
Programming Languages:
Imperative Program Construction

9. Array Manipulation

Shin-Cheng Mu

Autumn Term, 2024

Materials in these notes are mainly from Kaldewaij
[Kal90]. Some examples are adapted from the course
CSci 550: Program Semantics and Derivation taught by
Prof. H. Conrad Cunningham [Cun06], University of
Mississippi.

1 Some Notes on Definedness
Assignment Revisited

• Recall the weakest precondition for assignments:

wp (x := E) P = P [x\E] .

• That is not the whole story... since we have to be
sure that E is defined!

Definedness

• In our current language, given expression E there is
a systematic (inductive) definition on what needs to
be proved to ensure that E is defined. Let’s denote
it by def E .

• We will not go into the detail but give examples.

• For example, if there is division in E , the denomi-
nator must not be zero.

– def (x + y / (z + x)) = (z + x ̸= 0).

– def (x + y / 2) = (2 ̸= 0) = True .

Weakest Precondition

• A more complete rule:

wp (x := E) P = P [x\E] ∧ def E .

• In fact, all expressions need to be defined. E.g.

wp (if B0 → S0 | B1 → S1 fi) P =
B0 ⇒ wp S0 P ∧ B1 ⇒ wp S1 P ∧ (B0 ∨ B1) ∧
def B0 ∧ def B1 .

How come we have never mentioned so?

• How come we have never mentioned so?

• The first partial operation we have used was divi-
sion. And the denominator was usually a constant
(namely, 2!).

Array Bound

• Array indexing is a partial operation too — we need
to be sure that the index is within the domain of the
array.

• LetA :array [M ..N) of Int and let I be an expres-
sion. We define def (A[I]) = def I ∧ M ⩽ I <N .

• E.g. given A : array [0..N) of Int ,

– def (A[x / z] +A[y]) = z ̸= 0 ∧ 0 ⩽ x / z <
N ∧ 0 ⩽ y <N .

– wp (s := s ↑ A[n]) P = P [s\s ↑ A[n]] ∧ 0 ⩽
n <N .

• We never made it explicit, because conditions such
as 0 ⩽ n < N were usually already in the invari-
ant/guard and thus discharged immediately.

2 Array Assignment
• So far, all our arrays have been constants — we read
from the arrays but never wrote to them!

1

• Consider a : array [0..2) of Int , where a[0] = 1
and a[1] = 1.

• It should be true that

{a[0] = 1 ∧ a[1] = 1}
a[a[1]] := 0
{a[a[1]] = 1} .

• However, if we use the previous wp,

wp (a[a[1]] := 0) (a[a[1]] = 1)
≡ (a[a[1]] = 1)[a[a[1]]\0]
≡ 0 = 1
≡ False .

• What went wrong?

Another Counterexample

• For a more obvious example where our previous wp
does not work for array assignment:

• wp (a[i] := 0) (a[2] ̸= 0) appears to be a[2] ̸= 0,
since a[i] does not appear (verbatim) in a[2] ̸= 0.

• But what if i = 2?

Arrays as Functions

• An array is a function. E.g. a :array [0..N) of Bool
is a function Int → Bool whose domain is [0..N).

• Indexing a[n] is function application.

– Some textbooks use the same notation for
function application and array indexing.

– (Could that have been a better choice for this
course?)

Function Alteration

• Given f : A → B , let (f : x) e) denote the function
that maps x to e , and otherwise the same as f .

(f :x)e) y = e , if x = y;
= f y , otherwise.

• For example, given f x = x 2, (f : 1)−1) is a func-
tion such that

(f :1)−1) 1 = −1 ,
(f :1)−1) x = x 2 , if x ̸= 1.

wp for Array Assignment

• Key: assignment to array should be understood as
altering the entire function.

• Given a : array [M ..N) of A (for any type A), the
updated rule:

wp (a[I] := E) P = P [a\(a :I)E)] ∧
def (a[I]) ∧ def E .

• In our examples, def (a[I]) and def E can often be
discharged immediately. For example, the bound-
ary checkM ⩽ I<N can often be discharged soon.
But do not forget about them.

The Example

• Recall our example

{a[0] = 1 ∧ a[1] = 1}
a[a[1]] := 0
{a[a[1]] = 1} .

• We aim to prove

a[0] = 1 ∧ a[1] = 1 ⇒
wp (a[a[1]] := 0) (a[a[1]] = 1) .

Assume a[0] = 1 ∧ a[1] = 1.

wp (a[a[1]] := 0) (a[a[1]] = 1)
≡ { def. of wp for array assignment }
(a :a[1])0)[(a :a[1])0)[1]] = 1

≡ { assumption: a[1] = 1 }
(a :1)0)[(a :1)0)[1]] = 1

≡ { def. of alteration: (a :1)0)[0] = 0 }
(a :1)0)[0] = 1

≡ { def. of alteration: (a :1)0)[0] = a[0] }
a[0] = 1

≡ { assumption: a[0] = 1 }
True .

Restrictions

• In this course, parallel assignments to arrays are not
allowed.

• This is done to avoid having to define what the fol-
lowing program ought to do:

x , y := 0, 0;
a[x], a[y] := 0, 1

• It is possible to give such programs a definition (e.g.
choose an order), but we prefer to keep it simple.

2

3 Typical Array Manipulation in a
Loop

3.1 All Zeros
Consider:

con N : Int {0 ⩽ N }
var h : array [0..N) of Int
allzeros
{⟨∀i : 0 ⩽ i <N : h[i] = 0⟩}

The Usual Drill

con N : Int {0 ⩽ N }
var h : array [0..N) of Int
var n : Int

n := 0
{⟨∀i : 0 ⩽ i < n : h[i] = 0⟩ ∧ 0 ⩽ n ⩽ N ,
bnd :N − n}

do n ̸= N → ?
n := n + 1

od
{⟨∀i : 0 ⩽ i <N : h[i] = 0⟩}

Constructing the Loop Body

• With 0 ⩽ n ⩽ N ∧ n ̸= N :

⟨∀i : 0 ⩽ i < n : h[i] = 0⟩[n\n + 1]
≡ ⟨∀i : 0 ⩽ i < n + 1 : h[i] = 0⟩
≡ { split off i = n }

⟨∀i : 0 ⩽ i < n : h[i] = 0⟩ ∧ h[n] = 0 .

• If we conjecture that ? is an assignment h[I] := E ,
we ought to find I and E such that the following
can be satisfied:

⟨∀i : 0 ⩽ i < n : h[i] = 0⟩ ∧ 0 ⩽ n <N ⇒
⟨∀i : 0 ⩽ i < n : (h :I)E)[i] = 0⟩ ∧
(h :I)E)[n] = 0 .

• An obvious choice: (h :n)0),

• which almost immediately leads to

⟨∀i : 0 ⩽ i < n : (h :n)0)[i] = 0⟩ ∧
(h :n)0)[n] = 0

≡ { function alteration }
⟨∀i : 0 ⩽ i < n : h[i] = 0⟩ ∧ 0 = 0

⇐ ⟨∀i : 0 ⩽ i < n : h[i] = 0⟩ ∧ 0 ⩽ n <N .

The Program

con N : Int {0 ⩽ N }
var h : array [0..N) of Int
var n : Int

n := 0
{⟨∀i : 0 ⩽ i < n : h[i] = 0⟩ ∧ 0 ⩽ n ⩽ N ,
bnd :N − n}

do n ̸= N → h[n] := 0;n := n + 1 od
{⟨∀i : 0 ⩽ i <N : h[i] = 0⟩}

Obvious, but useful.

3.2 Simple Array Assignment
• The calculation can certainly be generalised.

• Given a functionH :Int → A, and suppose wewant
to establish

⟨∀i : 0 ⩽ i <N : h[i] = H i⟩ ,

whereH does not depend on h (e.g, h does not occur
free in H).

• Let P n = 0 ⩽ n < N ∧ ⟨∀i : 0 ⩽ i < n : h[i] =
H i⟩).

• We aim to establish P (n+1), given P n ∧ n ̸= N .

• One can prove the following:

{P n ∧ n ̸= N ∧ E = H n}
h[n] := E
{P (n + 1)} ,

• which can be used in a program fragment...

{P 0}
n := 0
{P n, bnd :N − n}
do n ̸= N →

{ establish E = H n }
h[n] := E
n := n + 1

od
{⟨∀i : 0 ⩽ i <N : h[i] = H i⟩}

• Why do we need E? Isn’t E simply H n?

• In some cases H n can be computed in one expres-
sion. In such cases we can simply do h[n] :=H n .

• In some cases E may refer to previously computed
results — other variables, or even h .

– Yes, E may refer to h while H does not. There
are such examples in the Practicals.

3

3.3 Histogram
Consider:

con N : Int {0 ⩽ N };X : array [0..N) of Int
{⟨∀i : 0 ⩽ i <N : 1 ⩽ X [i] ⩽ 6⟩}
var h : array [1..6] of Int
histogram
{⟨∀i : 1 ⩽ i ⩽ 6 : h[i] =

⟨#k : 0 ⩽ k <N : X [k] = i⟩⟩}

The Up Loop Again

• Let P n denote ⟨∀i : 1 ⩽ i ⩽ 6 : h[i] = ⟨#k : 0 ⩽
k < n : X [k] = i⟩⟩.

• A program skeleton:

con N : Int {0 ⩽ N };X : array [0..N) of Int
{⟨∀i : 0 ⩽ i <N : 1 ⩽ X [i] ⩽ 6⟩}
var h : array [1..6] of Int ;n : Int

initialise
n := 0
{P n ∧ 0 ⩽ n ⩽ N , bnd :N − n}
do n ̸= N → ?

n := n + 1
od
{⟨∀i : 1 ⩽ i ⩽ 6 : h[i] =

⟨#k : 0 ⩽ k <N : X [k] = i⟩⟩}

• The initialise fragment has to satisfy P 0, that is

⟨∀i : 1 ⩽ i ⩽ 6 : h[i] = ⟨#k : 0 ⩽ k < 0 : X [k] = i⟩⟩
≡ ⟨∀i : 1 ⩽ i ⩽ 6 : h[i] = 0⟩ ,

• which can be performed by allzeros .

Constructing the Loop Body

• Let’s calculate P (n + 1), assuming 0 ⩽ n <N :

⟨∀i : 1 ⩽ i ⩽ 6 : h[i] =
⟨#k : 0 ⩽ k < n + 1 : X [k] = i⟩⟩

≡ { split off k = n }
⟨∀i : 1 ⩽ i ⩽ 6 : h[i] =

⟨#k : 0 ⩽ k < n : X [k] = i⟩+#(X [n] = i)⟩

• Recall that#:Bool → Int is the function such that

False = 0
True = 1 .

• Again we conjecture that h[I] :=E will do the trick.

• We want to find I ane E such that P n ∧ 0 ⩽
n <N ⇒ (P (n + 1))[h\(h :I)E)] can be proved.

• Assume P n ∧ 0 ⩽ n < N , consider (P (n +
1))[h\(h :I)E)]

⟨∀i : 1 ⩽ i ⩽ 6 : (h :I)E)[i] =
⟨#k : 0 ⩽ k < n : X [k] = i⟩+#(X [n] = i)⟩

≡ { P n }
⟨∀i : 1 ⩽ i ⩽ 6 : (h :I)E)[i] =
h[i] + #(X [n] = i)⟩

≡ { defn. of# }
⟨∀i : 1 ⩽ i ⩽ 6 : (h :I)E)[i] = V i⟩,where
V i = h[i] + 1 , if X[n] = i;

h[i] , if X[n] ̸= i.
≡ { function alteration }
⟨∀i : 1 ⩽ i ⩽ 6 : (h :I)E)[i] =
(h :X [n])h[i] + 1)[i]⟩ .

• Therefore one chooses I = X [n] and E =
h[X [n]] + 1.

The Program
Let P n ≡ ⟨∀i : 1 ⩽ i ⩽ 6 : h[i] = ⟨#k : 0 ⩽ k < n :

X [k] = i⟩⟩.

con N : Int {0 ⩽ N };X : array [0..N) of Int
{⟨∀i : 0 ⩽ i <N : 1 ⩽ X [i] ⩽ 6⟩}
var h : array [1..6] of Int
var n : Int

n := 1
do n ̸= 7 → h[n] := 0;n := n + 1 od
{P 0}
n := 0
{P n ∧ 0 ⩽ n ⩽ N , bnd :N − n}
do n ̸= N → h[X [n]] := h[X [n]] + 1

n := n + 1
od
{⟨∀i : 1 ⩽ i ⩽ 6 : h[i] =
⟨#k : 0 ⩽ k <N : X [k] = i⟩⟩}

4 Swaps
• Extend the notion of function alteration to two en-
tries.

(f :x , y)e1 , e2) z = e1 , if z = x,
= e2 , if z = y,
= f z , otherwise.

4

• Given array h [0..N) and integer expressionsE and
F , let swap h E F be a primitive operation such
that:

wp (swap h E F) P = def (h[E]) ∧ def (h[F]) ∧
P [h\(h :E ,F)h[F], h[E])] .

• Intuitively, swap h E F means “swapping the val-
ues of h[E] and h[F]. (See the notes below, how-
ever.)

Complications

• swap h E F does not always literally “swaps the
values.” For example, it is not always the case that

{h[E] = X } swap h E F {h[F] = X } .

• Consider h[0] = 0 ∧ h[1] = 1. This does not hold:

{h[h[0]] = 0} swap h (h[0]) (h[1]) {h[h[1]] = 0} .

• In fact, after swapping we have h[0] = 1 ∧ h[1] =
0, and hence h[h[1]] = 1.

A Simpler Case

• However, when h does not occur free in E and F ,
we do have

({⟨∀i : i ̸= E ∧ i ̸= F : h[i] = H i⟩} ∧
h[E] = X ∧ h[F] = Y)

swap h E F
({⟨∀i : i ̸= E ∧ i ̸= F : h[i] = H i⟩} ∧
h[E] = Y ∧ h[F] = X) .

• It is a convenient rule we use when reasoning about
swapping.

• Note that, in the rule above, E and F are expres-
sions, while X , Y , H are logical variables.

Note: Kaldewaij’s Swap

• Kaldewaij [Kal90, Chapter 10] defined swap h E F
as an abbreviation of

|[var r ; r := h[E]; h[E] := h[F]; h[F] := r]| ,

• where r is a fresh name and |[...]| denotes a program
block with local constants and variables. We have
not used this feature so far.

• I do not think this definition is correct, however. The
definition would not behave as we expect if F refers
to h[E].

4.1 The Dutch National Flag
• Let RWB = {R,W ,B } (standing respecively for
red, white, and blue).

con N : Int {0 ⩽ N }
var h : array [0..N) of RWB
var r ,w : Int
dutch_national_flag
{0 ⩽ r ⩽ w ⩽ N ∧
⟨∀i : 0 ⩽ i < r : h[i] = R⟩ ∧
⟨∀i : r ⩽ i < w : h[i] = W ⟩ ∧
⟨∀i : w ⩽ i <N : h[i] = B⟩ ∧}

• The program shall manipulate h only by swapping.

• Denote the postcondition by Q .

Invariant

• Introduce a variable b.

• Choose as invariant P0 ∧ P1, where

P0 ≡ Pr ∧ Pw ∧ Pb

P1 ≡ 0 ⩽ r ⩽ w ⩽ b ⩽ N
Pr ≡ ⟨∀i : 0 ⩽ i < r : h[i] = R⟩
Pw ≡ ⟨∀i : r ⩽ i < w : h[i] = W ⟩
Pb ≡ ⟨∀i : b ⩽ i <N : h[i] = B⟩

• P0 ∧ P1 can be established by r ,w , b := 0, 0,N .

• If w = b, we get the postcondition Q .

The Plan

r ,w , b := 0, 0,N
{P0 ∧ P1, bnd : b − w}
do b ̸= w → if h[w] = R → Sr

| h[w] = W → Sw
| h[w] = B → Sb
fi

od
{Q}

Observation

• Note that

– r is the number of red elements detected,

– w − r is the number of white elements de-
tected,

5

– N−b is the number of blue elements detected.

• Therefore, Sw should contain w :=w +1, Sb should
contain b := b − 1·

• Sr should contain r ,w := r + 1,w + 1, thus r in-
creases but w − r is unchanged.

• The bound decreases in all cases! Good sign.

White

• The case for white is the easiest, since

P0 ∧ P1 ∧ h[w] = W ⇒
(P0 ∧ P1)[w\w + 1] .

• It is sufficient to let Sw be simply w := w + 1.

Blue

• We have

{Pr ∧ Pw ∧ Pb ∧ w < b ∧ h[w] = B}
swap h w (b − 1)
{Pr ∧ Pw ∧ Pb ∧ w < b ∧ h[b − 1] = B}
b := b − 1
{Pr ∧ Pw ∧ Pb ∧ w ⩽ b}

• Thus we choose swap h w (b− 1); b := b− 1 as Sb.

Red

• Precondition: Pr ∧ Pw ∧ Pb ∧ w < b ∧ h[w] = R.

• It appears that swap h w r establishes P [w\w +
1]. But we have to see what h[r] is before we can
increment r .

• Pw implies r < w ⇒ h[r] = W . Equivalently, we
have r = w ∨ h[r] = W .

Red: Case r = w

• We have

{Pr ∧ Pw ∧ Pb ∧ r = w < b ∧ h[w] = R}
swap h w r
{Pr ∧ Pw ∧ Pb ∧ w < b ∧ h[r] = R}
r ,w := r + 1,w + 1
{Pr ∧ Pw ∧ Pb ∧ r = w ⩽ b}

Red: Case h[r] = W

• We have

{Pr ∧ Pw ∧ Pb ∧ w < b ∧ h[r] = W ∧ h[w] = R}
swap h w r
{Pr ∧ h[r] = R ∧ ⟨∀i : r + 1 ⩽ i < w : h[i] = W ⟩ ∧
h[w] = W ∧ Pb ∧ w < b}

r ,w := r + 1,w + 1
{Pr ∧ Pw ∧ Pb ∧ r = w ⩽ b}

• In both cases, swap h w r ; r ,w := r +1,w +1 is a
valid choice.

The Program

con N : Int {0 ⩽ N }
var h : array [0..N) of RWB
var r ,w , b : Int

r ,w , b := 0, 0,N
{P0 ∧ P1, bnd : b − w}
do b ̸= w → if h[w] = R → swap h w r

r ,w := r + 1,w + 1
| h[w] = W → w := w + 1
| h[w] = B → swap h w (b − 1)

b := b − 1
fi

od
{Q}

4.2 Rotation
Rotation

• Given: h :array [0..N) of Awith integer constants
0 ⩽ K <N .

• Task: rotate h over K places. That is, h[0] is moved
to h[K], h[1] to h[(1 +K)mod N], h[2] to h[(2 +
K)modN]...

• using swap operations only.

Specification

•

con K ,N : Int {0 ⩽ K <N }
var h : array [0..N) of A
{⟨∀i : 0 ⩽ i <N : h[i] = H [i]⟩}
rotation
{⟨∀i : 0 ⩽ i <N : h[(i +K)modN] = H [i]⟩} .

6

• To eliminatemod, the postcondition can be rewrit-
ten as:

⟨∀i : 0 ⩽ i <N −K : h[i +K] = H [i]⟩ ∧
⟨∀i : N −K ⩽ i <N : h[i +K −N] = H [i]⟩ .

• Or, h[K ..N) = H [0..N −K) ∧ h[0..K) = H [N −
K ..N).

Abstract Notations

• For this problem we benefit from using more ab-
stract notations.

• Segments of arrays can be denoted by variables. E.g.
X = H [0..N −K) and Y = H [N −K ..N).

• Concatenation of arrays are denoted by juxtaposi-
tion. E.g. H [0..N) = XY .

• Empty sequence is denoted by [].

• Length of a sequence X is denoted by l X .

• Specification:

{h = XY }
rotation
{h = YX }

• When l X = l Y we can establish the postcondi-
tion easily — just swap the corresponding elements.

• Denote swapping of equal-lengthed array segments
by SWAP X Y .

Thinking Lengths

• When l X < l Y , h can be written as h = XUV ,

• where l U = l X and UV = Y .

• Task:

{h = XUV ∧ l U = l X }
rotation
{h = UVX }

• Strategy:

{h = XUV ∧ l U = l X }
SWAP X U
{h = UXV }
??
{h = UVX }

• The part ?? shall transform XV into VX — a prob-
lem having the same form as the original!

• Some (including myself) would then go for a recur-
sive program. But there is another possibility.

Leading to an Invariant...

• Consider the symmetric case where l X > l Y .

{h = UVY ∧ l V = l Y }
SWAP V Y
{h = UYV }
??
{h = YUV }

• In general, the array is of them form AUVB , where
UV needs to be transformed intoVU , whileA and
B are parts that are done.

The Invariant

• Strategy:

{h = XY }
A,U ,V ,B := [],X ,Y , []
{h = AUVB ∧ YX = AVUB , bnd : l U + l V }
do U ̸= [] ∧ V ̸= [] → ...od
{h = YX }

• Call the invariant P . Intuitively it means “currently
the array is AUVB , and if we exchange U and V ,
we are done.”

• Note the choice of guard: P ∧ (U = [] ∧ V = [])
⇒ h = YX .

An Abstract Program

7

A,U ,V ,B := [],X ,Y , []
{h = AUVB ∧ YX = AVUB , bnd : l U + l V }
do U ̸= [] ∧ V ̸= [] →

if l U ⩾ l V → -- l U1 = l V
{h = AU0U1VB ∧ YX = AVU0U1B}
SWAP U1 V
{h = AU0VU1B ∧ YX = AVU0U1B}
U ,B :=U0,U1B
{h = AUVB ∧ YX = AVUB}

| l U ⩽ l V → -- l V0 = l U
{h = AUV0V1B ∧ YX = AV0V1UB}
SWAP U V0

{h = AV0UV1B ∧ YX = AV0V1UB}
A,V :=AV0,V1

{h = AUVB ∧ YX = AVUB}
fi

od

Representing the Sequences

• Introduce a, b, k , l : Int .

• A = h[0..a);

• U = h[a..a + k), hence l U = k ;

• V = h[b − l ..b), hence l V = l ;

• B = h[b..N).

• Additional invariant: a + k = b − l .

• Why having both k and l? We will see later.

A Concrete Program

• Represented using indices:

a, k , l , b := 0,N −K ,K ,N
do k ̸= 0 ∧ l ̸= 0 →

if k ⩾ l → SWAP (b − l) l (−l)
k , b := k − l , b − l

| k ⩽ l → SWAP a k k
a, l := a + k , l − k

fi
od

• where SWAP x num off abbreviates

|[var n : Int
n := x
do n ̸= x + num → swap h n (n + off)

n := n + 1
od

]|

• that is, starting from index x , swap num elements
with those off positions away.

Greatest Common Divisor

• To find out the number of swaps performed, we use
a variable t to record the number of swaps.

• If we keep only computation related to t , k , and l :

k , l , t :=N −K ,K , 0
do k ̸= 0 ∧ l ̸= 0 →
if k ⩾ l → t := t + l ; k := k − l
| k ⩽ l → t := t + k ; l := l − k
fi

od

• Observe: the part concerning k and l resembles
computation of greatest common divisor.

• In fact, gcd k l = gcd N (N − K), which is
gcd N K .

• When the program terminates, k + l = gcd N K .

• It’s always true that t + k + l = N .

• Therefore, the total number of swaps is t = N −
(k + l) = N − gcd N K .

References
[Cun06] H. C. Cunningham. CSci 550: Program Seman-

tics and Derivation. University of Mississippi.
https://john.cs.olemiss.edu/~hcc/
csci550/, 2006.

[Kal90] A. Kaldewaij. Programming: the Derivation of
Algorithms. Prentice Hall, 1990.

8

