
Programming Languages: Imperative Program Construction
Practicals 1: Non-Looping Constructs and Weakest Precondition

Shin-Cheng Mu

Autumn Term, 2024

Guarded Command Language Basics

1. Which of the following Hoare triples hold?

(a) {x = 7}skip{odd x};
(b) {x > 60}x := x × 2{x > 100};
(c) {x > 40}x := x × 2{x > 100};
(d) {true}if x ⩽ y → y := y − x | x ⩾ y → x := x − y fi{x ⩾ 0 ∧ y ⩾ 0};
(e) {even x ∧ even y}if x ⩽ y → y := y − x | x ⩾ y → x := x − y fi{even x ∧ even y}.

Solution: As the first exercise I expect merely that you answer by informal reasoning. What follows is the
more formal approach which you will learn later.

(a) The Hoare triple holds because:

wp skip (odd x)
≡ { definition of wp }

odd x
⇐ x = 7 .

(b) The Hoare triple holds because:

wp (x := x × 2) (x > 100)
≡ { definition of wp }

x × 2> 100
⇐ x > 60 .

(c) The Hoare triple does not hold because:

wp (x := x × 2) (x > 100)
≡ x × 2> 100
̸⇐ x > 40 .

(d) The annotated if statement is

{True}
if x ⩽ y → {x ⩽ y} y := y − x {x ⩾ 0 ∧ y ⩾ 0}

x ⩾ y → {x ⩾ y} x := x − y {x ⩾ 0 ∧ y ⩾ 0}
fi
{x ⩾ 0 ∧ y ⩾ 0} .

1



That x ⩽ y ∨ x ⩾ y certainly holds. For the Hoare triple in the first branch we reason:

(x ⩾ 0 ∧ y ⩾ 0)[y\y − x]
≡ x ⩾ 0 ∧ y − x ⩾ 0
≡ x ⩾ 0 ∧ x ⩽ y
̸⇐ x ⩽ y .

The situation with the other branch is similar. The bottom line is that the initial Hoare triple does not
hold.

The initial Hoare triple would be true if the precondition were x ⩾ 0 ∧ y ⩾ 0.

(e) The annotated if statement is

{even x ∧ even y}
if x ⩽ y → {even x ∧ even y ∧ x ⩽ y} y := y − x {even x ∧ even y}

x ⩾ y → {even x ∧ even y ∧ x ⩾ y} x := x − y {even x ∧ even y}
fi
{even x ∧ even y} .

That x ⩽ y ∨ x ⩾ y certainly holds. For the Hoare triple in the first branch we reason:

(even x ∧ even y)[y\y − x]
≡ even x ∧ even (y − x)
≡ even x ∧ even y
⇐ even x ∧ even y ∧ x ⩽ y .

The situation with the other branch is similar. The bottom line is that the initial Hoare triple does hold.

2. Is it always true that {True} x := E {x = E}? If you think the answer is yes, explain why. If your answer is no,
give a counter example.

Solution: No. For a counterexample, let E be x + 1.

When do we do have the property that {True} x := E {x = E}? Since (x = E)[x\E] ≡ (E = E [x\E]), the
Hoare triple holds if and only if E = E [x\E]. Examples of such E include those that do not contain x , or
those that are idempotent funtions on x , for example E = 0 ↑ x .
The actual forward rule for assignment (due to Floyd) is:

{P} x := E {(∃ x0 :: x = E [x\x0] ∧ P [x\x0])} ,

where x0 is a fresh name.

3. Verify:

{x = X ∧ y = Y}
x := x ̸⇔ y
y := x ̸⇔ y
x := x ̸⇔ y
{x = Y ∧ y = X}

where x and y are boolean and (̸⇔) is the “not equal” or “exclusive or” operator. In fact, the code above works

Page 2



for any (⊗) that satisfies the properties that for all a, b, and c:

associative : a⊗ (b ⊗ c) = (a⊗ b)⊗ c ,
unipotent : a⊗ a = 1 ,

where 1 is the unit of (⊗), that is, 1⊗ b = b = b ⊗ 1.

Solution: The annotated program is:

{x = X ∧ y = Y , Pf2}
x := x ⊗ y
{y = Y ∧ x ⊗ y = X , Pf1}
y := x ⊗ y
{x ⊗ y = Y ∧ y = X}
x := x ⊗ y
{x = Y ∧ y = X} .

Pf1:

(x ⊗ y = Y ∧ y = X ) [x ⊗ y / y ]
≡ x ⊗ (x ⊗ y) = Y ∧ x ⊗ y = X
≡ { (⊗) associative }

(x ⊗ x)⊗ y = Y ∧ x ⊗ y = X
≡ { unipotence }

1⊗ y = Y ∧ x ⊗ y = X
≡ { identity }

y = Y ∧ x ⊗ y = X .

Pf2:

(y = Y ∧ x ⊗ y = X ) [x ⊗ y / x ]
≡ y = Y ∧ (x ⊗ y)⊗ y = X
≡ { (⊗) associative }

y = Y ∧ x ⊗ (y ⊗ y) = X
≡ { unipotence }

y = Y ∧ x ⊗ 1 = X
≡ { identity }

y = Y ∧ x = X .

4. Verify the following program:

var r , b : Int
{0 ⩽ r < 2× b}
if b ⩽ r → r := r − b
| r < b → skip
fi
{0 ⩽ r < b}

Page 3



Solution: The annotated program is:

var r , b : Int
{0 ⩽ r < 2× b}
if b ⩽ r → {0 ⩽ r < 2× b ∧ b ⩽ r} r := r − b {0 ⩽ r < b, Pf1}
| r < b → {0 ⩽ r < 2× b ∧ r < b} skip {0 ⩽ r < b, Pf2}
fi
{0 ⩽ r < b, Pf3}

Pf1. We reason:

(0 ⩽ r < b) [r\r − b]
≡ 0 ⩽ r − b < b
≡ b ⩽ r < 2× b
⇐ 0 ⩽ r < 2× b ∧ b ⩽ r .

Pf2. Trivial.

Pf3. Certainly any proposition implies b ⩽ r ∨ r < b.

5. Verify:

var x , y : Int

{True}
x , y := x × x , y × y
if x ⩾ y → x := x − y
| y ⩾ x → y := y − x
fi
{x ⩾ 0 ∧ y ⩾ 0} .

Solution: For brevity we abbreviate x ⩾ 0 ∧ y ⩾ 0 to P . The fully annotated program could be:

{True}
x , y := x × x , y × y
{P , Pf4}
if x ⩾ y → {x ⩾ y ∧ P} x := x − y {P , Pf1}
| y ⩾ x → {y ⩾ x ∧ P} y := y − x {P , Pf2}
fi
{P , Pf3} .

To verify the if branching, we check that

Pf1. {x ⩾ y ∧ P} x := x − y {P}. The Hoare triple is valid because

(x ⩾ 0 ∧ y ⩾ 0)[x\x − y]

⇔ x − y ⩾ 0 ∧ y ⩾ 0

⇔ x ⩾ y ∧ y ⩾ 0

⇐ x ⩾ y ∧ x ⩾ 0 ∧ y ⩾ 0.

Page 4



Pf2. {y ⩾ x ∧ P} y := y − x {P}. Omitted.

Pf3. And indeed x ⩾ y ∨ y ⩾ x always holds, thus P ⇒ x ⩾ y ∨ y ⩾ x .

Do not forget that we have yet to verify {true} x , y := x × x , y × y {P}, which is not difficult either:

Pf4.

(x ⩾ 0 ∧ y ⩾ 0)[x , y\x × x , y × y]

⇔ x × x ⩾ 0 ∧ y × y ⩾ 0

⇔ true.

6. Verify:

var a, b : Bool
{True}
if ¬ a ∨ b → a := ¬ a
| a ∨ ¬ b → b := ¬ b
fi
{a ∨ b} .

Solution:

var a, b : Bool
{True}
if ¬ a ∨ b → {¬ a ∨ b} a := ¬ a {a ∨ b, Pf1}
| a ∨ ¬ b → {a ∨ ¬ b} b := ¬ b {a ∨ b, Pf2}
fi
{a ∨ b, Pf3} .

Pf1. To verify the first branch:

(a ∨ b)[a\¬a]
≡ ¬a ∨ b.

Pf2. The other branch is similar.

Pf3. Certainly true ⇒ ¬a ∨ b ∨ a ∨ ¬b.

7. Assuming that x , y , and z are integers, prove the following

(a) {True} if x ⩾ 1 → x := x + 1 | x ⩽ 1 → x := x − 1 fi {x ̸= 1}.
(b) {True} if x ⩾ y → skip | y ⩾ x → x , y := y , x fi {x ⩾ y}.
(c) {x = 0} if True → x := 1 | True → x :=−1 {x = 1 ∨ x = −1}.
(d) {A = x × y + z} if even x → x , y := x / 2, y × 2 | True → y , z := y − 1, z + x {A = x × y + z}.

Page 5



Solution: The annotated program is

{A = x × y + z}
if even x → {A = x × y + z ∧ even x} x , y := x / 2, y × 2 {A = x × y + z , Pf0}
| True → {A = x × y + z} y , z := y − 1, z + x {A = x × y + z , Pf1}
fi
{A = x × y + z , Pf2}

Pf0: We reason:

(A = x × y + z)[x , y\x / 2, y × 2]
≡ A = (x / 2)× (y × 2) + z
⇐ A = x × y + z ∧ even x .

Pf2: We reason:

(A = x × y + z)[y , z\y − 1, z + x]
≡ A = x × (y − 1) + (z + x)
⇐ A = x × y + z .

Pf2: Certainly P ⇒ Q ∧ True for any P and Q.

(e) {x × y = 0 ∧ y ⩽ x} if y < 0 → y :=−y | y = 0 → x :=−1 {x < y}.

Solution: The annotated program is

{x × y = 0 ∧ y ⩽ x}
if y < 0 → {x × y = 0 ∧ y ⩽ x ∧ y < 0} y :=−y {x < y , Pf0}
| y = 0 → {x × y = 0 ∧ y ⩽ x ∧ y = 0} x :=−1 {x < y , Pf1}
fi
{x < y , Pf2}

Pf0: Note that x × y = 0 equivals x = 0 ∨ y = 0. Therefore

x × y = 0 ∧ y ⩽ x ∧ y < 0
≡ (x = 0 ∨ y = 0) ∧ y ⩽ x ∧ y < 0
≡ { distributivity }

(x = 0 ∧ y ⩽ x ∧ y < 0) ∨ (y = 0 ∧ y ⩽ x ∧ y < 0)
≡ { since (y = 0 ∧ y ⩽ x ∧ y < 0) ≡ False }

x = 0 ∧ y ⩽ x ∧ y < 0
≡ x = 0 ∧ y < 0 .

To prove the Hoare triple we reason:

(x < y)[y\ − y]
≡ x <−y
⇐ x = 0 ∧ y < 0 .

Pf1: We reason:

(x < y)[x\ − 1]
≡ − 1< y
⇐ x × y = 0 ∧ y ⩽ x ∧ y = 0 .

Page 6



Pf2: We reason:

x × y = 0 ∧ y ⩽ x
≡ (x = 0 ∨ y = 0) ∧ y ⩽ x
≡ { distributivity }

(x = 0 ∧ y ⩽ x) ∨ (y = 0 ∧ y ⩽ x)
⇒ y < 0 ∨ y = 0 .

Weakest Precondition of Simple Statements

8. Given below is a list of statements and predicates. What are the weakest precondition for the predicates to be
true after the statement?

(a) x := x × 2, x > 100;

(b) x := x × 2, even x ;

(c) x := x × 2, x > 100 ∧ even x ;

(d) x := x × 2, odd x .

(e) skip, odd x .

Solution:

(a) x × 2> 100, that is, x > 50.

(b) even (x × 2), which simplifies to True.

(c) x × 2> 100 ∧ even (x × 2), that is, x > 50.

(d) odd (x × 2), that is, False.

(e) odd x .

9. Determine the weakest P that satisfies

(a) {P} x := x + 1; x := x + 1 {x ⩾ 0}.
(b) {P} x := x + y ; y := 2× x {y ⩾ 0}.
(c) {P} x := y ; y := x {x = A ∧ y = B}.
(d) {P} x := E ; x := E {x = E}.

Solution:

(a)
wp (x := x + 1; x := x + 1) (x ⩾ 0)

= wp (x := x + 1) (wp (x := x + 1) (x ⩾ 0))
= wp (x := x + 1) (x + 1 ⩾ 0)
= (x + 1) + 1 ⩾ 0
= x ⩾ −2 .

Page 7



(b)
wp (x := x + y ; y := 2× x) (y ⩾ 0)

= wp (x := x + y) (wp (y := 2× x) (y ⩾ 0))
= wp (x := x + y) (2× x ⩾ 0)
= 2× (x + y) ⩾ 0 .

(c)
wp (x := y ; y := x) (x = A ∧ y = B)

≡ wp (x := y) (wp (y := x) (x = A ∧ y = B))
≡ wp (x := y) (x = A ∧ x = B)
≡ y = A ∧ y = B
≡ y = A = B .

(d)
wp (x := E ; x := E) (x = E)

≡ wp (x := E) (wp (x := E) (x = E))
≡ wp (x := E) ((x = E)[x\E])
≡ wp (x := E) (E = E[x\E])
≡ (E = E[x\E])[x\E]
≡ E[x\E] = (E[x\E])[x\E] .

The equation certainly does not hold in general. One example where it does hold is E = (−x) ↑ 0, for
which we have:

E[x\E]
= (−((−x) ↑ 0)) ↑ 0
= (x ↓ 0) ↑ 0
= 0
= (−0) ↑ 0
= (−((−((−x) ↑ 0)) ↑ 0)) ↑ 0
= (E[x\E])[x\E] .

Let me know if you have a more interesting E .

10. What is the weakest P such that the following holds?

var x : Int

{P}
x := x + 1
if x > 0 → x := x + 1
| x < 0 → x := x + 2
| x = 1 → skip
fi
{x ⩾ 1} .

Solution: Denote the if statement by IF. The aim is to compute wp (x := x + 1; IF) (x ⩾ 1).

Recall the definition of wp for if. We have

wp IF (x ⩾ 1) = (x > 0 ⇒ wp (x := x + 1) (x ⩾ 1)) ∧
(x < 0 ⇒ wp (x := x + 2) (x ⩾ 1)) ∧
(x = 1 ⇒ wp skip (x ⩾ 1)) ∧
(x > 0 ∨ x < 0 ∨ x = 1) .

Page 8



We calculate the four conjuncts separately:

• x > 0 ⇒ wp (x := x + 1) (x ⩾ 1)
≡ x > 0 ⇒ x + 1 ⩾ 1
≡ x > 0 ⇒ x ⩾ 0
≡ True .

• x < 0 ⇒ wp (x := x + 2) (x ⩾ 1)
≡ x < 0 ⇒ x + 2 ⩾ 1
≡ x < 0 ⇒ x ⩾ −1
≡ { (P ⇒ Q) = (¬ P ∨ Q) }

x ⩾ 0 ∨ x ⩾ −1
≡ x ⩾ −1 .

• x = 1 ⇒ wp skip (x ⩾ 1)
≡ x = 1 ⇒ x ⩾ 1
≡ True .

• Furthermore, x > 0 ∨ x < 0 ∨ x = 1 simplifies to x ̸= 0.

Therefore,

wp IF (x ⩾ 1)
= True ∧ x ⩾ −1 ∧ True ∧ x ̸= 0
= x ⩾ −1 ∧ x ̸= 0 .

Finally, recall what we want to compute:

wp (x := x + 1; IF) (x ⩾ 1)
= wp (x := x + 1) (wp IF (x ⩾ 1))
= wp (x := x + 1) (x ⩾ −1 ∧ x ̸= 0)
= x + 1 ⩾ −1 ∧ x + 1 ̸= 0)
= x ⩾ −2 ∧ x ̸= −1 .

11. Two programs S0 and S1 are equivalent if, for all Q, wp S0 Q = wp S1 Q. Show that the two following programs
are equivalent.

if B0 → S0 | B1 → S1 fi; S
if B0 → S0; S | B1 → S1; S fi

Solution:

Page 9



wp (if B0 → S0 | B1 → S1 fi; S) Q
= { definition of wp }
wp (if B0 → S0 | B1 → S1 fi) (wp S Q)

= { definition of wp }
(B0 ⇒ wp S0 (wp S Q)) ∧
(B1 ⇒ wp S1 (wp S Q)) ∧ (B0 ∨ B1)

= { definition of wp }
(B0 ⇒ wp (S0; S) Q) ∧
(B1 ⇒ wp (S1; S) Q) ∧ (B0 ∨ B1)

= { definition of wp }
wp (if B0 → S0; S | B1 → S1; S fi) Q .

12. Consider the two programs:

IF0 = if B0 → S0 | B1 → S1 fi ,
IF1 = if B0 → S0 | B1 ∧ ¬ B0 → S1 fi .

Show that for all Q, wp IF0 Q ⇒ wp IF1 Q.

Solution: Firstly, we show that B0 ∨ (B1 ∧ ¬ B0) = B0 ∨ B1.

B0 ∨ (B1 ∧ ¬ B0)
= { distributivity }
(B0 ∨ B1) ∧ (B0 ∨ ¬ B0)

= (B0 ∨ B1) ∧ True
= B0 ∨ B1 .

Secondly, recall that

• conjunction is monotonic, that is, (P0 ∧ Q) ⇒ (P1 ∧ Q) if P0 ⇒ P1;

• implication is anti-monotonic in its first argument, that is (P0 ⇒ Q) ⇒ (P1 ⇒ Q) if P1 ⇒ P0.

Therefore we have

wp (if B0 → S0 | B1 → S1 fi) Q
= (B0 ⇒ wp S0 Q) ∧ (B1 ⇒ wp S1 Q) ∧ (B0 ∨ B1)
= { since B0 ∨ (B1 ∧ ¬ B0) = B0 ∨ B1 }
(B0 ⇒ wp S0 Q) ∧ (B1 ⇒ wp S1 Q) ∧ (B0 ∨ (B1 ∧ ¬ B0))

⇒ { since B1 ∧ ¬ B0 ⇒ B1, (anti-)monotonicity as discussed above. }
(B0 ⇒ wp S0 Q) ∧ (B1 ∧ ¬ B0 ⇒ wp S1 Q) ∧ (B0 ∨ (B1 ∧ ¬ B0))

= wp (if B0 → S0 | B1 ∧ ¬ B0 → S1 fi) Q .

Properties of Weakest Precondition

13. Prove that (wp S Q0 ∨ wp S Q1) ⇒ wp S (Q0 ∨ Q1).

Page 10



Solution: Recall from propositional logic that (P ∨ Q) ⇒ R iff. (P ⇒ R) ∧ (Q ⇒ R).

(wp S Q0 ∨ wp S Q1) ⇒ wp S (Q0 ∨ Q1)
≡ { said property above }

(wp S Q0 ⇒ wp S (Q0 ∨ Q1)) ∧
(wp S Q1 ⇒ wp S (Q0 ∨ Q1))

⇐ {Monotonicity }
(Q0 ⇒ (Q0 ∨ Q1)) ∧ (Q1 ⇒ (Q0 ∨ Q1))

≡ True .

14. Recall the definition of Hoare triple in terms of wp:

{P} S {Q} = P ⇒ wp S Q .

Prove that

1. ({P} S {Q} ∧ (P0 ⇒ P)) ⇒ {P0} S {Q}.
2. {P} S {Q} ∧ {P} S {R} ≡ {P} S {Q ∧ R}.

Solution:

1. We reason:

{P0} S {Q}
≡ { definition of Hoare triple }
P0 ⇒ wp S Q

⇐ { since P0 ⇒ P }
P ⇒ wp S Q

≡ { definition of Hoare triple }
{P} S {Q} .

2. We reason:

{P} S {Q ∧ R}
≡ { definition of Hoare triple }
P ⇒ wp S (Q ∧ R)

≡ { distributivity over conjunction }
P ⇒ (wp S Q ∧ wp S R)

≡ { since (P ⇒ (X ∧ Y )) ≡ (P ⇒ X ) ∧ (P ⇒ Y ) }
(P ⇒ wp S Q) ∧ (P ⇒ wp S R)

≡ { definition of Hoare triple }
{P} S {Q} ∧ {P} S {R} .

15. Recall the weakest precondition of if:

wp (if B0 → S0 | B1 → S1 fi) Q = (B0 ⇒ wp S0 Q) ∧ (B1 ⇒ wp S1 Q) ∧ (B0 ∨ B1) .

Prove that

Page 11



{P} if B0 → S0 | B1 → S1 fi {Q} ≡
{P ∧ B0} S {Q} ∧ {P ∧ B1} S {Q} ∧ (P ⇒ (B0 ∨ B1)) .

Note: having proved so shows that the way we annotate if is correct:

{P}
if B0 → {P ∧ B0} S0 {Q}
| B1 → {P ∧ B1} S1 {Q}
fi
{Q} .

Solution: We reason:

{P} if B0 → S0 | B1 → S1 fi {Q}
= { definition of Hoare triple }
P ⇒ wp (if B0 → S0 | B1 → S1 fi) Q

= { definition of wp }
P ⇒ ((B0 ⇒ wp S0 Q) ∧ (B1 ⇒ wp S1 Q) ∧ (B0 ∨ B1))

= { since (P ⇒ (Q ∧ R)) ≡ (P ⇒ Q) ∧ (P ⇒ R) }
(P ⇒ (B0 ⇒ wp S0 Q)) ∧
(P ⇒ (B1 ⇒ wp S1 Q)) ∧
(P ⇒ (B0 ∨ B1))

= { since (P ⇒ (Q ⇒ R)) ≡ ((P ∧ Q) ⇒ R) }
((P ∧ B0) ⇒ wp S0 Q) ∧
((P ∧ B1) ⇒ wp S1 Q) ∧
(P ⇒ (B0 ∨ B1))

= { definition of Hoare triple }
{P ∧ B0} S0 {Q} ∧
{P ∧ B1} S1 {Q} ∧
(P ⇒ (B0 ∨ B1)) .

16. Recall that wp S Q stands for “the weakest precondition for program S to terminate in a state satisfying Q”.
What programs S, if any, satisfy each of the following conditions?

1. wp S True = True.

2. wp S True = False.

3. wp S False = True.

4. wp S False = False.

Solution:

1. wp S True = True: S is a program that always terminates.

2. wp S True = False: S is a program that never terminates.

3. wp S False = True: there is no such a program S.

4. wp S False = False: S can be any program.

Page 12


