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Materials in these notes are mainly from Kaldewaij
[Kal90]. Some examples are adapted from the course
CSci 550: Program Semantics and Derivation taught by
Prof. H. Conrad Cunningham [Cun06], University of
Mississippi.

1 Some Notes on Definedness
Assignment Revisited

• Recall the weakest precondition for assignments:

wp (x := E ) P = P [x\E ] .

• That is not the whole story... since we have to be
sure that E is defined!

Definedness

• In our current language, given expression E there is
a systematic (inductive) definition on what needs to
be proved to ensure that E is defined. Let’s denote
it by def E .

• We will not go into the detail but give examples.

• For example, if there is division in E , the denomi-
nator must not be zero.

– def (x + y / (z + x )) = (z + x ̸= 0).

– def (x + y / 2) = (2 ̸= 0) = True .

Weakest Precondition

• A more complete rule:

wp (x := E ) P = P [x\E ] ∧ def E .

• In fact, all expressions need to be defined. E.g.

wp (if B0 → S0 | B1 → S1 fi) P =
B0 ⇒ wp S0 P ∧ B1 ⇒ wp S1 P ∧ (B0 ∨ B1) ∧
def B0 ∧ def B1 .

How come we have never mentioned so?

• How come we have never mentioned so?

• The first partial operation we have used was divi-
sion. And the denominator was usually a constant
(namely, 2!).

Array Bound

• Array indexing is a partial operation too — we need
to be sure that the index is within the domain of the
array.

• LetA :array [M ..N ) of Int and let I be an expres-
sion. We define def (A[I ]) = def I ∧ M ⩽ I <N .

• E.g. given A : array [0..N ) of Int ,

– def (A[x / z ] +A[y ]) = z ̸= 0 ∧ 0 ⩽ x / z <
N ∧ 0 ⩽ y <N .

– wp (s := s ↑ A[n]) P = P [s\s ↑ A[n]] ∧ 0 ⩽
n <N .

• We never made it explicit, because conditions such
as 0 ⩽ n < N were usually already in the invari-
ant/guard and thus discharged immediately.

2 Array Assignment
• So far, all our arrays have been constants — we read
from the arrays but never wrote to them!
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• Consider a : array [0..2) of Int , where a[0] = 1
and a[1] = 1.

• It should be true that

{a[0] = 1 ∧ a[1] = 1}
a[a[1]] := 0
{a[a[1]] = 1} .

• However, if we use the previous wp,

wp (a[a[1]] := 0) (a[a[1]] = 1)
≡ (a[a[1]] = 1)[a[a[1]]\0]
≡ 0 = 1
≡ False .

• What went wrong?

Another Counterexample

• For a more obvious example where our previous wp
does not work for array assignment:

• wp (a[i ] := 0) (a[2] ̸= 0) appears to be a[2] ̸= 0,
since a[i ] does not appear (verbatim) in a[2] ̸= 0.

• But what if i = 2?

Arrays as Functions

• An array is a function. E.g. a :array [0..N ) of Bool
is a function Int → Bool whose domain is [0..N).

• Indexing a[n] is function application.

– Some textbooks use the same notation for
function application and array indexing.

– (Could that have been a better choice for this
course?)

Function Alteration

• Given f : A → B , let (f : x ) e) denote the function
that maps x to e , and otherwise the same as f .

(f :x )e) y = e , if x = y;
= f y , otherwise.

• For example, given f x = x 2, (f : 1 )−1) is a func-
tion such that

(f :1 )−1) 1 = −1 ,
(f :1 )−1) x = x 2 , if x ̸= 1.

wp for Array Assignment

• Key: assignment to array should be understood as
altering the entire function.

• Given a : array [M ..N ) of A (for any type A), the
updated rule:

wp (a[I ] := E ) P = P [a\(a :I )E )] ∧
def (a[I ]) ∧ def E .

• In our examples, def (a[I ]) and def E can often be
discharged immediately. For example, the bound-
ary checkM ⩽ I<N can often be discharged soon.
But do not forget about them.

The Example

• Recall our example

{a[0] = 1 ∧ a[1] = 1}
a[a[1]] := 0
{a[a[1]] = 1} .

• We aim to prove

a[0] = 1 ∧ a[1] = 1 ⇒
wp (a[a[1]] := 0) (a[a[1]] = 1) .

Assume a[0] = 1 ∧ a[1] = 1.

wp (a[a[1]] := 0) (a[a[1]] = 1)
≡ { def. of wp for array assignment }
(a :a[1] )0)[(a :a[1] )0)[1]] = 1

≡ { assumption: a[1] = 1 }
(a :1 )0)[(a :1 )0)[1]] = 1

≡ { def. of alteration: (a :1 )0)[0] = 0 }
(a :1 )0)[0] = 1

≡ { def. of alteration: (a :1 )0)[0] = a[0] }
a[0] = 1

≡ { assumption: a[0] = 1 }
True .

Restrictions

• In this course, parallel assignments to arrays are not
allowed.

• This is done to avoid having to define what the fol-
lowing program ought to do:

x , y := 0, 0;
a[x ], a[y ] := 0, 1

• It is possible to give such programs a definition (e.g.
choose an order), but we prefer to keep it simple.

2



3 Typical Array Manipulation in a
Loop

3.1 All Zeros
Consider:

con N : Int {0 ⩽ N }
var h : array [0..N ) of Int
allzeros
{⟨∀i : 0 ⩽ i <N : h[i ] = 0⟩}

The Usual Drill

con N : Int {0 ⩽ N }
var h : array [0..N ) of Int
var n : Int

n := 0
{⟨∀i : 0 ⩽ i < n : h[i ] = 0⟩ ∧ 0 ⩽ n ⩽ N ,
bnd :N − n}

do n ̸= N → ?
n := n + 1

od
{⟨∀i : 0 ⩽ i <N : h[i ] = 0⟩}

Constructing the Loop Body

• With 0 ⩽ n ⩽ N ∧ n ̸= N :

⟨∀i : 0 ⩽ i < n : h[i ] = 0⟩[n\n + 1]
≡ ⟨∀i : 0 ⩽ i < n + 1 : h[i ] = 0⟩
≡ { split off i = n }

⟨∀i : 0 ⩽ i < n : h[i ] = 0⟩ ∧ h[n] = 0 .

• If we conjecture that ? is an assignment h[I ] := E ,
we ought to find I and E such that the following
can be satisfied:

⟨∀i : 0 ⩽ i < n : h[i ] = 0⟩ ∧ 0 ⩽ n <N ⇒
⟨∀i : 0 ⩽ i < n : (h :I )E )[i ] = 0⟩ ∧
(h :I )E )[n] = 0 .

• An obvious choice: (h :n )0),

• which almost immediately leads to

⟨∀i : 0 ⩽ i < n : (h :n )0)[i ] = 0⟩ ∧
(h :n )0)[n] = 0

≡ { function alteration }
⟨∀i : 0 ⩽ i < n : h[i ] = 0⟩ ∧ 0 = 0

⇐ ⟨∀i : 0 ⩽ i < n : h[i ] = 0⟩ ∧ 0 ⩽ n <N .

The Program

con N : Int {0 ⩽ N }
var h : array [0..N ) of Int
var n : Int

n := 0
{⟨∀i : 0 ⩽ i < n : h[i ] = 0⟩ ∧ 0 ⩽ n ⩽ N ,
bnd :N − n}

do n ̸= N → h[n] := 0;n := n + 1 od
{⟨∀i : 0 ⩽ i <N : h[i ] = 0⟩}

Obvious, but useful.

3.2 Simple Array Assignment
• The calculation can certainly be generalised.

• Given a functionH :Int → A, and suppose wewant
to establish

⟨∀i : 0 ⩽ i <N : h[i ] = H i⟩ ,

whereH does not depend on h (e.g, h does not occur
free in H ).

• Let P n = 0 ⩽ n < N ∧ ⟨∀i : 0 ⩽ i < n : h[i ] =
H i⟩).

• We aim to establish P (n+1), given P n ∧ n ̸= N .

• One can prove the following:

{P n ∧ n ̸= N ∧ E = H n}
h[n] := E
{P (n + 1)} ,

• which can be used in a program fragment...

{P 0}
n := 0
{P n, bnd :N − n}
do n ̸= N →

{ establish E = H n }
h[n] := E
n := n + 1

od
{⟨∀i : 0 ⩽ i <N : h[i ] = H i⟩}

• Why do we need E? Isn’t E simply H n?

• In some cases H n can be computed in one expres-
sion. In such cases we can simply do h[n] :=H n .

• In some cases E may refer to previously computed
results — other variables, or even h .

– Yes, E may refer to h while H does not. There
are such examples in the Practicals.
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3.3 Histogram
Consider:

con N : Int {0 ⩽ N };X : array [0..N ) of Int
{⟨∀i : 0 ⩽ i <N : 1 ⩽ X [i ] ⩽ 6⟩}
var h : array [1..6] of Int
histogram
{⟨∀i : 1 ⩽ i ⩽ 6 : h[i ] =

⟨#k : 0 ⩽ k <N : X [k ] = i⟩⟩}

The Up Loop Again

• Let P n denote ⟨∀i : 1 ⩽ i ⩽ 6 : h[i ] = ⟨#k : 0 ⩽
k < n : X [k ] = i⟩⟩.

• A program skeleton:

con N : Int {0 ⩽ N };X : array [0..N ) of Int
{⟨∀i : 0 ⩽ i <N : 1 ⩽ X [i ] ⩽ 6⟩}
var h : array [1..6] of Int ;n : Int

initialise
n := 0
{P n ∧ 0 ⩽ n ⩽ N , bnd :N − n}
do n ̸= N → ?

n := n + 1
od
{⟨∀i : 1 ⩽ i ⩽ 6 : h[i ] =

⟨#k : 0 ⩽ k <N : X [k ] = i⟩⟩}

• The initialise fragment has to satisfy P 0, that is

⟨∀i : 1 ⩽ i ⩽ 6 : h[i ] = ⟨#k : 0 ⩽ k < 0 : X [k ] = i⟩⟩
≡ ⟨∀i : 1 ⩽ i ⩽ 6 : h[i ] = 0⟩ ,

• which can be performed by allzeros .

Constructing the Loop Body

• Let’s calculate P (n + 1), assuming 0 ⩽ n <N :

⟨∀i : 1 ⩽ i ⩽ 6 : h[i ] =
⟨#k : 0 ⩽ k < n + 1 : X [k ] = i⟩⟩

≡ { split off k = n }
⟨∀i : 1 ⩽ i ⩽ 6 : h[i ] =

⟨#k : 0 ⩽ k < n : X [k ] = i⟩+#(X [n] = i)⟩

• Recall that#:Bool → Int is the function such that

# False = 0
# True = 1 .

• Again we conjecture that h[I ] :=E will do the trick.

• We want to find I ane E such that P n ∧ 0 ⩽
n <N ⇒ (P (n + 1))[h\(h :I )E )] can be proved.

• Assume P n ∧ 0 ⩽ n < N , consider (P (n +
1))[h\(h :I )E )]

⟨∀i : 1 ⩽ i ⩽ 6 : (h :I )E )[i ] =
⟨#k : 0 ⩽ k < n : X [k ] = i⟩+#(X [n] = i)⟩

≡ { P n }
⟨∀i : 1 ⩽ i ⩽ 6 : (h :I )E )[i ] =
h[i ] + #(X [n] = i)⟩

≡ { defn. of# }
⟨∀i : 1 ⩽ i ⩽ 6 : (h :I )E )[i ] = V i⟩,where
V i = h[i ] + 1 , if X[n] = i;

h[i ] , if X[n] ̸= i.
≡ { function alteration }
⟨∀i : 1 ⩽ i ⩽ 6 : (h :I )E )[i ] =
(h :X [n] )h[i ] + 1)[i ]⟩ .

• Therefore one chooses I = X [n] and E =
h[X [n]] + 1.

The Program
Let P n ≡ ⟨∀i : 1 ⩽ i ⩽ 6 : h[i ] = ⟨#k : 0 ⩽ k < n :

X [k ] = i⟩⟩.

con N : Int {0 ⩽ N };X : array [0..N ) of Int
{⟨∀i : 0 ⩽ i <N : 1 ⩽ X [i ] ⩽ 6⟩}
var h : array [1..6] of Int
var n : Int

n := 1
do n ̸= 7 → h[n] := 0;n := n + 1 od
{P 0}
n := 0
{P n ∧ 0 ⩽ n ⩽ N , bnd :N − n}
do n ̸= N → h[X [n]] := h[X [n]] + 1

n := n + 1
od
{⟨∀i : 1 ⩽ i ⩽ 6 : h[i ] =
⟨#k : 0 ⩽ k <N : X [k ] = i⟩⟩}

4 Swaps
• Extend the notion of function alteration to two en-
tries.

(f :x , y )e1 , e2 ) z = e1 , if z = x,
= e2 , if z = y,
= f z , otherwise.
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• Given array h [0..N ) and integer expressionsE and
F , let swap h E F be a primitive operation such
that:

wp (swap h E F ) P = def (h[E ]) ∧ def (h[F ]) ∧
P [h\(h :E ,F )h[F ], h[E ])] .

• Intuitively, swap h E F means “swapping the val-
ues of h[E ] and h[F ]. (See the notes below, how-
ever.)

Complications

• swap h E F does not always literally “swaps the
values.” For example, it is not always the case that

{h[E ] = X } swap h E F {h[F ] = X } .

• Consider h[0] = 0 ∧ h[1] = 1. This does not hold:

{h[h[0]] = 0} swap h (h[0]) (h[1]) {h[h[1]] = 0} .

• In fact, after swapping we have h[0] = 1 ∧ h[1] =
0, and hence h[h[1]] = 1.

A Simpler Case

• However, when h does not occur free in E and F ,
we do have

({⟨∀i : i ̸= E ∧ i ̸= F : h[i ] = H i⟩} ∧
h[E ] = X ∧ h[F ] = Y )

swap h E F
({⟨∀i : i ̸= E ∧ i ̸= F : h[i ] = H i⟩} ∧
h[E ] = Y ∧ h[F ] = X ) .

• It is a convenient rule we use when reasoning about
swapping.

• Note that, in the rule above, E and F are expres-
sions, while X , Y , H are logical variables.

Note: Kaldewaij’s Swap

• Kaldewaij [Kal90, Chapter 10] defined swap h E F
as an abbreviation of

|[ var r ; r := h[E ]; h[E ] := h[F ]; h[F ] := r ]| ,

• where r is a fresh name and |[...]| denotes a program
block with local constants and variables. We have
not used this feature so far.

• I do not think this definition is correct, however. The
definition would not behave as we expect if F refers
to h[E ].

4.1 The Dutch National Flag
• Let RWB = {R,W ,B } (standing respecively for
red, white, and blue).

con N : Int {0 ⩽ N }
var h : array [0..N ) of RWB
var r ,w : Int
dutch_national_flag
{0 ⩽ r ⩽ w ⩽ N ∧
⟨∀i : 0 ⩽ i < r : h[i ] = R⟩ ∧
⟨∀i : r ⩽ i < w : h[i ] = W ⟩ ∧
⟨∀i : w ⩽ i <N : h[i ] = B⟩ ∧}

• The program shall manipulate h only by swapping.

• Denote the postcondition by Q .

Invariant

• Introduce a variable b.

• Choose as invariant P0 ∧ P1, where

P0 ≡ Pr ∧ Pw ∧ Pb

P1 ≡ 0 ⩽ r ⩽ w ⩽ b ⩽ N
Pr ≡ ⟨∀i : 0 ⩽ i < r : h[i ] = R⟩
Pw ≡ ⟨∀i : r ⩽ i < w : h[i ] = W ⟩
Pb ≡ ⟨∀i : b ⩽ i <N : h[i ] = B⟩

• P0 ∧ P1 can be established by r ,w , b := 0, 0,N .

• If w = b, we get the postcondition Q .

The Plan

r ,w , b := 0, 0,N
{P0 ∧ P1, bnd : b − w}
do b ̸= w → if h[w ] = R → Sr

| h[w ] = W → Sw
| h[w ] = B → Sb
fi

od
{Q}

Observation

• Note that

– r is the number of red elements detected,

– w − r is the number of white elements de-
tected,
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– N−b is the number of blue elements detected.

• Therefore, Sw should contain w :=w +1, Sb should
contain b := b − 1·

• Sr should contain r ,w := r + 1,w + 1, thus r in-
creases but w − r is unchanged.

• The bound decreases in all cases! Good sign.

White

• The case for white is the easiest, since

P0 ∧ P1 ∧ h[w ] = W ⇒
(P0 ∧ P1)[w\w + 1] .

• It is sufficient to let Sw be simply w := w + 1.

Blue

• We have

{Pr ∧ Pw ∧ Pb ∧ w < b ∧ h[w ] = B}
swap h w (b − 1)
{Pr ∧ Pw ∧ Pb ∧ w < b ∧ h[b − 1] = B}
b := b − 1
{Pr ∧ Pw ∧ Pb ∧ w ⩽ b}

• Thus we choose swap h w (b− 1); b := b− 1 as Sb.

Red

• Precondition: Pr ∧ Pw ∧ Pb ∧ w < b ∧ h[w ] = R.

• It appears that swap h w r establishes P [w\w +
1]. But we have to see what h[r ] is before we can
increment r .

• Pw implies r < w ⇒ h[r ] = W . Equivalently, we
have r = w ∨ h[r ] = W .

Red: Case r = w

• We have

{Pr ∧ Pw ∧ Pb ∧ r = w < b ∧ h[w ] = R}
swap h w r
{Pr ∧ Pw ∧ Pb ∧ w < b ∧ h[r ] = R}
r ,w := r + 1,w + 1
{Pr ∧ Pw ∧ Pb ∧ r = w ⩽ b}

Red: Case h[r ] = W

• We have

{Pr ∧ Pw ∧ Pb ∧ w < b ∧ h[r ] = W ∧ h[w ] = R}
swap h w r
{Pr ∧ h[r ] = R ∧ ⟨∀i : r + 1 ⩽ i < w : h[i ] = W ⟩ ∧
h[w ] = W ∧ Pb ∧ w < b}

r ,w := r + 1,w + 1
{Pr ∧ Pw ∧ Pb ∧ r = w ⩽ b}

• In both cases, swap h w r ; r ,w := r +1,w +1 is a
valid choice.

The Program

con N : Int {0 ⩽ N }
var h : array [0..N ) of RWB
var r ,w , b : Int

r ,w , b := 0, 0,N
{P0 ∧ P1, bnd : b − w}
do b ̸= w → if h[w ] = R → swap h w r

r ,w := r + 1,w + 1
| h[w ] = W → w := w + 1
| h[w ] = B → swap h w (b − 1)

b := b − 1
fi

od
{Q}

4.2 Rotation
Rotation

• Given: h :array [0..N ) of Awith integer constants
0 ⩽ K <N .

• Task: rotate h over K places. That is, h[0] is moved
to h[K ], h[1] to h[(1 +K )mod N ], h[2] to h[(2 +
K )modN ]...

• using swap operations only.

Specification

•

con K ,N : Int {0 ⩽ K <N }
var h : array [0..N ) of A
{⟨∀i : 0 ⩽ i <N : h[i ] = H [i ]⟩}
rotation
{⟨∀i : 0 ⩽ i <N : h[(i +K )modN ] = H [i ]⟩} .
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• To eliminatemod, the postcondition can be rewrit-
ten as:

⟨∀i : 0 ⩽ i <N −K : h[i +K ] = H [i ]⟩ ∧
⟨∀i : N −K ⩽ i <N : h[i +K −N ] = H [i ]⟩ .

• Or, h[K ..N ) = H [0..N −K ) ∧ h[0..K ) = H [N −
K ..N ).

Abstract Notations

• For this problem we benefit from using more ab-
stract notations.

• Segments of arrays can be denoted by variables. E.g.
X = H [0..N −K ) and Y = H [N −K ..N ).

• Concatenation of arrays are denoted by juxtaposi-
tion. E.g. H [0..N ) = XY .

• Empty sequence is denoted by [ ].

• Length of a sequence X is denoted by l X .

• Specification:

{h = XY }
rotation
{h = YX }

• When l X = l Y we can establish the postcondi-
tion easily — just swap the corresponding elements.

• Denote swapping of equal-lengthed array segments
by SWAP X Y .

Thinking Lengths

• When l X < l Y , h can be written as h = XUV ,

• where l U = l X and UV = Y .

• Task:

{h = XUV ∧ l U = l X }
rotation
{h = UVX }

• Strategy:

{h = XUV ∧ l U = l X }
SWAP X U
{h = UXV }
??
{h = UVX }

• The part ?? shall transform XV into VX — a prob-
lem having the same form as the original!

• Some (including myself) would then go for a recur-
sive program. But there is another possibility.

Leading to an Invariant...

• Consider the symmetric case where l X > l Y .

{h = UVY ∧ l V = l Y }
SWAP V Y
{h = UYV }
??
{h = YUV }

• In general, the array is of them form AUVB , where
UV needs to be transformed intoVU , whileA and
B are parts that are done.

The Invariant

• Strategy:

{h = XY }
A,U ,V ,B := [ ],X ,Y , [ ]
{h = AUVB ∧ YX = AVUB , bnd : l U + l V }
do U ̸= [ ] ∧ V ̸= [ ] → ...od
{h = YX }

• Call the invariant P . Intuitively it means “currently
the array is AUVB , and if we exchange U and V ,
we are done.”

• Note the choice of guard: P ∧ (U = [ ] ∧ V = [ ])
⇒ h = YX .

An Abstract Program
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A,U ,V ,B := [ ],X ,Y , [ ]
{h = AUVB ∧ YX = AVUB , bnd : l U + l V }
do U ̸= [ ] ∧ V ̸= [ ] →

if l U ⩾ l V → -- l U1 = l V
{h = AU0U1VB ∧ YX = AVU0U1B}
SWAP U1 V
{h = AU0VU1B ∧ YX = AVU0U1B}
U ,B :=U0,U1B
{h = AUVB ∧ YX = AVUB}

| l U ⩽ l V → -- l V0 = l U
{h = AUV0V1B ∧ YX = AV0V1UB}
SWAP U V0

{h = AV0UV1B ∧ YX = AV0V1UB}
A,V :=AV0,V1

{h = AUVB ∧ YX = AVUB}
fi

od

Representing the Sequences

• Introduce a, b, k , l : Int .

• A = h[0..a);

• U = h[a..a + k), hence l U = k ;

• V = h[b − l ..b), hence l V = l ;

• B = h[b..N ).

• Additional invariant: a + k = b − l .

• Why having both k and l? We will see later.

A Concrete Program

• Represented using indices:

a, k , l , b := 0,N −K ,K ,N
do k ̸= 0 ∧ l ̸= 0 →

if k ⩾ l → SWAP (b − l) l (−l)
k , b := k − l , b − l

| k ⩽ l → SWAP a k k
a, l := a + k , l − k

fi
od

• where SWAP x num off abbreviates

|[ var n : Int
n := x
do n ̸= x + num → swap h n (n + off )

n := n + 1
od

]|

• that is, starting from index x , swap num elements
with those off positions away.

Greatest Common Divisor

• To find out the number of swaps performed, we use
a variable t to record the number of swaps.

• If we keep only computation related to t , k , and l :

k , l , t :=N −K ,K , 0
do k ̸= 0 ∧ l ̸= 0 →
if k ⩾ l → t := t + l ; k := k − l
| k ⩽ l → t := t + k ; l := l − k
fi

od

• Observe: the part concerning k and l resembles
computation of greatest common divisor.

• In fact, gcd k l = gcd N (N − K ), which is
gcd N K .

• When the program terminates, k + l = gcd N K .

• It’s always true that t + k + l = N .

• Therefore, the total number of swaps is t = N −
(k + l) = N − gcd N K .
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