
Programming Languages: Imperative Program Construction
Midterm

Shin-Cheng Mu

Autumn Term, 2024

1. (10 points) Prove (3.63) p ⇒ (q ≡ r) ≡ p ⇒ q ≡ p ⇒ r , using properties that appear before (3.63).

Solution: There are many possible proofs. For example:

p ⇒ (q ≡ r)
= { (3.59) defn. of implication }
¬ p ∨ (q ≡ r)

= { (3.27) distributivity }
¬ p ∨ q ≡ ¬ p ∨ r

= { (3.59) defn. of implication }
p ⇒ q ≡ p ⇒ r .

Alternatively,

p ⇒ (q ≡ r)
= { (3.57) defn. of implication }
p ∨ (q ≡ r) ≡ q ≡ r

= { (3.27) distributivity }
p ∨ q ≡ p ∨ r ≡ q ≡ r

= { (3.24) and (3.25) }
p ∨ q ≡ q ≡ p ∨ r ≡ r

= { (3.57) defn. of implication }
p ⇒ q ≡ p ⇒ r .

Yet another interesting one:

p ⇒ (q ≡ r)
= { (3.62) }
p ∧ q ≡ p ∧ r

= { (3.60) defn. of implication }
(p ⇒ q ≡ p) ≡ (p ⇒ r ≡ p)

= { (3.1) and (3.3) }
p ⇒ q ≡ p ⇒ r .

2. (10 points) Prove that ¬ p ⇒ (p ⇒ q). Hint: there are many possible proofs. In some proofs you might try to
reduce the entire expression to True.

1

Solution:

¬ p ⇒ (p ⇒ q)
= { (3.57) defn. of implication }
¬ p ⇒ (p ∨ q ≡ q)

= { (3.59) defn. of implication, (3.12) double negation }
p ∨ (p ∨ q ≡ q)

= { (3.27) distributivity }
p ∨ p ∨ q ≡ p ∨ q

= { (3.26) idempotency of (∨) }
p ∨ q ≡ p ∨ q

= { (3.3) }
True .

Alternatively,

¬ p ⇒ (p ⇒ q)
= { (3.57) defn. of implication }
¬ p ⇒ (p ∨ q ≡ q)

= { (3.62) }
¬ p ∧ (p ∨ q) ≡ ¬ p ∧ q

= { (3.44) absorption }
¬ p ∧ q ≡ ¬ p ∧ q

= { (3.3) }
True .

3. (a) (5 points) Let N be an Int (integer) such that N ⩾ 0, and A an array of Int containing N elements, indexed
by A [0], A [1]… A [N − 1] (if these elements exist).
For i, j such that 0 ⩽ i ⩽ j ⩽ N , we denote by A[i..j) a consecutive segment of an array that includes A [i]
but does not include A [j]. For example, if N ⩾ 10, by A[3..10) we denote the segment A [2],A [3] ..A [9].
If i = j, the segment is empty.
Assuming that 0 ⩽ i ⩽ j ⩽ N , write down an expression stating that “s is the sum of A[i..j).”

Solution:

s = ⟨Σk : i ⩽ k < j : A [k]⟩ .

(b) (10 points) A consecutive segment of an array of Int is called “steep” (陡 in Chinese) if each of its elements
is larger than the sum of all elements to its lefthand side. For example, in the array below,

6, 3, 4, 8, 10, 19, 38, 2, 7,

the segment 3, 4, 8 is steep (since 0< 3, 3< 4 and 3 + 4< 8), the segments 8, 10, 19, 38 and 2, 7 are also steep
(since 8< 10, 8 + 10< 19, 8 + 10 + 19< 38, etc). An empty segment is steep. A singleton segment containing
one negative element, for example, −1, is not steep, since −1 is not larger than the sum of all elements to
its lefthand side, which is 0.
Assuming that 0 ⩽ i ⩽ j ⩽ N , write down an expression stating that “b is true if and only if A[i..j) is steep.”

Page 2

Solution:

b = ⟨∀k : i ⩽ k < j : ⟨Σm : i ⩽ m< k : A [m]⟩< A [k]⟩ .

(c) (10 points) Write down an expression stating that “r is the length of the longest steep segment of the array
A.”

Solution: For ease of explanation we define:

sum i j = ⟨Σk : i ⩽ k < j : A [k]⟩ ,
steep i j = ⟨∀k : i ⩽ k < j : sum i k < A [k]⟩ .

The expression is

r = ⟨↑ p q : 0 ⩽ p ⩽ q ⩽ N ∧ steep p q : q − p⟩ ,

which can be expanded to:

r = ⟨↑ p q : 0 ⩽ p ⩽ q ⩽ N ∧
⟨∀k : p ⩽ k < q : ⟨Σm : p ⩽ m< k : A [m]⟩< A [k]⟩ :

q − p⟩ .

4. Consider the following program

if x > 3 → skip
| x < 0 → x :=−2× x
fi

Denote this program by PROG.

(a) (10 points) Write down wp PROG q.

Solution:

wp PROG q
= { def. of wp if }
(x > 3 ⇒ wp skip q) ∧ (x < 0 ⇒ wp (x :=−2× x) q) ∧ (x > 3 ∨ x < 0)

= { def. of wp skip and wp (x :=−2× x) }
(x > 3 ⇒ q) ∧ (x < 0 ⇒ q[x\ − 2× x]) ∧ (x > 3 ∨ x < 0) .

(b) (10 points) What is the weakest precondition for PROG to terminate?

Solution:

(x > 3 ⇒ True) ∧ (x < 0 ⇒ True[x\ − 2× x]) ∧ (x > 3 ∨ x < 0)
= True ∧ True ∧ (x > 3 ∨ x < 0)
= x > 3 ∨ x < 0 .

(c) (10 points) What is wp PROG (x > 4)? (You may use your knowledge about arithmetics to simplify the
ranges.)

Page 3

Solution:

(x > 3 ⇒ x > 4) ∧ (x < 0 ⇒ (x > 4)[x\ − 2× x]) ∧ (x > 3 ∨ x < 0)
= (x > 3 ⇒ x > 4) ∧ (x < 0 ⇒ −2× x > 4) ∧ (x > 3 ∨ x < 0)
= (x > 3 ⇒ x > 4) ∧ (x < 0 ⇒ x <−2) ∧ (x > 3 ∨ x < 0)
= (x ⩽ 3 ∨ x > 4) ∧ (x ⩾ 0 ∨ x <−2) ∧ (x > 3 ∨ x < 0)
= { distributivity }
(x ⩽ 3 ∧ x ⩾ 0 ∧ x > 3) ∨ (x ⩽ 3 ∧ x ⩾ 0 ∧ x < 0) ∨
(x ⩽ 3 ∧ x <−2 ∧ x > 3) ∨ (x ⩽ 3 ∧ x <−2 ∧ x < 0) ∨
(x > 4 ∧ x ⩾ 0 ∧ x > 3) ∨ (x > 4 ∧ x ⩾ 0 ∧ x < 0) ∨
(x > 4 ∧ x <−2 ∧ x > 3) ∨ (x > 4 ∧ x <−2 ∧ x < 0)

= False ∨ False ∨ False ∨ x <−2 ∨ x > 4 ∨ False ∨ False ∨ False
= x <−2 ∨ x > 4 .

Note that, for example, x > 3 ⇒ x > 4 is not False! Instead it denotes the range x ⩽ 3 ∨ x > 4.

(d) (10 points) What is wp PROG False?

Solution:

(x > 3 ⇒ False) ∧ (x < 0 ⇒ False) ∧ (x > 3 ∨ x < 0)
= x ⩽ 3 ∧ x ⩾ 0 ∧ (x > 3 ∨ x < 0)
= { distributivity }
(x ⩽ 3 ∧ x ⩾ 0 ∧ x > 3) ∨ (x ⩽ 3 ∧ x ⩾ 0 ∧ x < 0)

= False ∨ False
= False .

Note that x > 3 ⇒ False is not False! Instead, x > 3 ⇒ False ≡ ¬ (x > 3) ≡ x ⩽ 3.

5. (15 points) Prove the following Hoare triple:

{3 ⩽ x ∨ (−1 ⩽ x < 0)}
if 0< x → x := x − 1
| x < 0 → x := x + 3
fi
{1 ⩽ x} .

Solution: Note that (3 ⩽ x ∨ (−1 ⩽ x < 0))∧ 0< x simplifies to 3 ⩽ x , and (3 ⩽ x ∨ (−1 ⩽ x < 0))∧ x < 0
simplifies to −1 ⩽ x < 0. Therefore, the fully annotated program is:

{3 ⩽ x ∨ (−1 ⩽ x < 0)}
if 0< x → {3 ⩽ x} x := x − 1 {1 ⩽ x , pf0}
| x < 0 → {−1 ⩽ x < 0} x := x + 3 {1 ⩽ x , pf1}
fi
{1 ⩽ x , pf2} .

pf0:

(1 ⩽ x)[x\x − 1]
≡ 1 ⩽ x − 1
≡ 2 ⩽ x
⇐ 3 ⩽ x .

Page 4

pf1:

(1 ⩽ x)[x\x + 3]
≡ 1 ⩽ x + 3
≡ − 2 ⩽ x
⇐ − 1 ⩽ x < 0 .

pf2:

3 ⩽ x ∨ (−1 ⩽ x < 0)
= 3 ⩽ x ∨ (−1 ⩽ x ∧ x < 0)
⇒ 0< x ∨ x < 0 .

Page 5

