od
{A=g¢xB+rA0<r<B}. {0<kAb=2FxBAA<D}
q,r:=0A4

{A=gxb4+rA0L<r<bA

— ok
« In each iteration of the loop, 7 is decreased by B. 0<kAD=2"xB}

« We can probably get a quicker program by decreas-
ing r by ... 2 x B, when possible. Decreasing b

« What needs to be done before we decrement b by

« What about decreasing 7 by 4 x B, 8 x B,... etc?
half?

(A=gxb+rAN0<r<b)b\b/2]

1.1 Division in O(log(A/B)) Time —(A=qgx(b/2)+rA0<r<b/2)

Strategy...

+ We can restore the invariant by ¢ := ¢ x 2... con A, B:Int {0 < ANO0<B}
var q,r,b, k: Int

(A=gx(b/2)+rAN0<r<b/2)q\q x 2] b, k:=B,0
=A=(¢gx2)x(b/2)+rAN0<r<b/2 dob<A—bk:=bx2k+10d
CA=gxb+rANOL<r<b/2Ab=2"xB {0<kAb=2FxBAA<D}

q,r:=0A4
{A=gxb+rAN0L<r<bA

« only if we already have r < b / 2! 0<kAb=2"x B, bnd:b}
dob+# B —

if r<bd/2—qbk:=gx20b/2,k-1
| b/2<r—=qbkri=gx2+1,0/2
r<b/2—=qbki=qgx2b/2,k—1 . k—1,7r—b/2
od

{A=gxB+rAN0<7r<B}

« That gives us one guarded command:

Decreasing b — The Other Case

1.2 Alternative Programs
« What about the case when b / 2 < r < b?
Existential Quantification

« The task is to find a substitution such that « The variable % is used in the proofs, but not needed

for computing the output.
(A=gxB/2)+rAN0<r<b/2)[?\?]

cA=qgxb+rAb/2<r<bAb=2xB « Such a variable is called a “ghost variable” in Kalde-
waij [Kal90].

+ One can remove k, and the program would still

« Comparing0 < r<b/2and b/2 < r<b, one might work.

want to try a substitution containing [r\r — b / 2].
« For its reasoning, we need to use existential quan-
0<r<b/2)r\r—1>b/2| tification in the assertions to talk about properties
=0<r—>b/2<b/2 involving k.
<b/2<r<bAb=2FxB .
con A, B:Int {0 < AANO< B}
var q,r,b: Int

« Consider the former half of the expression: b:—B
dob<A—=b:=bx2o0d
(A=gx(b/2)+7r)r\r—0/2] {Bk:0<k:b=2"xB)AA<b}
EA:qX(b/2)+’f'—b/2 q7r;:07A
=A=(¢g—1)x(b/2)+r . {A=gxb+rANOLr<bA
(3k:0< k:b=2%xB),bnd: b}
dob+# B —
« Applying [¢\¢ x 2+ 1] gives usback A = g x b+ r. ifr<b/2—qb:=qgx2,b/2
| b/2<r—qbri=qx2+1,b/2,
« Therefore, another guarded command: r—>b/2
fi
b/2<r—qbk,r:= od
gx2+1,b/2k—1,r—b/2 {A=g¢xB+rN0<r<B}

In developing such programs,

« We can introduce variables such as &, and realise
The Program that they are ghost variables and remove them later.

« Or we can have existential quantification in asser-
tions to begin with, if you are sure that the quanti-
fied variables won’t be needed.

Alternative Program
Kaldewaij [Kal90] presented the following alternative.
Do you prefer this program?

con A,B:Int {0 < AN0< B}
var q,r, b,k : Int
b,k:=B,0
dob<A—>bk:=bx2k+10d
q,r:=0A4
dob#B—
g,b,k:=qgx2,b/2)k—-1
if r<b — skip
| b<r—qr=q+1,r—>
fi
od
{A=g¢gxB+rAN0<r<B}

+ The program has the advantage that we do not need
to have b / 2 in the guards.

« Note what the first assignment establishes:

{A=gxb+rA0<r<bA
0<kAb=2FxBAb+#DB)

¢,b,k:=qgx2,b/2,k—1

{A=gxb+rA0<r<2xbA
0<kAb=2FxB}

A Historical Note

 The correctness of the if in the loop was actually a
key example in Dahl [DDH72], one of the earliest
book on structured programming:

{0 < r<b}
b:=b/2

if r<b — skip
|b<r—r:=r—1»%
fi

{0 < r<b}

« In Dahl [DDH72], Dijkstra needed about one page
of textual proof.

« These days we can prove its correctness by routine
symbolic manipulation. It shows how much sym-
bolic reasoning has advanced since then.

2 Binary Search Revisited

Binary Search

« Given a sorted array of N numbers and a key, either
locate the position where the key resides in the ar-
ray, or report that the key does not present in the
array, in O(log N) time.

« A possible spec:

con N,K:Int {0< N}

con F':array [0..N) of Int {F ascending}
var [, r: Int

bsearch

{Flll=KV ..} .

2.1 The van Gasteren-Feijen Approach

« Van Gasteren and Feijen [vGF95] pointed a surpris-
ing fact: binary search does not apply only to sorted
lists!

« In fact, they believe that comparing binary search
to searching for a word in a dictionary is a major
educational blunder.

« Their binary search: let ® be a predicate on two in-
tegers with some additional constraints to be given
later:

con M,N:Int{ M<NAD®PMNA..}
var [, r: Int

bsearch

{M<LI<NADI(I+1)} .

Invariant and Bound

o Invariant: ® [»r A M < [<r < N, loop guard:
I+1#r.

« Initialisation: [,r:= M, N.
« Bound: r — .
« Forany m such that [<m <r, we have r—m<r—1

and m — [<r —[. Therefore both [:=m and r:=m
decrease the bound.

Constructing the Loop Body 2.2 Searching for a Key

« For [:= m we calculate. « Thecase ® [r = - (Q I) A @ r is worth special
attention.

(®lrAM<LI<r<N)[I\m]

=¢mrAM<m<r<N « Choose i = K < Fi] for some K.
=dmrAMLI<m<r<N.

« Therefore ® [r = F[l] < K < F[r].
« That I<m<r isour assumption. The leftover & m r

gives rise to a guarded command: ® m r — [:=m. « That constitutes the binary search we wanted!
» The case with 7 := m is similar. « The postcondition: M < I<N A F[l] < K < F[I+
1).

The Program Skeleton

« Note that we do not yet need F' to be sorted!
{M<NA®MN}

l,(g 2: M,Jé\f < N, bnd } « The algorithm gives you some [such that F[l] <
{®irA <rs nd:r— 1} K < F[l+1]. If there are more than one such [, one
dol+1#7r—

is returned non-deterministically.
{.onl+2<r}

m = anythingst.l <m <r
{.Nl<m<r} Sortedness
ifdmr—1l:=m

[@lm 2 r=m « That F'is sorted comes in when we need to establish

odﬁ that there is at most one [satisfying the postcondi-
(M<I<NA®I(+1)} tion.
Note: m := (I + r) / 2 is a valid choice, thanks to the + That is, either Fll] = K,or= (3 : M < i< N:
precondition that [+2 < r. Fli] = K).
Constraints on ® The Program... Or A Part Of It

« But we need the if to be total.
e Let®lr=F[]<K<F[r]

« Therefore we demand a constrant on ®:

« Processing the array fragment F [a .. b]:
Plr=ImVemr ifl<m<r. (1)

l,r:=a,b
« Some @ satisfying (1) (for F' of appropriate type): {<I> Ilrhna<l<r<bbnd:r—1}
dol+1#7r—
- ®lr=F[l] # F[r], m:=(l+r)/2
- ®lr="F[l]<F[r], if Fim|] < K —1l:=m
S Blr=Fl<ANAZ FH g K<l = re=m
- ®lr=FlxFr] < od
~®ir=F[]V F[r, {a<I<bAF[<K<Fl+1]}
-Plr=-(QUHANQr
« Van Gasteren and Feijen believe that ® | r = « Note that F[a| and F[b] are never accessed.
F[l] # FIr] is a better example when explaining
binary search. «+ This program is not yet complete....

Initialisation

« But wait.. to apply the algorithm to the entire array,
we need the precondition ® 0 N, that is F/[0] <
K < F[N]. Is that true? (We don’t even have F[N].)

« One can rule out cases when the precondition do
not hold (and also deal with empty array). E.g.

if 0= N — p:= Fulse
| 0<N —
if K < F[0] — p := False
| FIN-1=K — p,l:= True, N — 1
| FIO]K K <F[N —1] —
a,b:=0,N—1
program above
p=F[l]=K
fi
fi

« where p is True iff. K presents in F.

Pseudo Elements

« But there is a better way... introduce two pseudo

elements!
« Let F[-1] = —oo and F[N] = cc.
« Initially, ® (—1) N is satisfied.

+ In the code, F[—1] and F[N] are never accessed.
Therefore we do not actually have to represent

them!

+ We need to be careful interpreting the result, once

the main loop terminates, however.

The Program (1)
Let®lr=F[l]< K<F[r]

con N, K :Int {0 < N}
con F :array [0..N) of Int {F ascending A
F[-1] = —0c0 A F[N] = o}
var [, m,r: Int
var p : Bool
lyr:=—1,N
{Plrn-1<I<r<N,bnd:r—1}
dol+1#7r—
m:=(I+r)/2
if Fim| < K —>1l:=m
| K<F[m] =>r:=m
fi
od
{-1<I<NAF[]<K<F[l+1]}

The Program (2)

{-1<I<NAFI<K<F[l+1]}

if —1=1[0— p:= Fulse

0Kl —p:=F[l]=K

fi

{p=GFi:0<i<N:F[i]=K)A
p=Fll] = K}

Alternative Program

« Kaldewaij [Kal90, Sec. 6.3] derived an alternative
program that introduces only F[N] = oo (but not
F[—1] = —o0), while requiring the array to be non-
empty.

« The main loop is the same. It is only post-loop in-
terpretation that is different.

2.3 Searching with Premature Return

A More Common Program

« Recall that Bentley [Ben86, pp. 35-36] proposed us-
ing binary search as an exercise.

« Bentley’s solution can be rephrased below:

lLr,p:=0,N — 1, False
dol<r—
m:={+r)/2
if Fim|]<K —-1l:=m+1
| Flm] =k — p:= True; break
| K<F[m]—-r=m-—1
fi
od

A More Common Program
I’d like to derive it, but

« it is harder to formally deal with break.
- Still, Bentley employed a semi-formal reason-
ing using a loop invariant to argue for the cor-

rectness of the program.

« To relate the test F[m] < K tol :=m + 1 we have
to bring in the fact that F' is sorted earlier.

Comparison

« The two programs do not solve exactly the same
problem (e.g. when there are multiple Ks in F).

« Is the second program quicker because it assigns [
and r tom + 1 and m — 1 rather than m?

- 1 :=m+1because F[m] is covered in another
case;

- r := m — 1 because a range is represented

differently.

« Is it quicker to perform an extra test to return
early?

— When K is not in F, the test is wasted.

- Rolfe [Rol97] claimed that single comparison
is quicker in average.

— Knuth [Knu97, Exercise 23, Section 6.2.1]: sin-
gle comparison needs 17.51g N 4 17 instruc-
tions, double comparison needs 181g N — 16
instructions.

References

[Ben86] J. L. Bentley. Programming Pearls. Addison-
Wesley, 1986.

[DDH72] O.-). Dahl, E. W. Dijkstra, and C. A. R. Hoare.
Structured Programming. Academic Press,
1972.

[Kal90] A. Kaldewaij. Programming: the Derivation of
Algorithms. Prentice Hall, 1990.

[Knu97] D.E.Knuth. The Art of Computer Programming
Volume 3: Sorting and Searching, 3rd Edition.
Addison Wesley, 1997.

[Rol97] T. J. Rolfe. Analytic derivation of compar-
isons in binary search. SIGNUM Newsletter,
32(4):15-19, October 1997.

[vGF95] A. J. M. van Gasteren and W. H. J. Feijen.

The binary search revisited. AvG127/WF214,
November 1995.

