Programming Languages: Imperative Program Construction Practicals 1: Non-Looping Constructs and Weakest Precondition

Shin-Cheng Mu

Autumn Term, 2024

Guarded Command Language Basics

- 1. Which of the following Hoare triples hold?
 - (a) $\{x = 7\}$ skip $\{odd x\}$;
 - (b) $\{x > 60\}x := x \times 2\{x > 100\};$
 - (c) $\{x > 40\}x := x \times 2\{x > 100\};$
 - (d) $\{true\}$ if $x \leq y \rightarrow y \coloneqq y x \mid x \geq y \rightarrow x \coloneqq x y$ fi $\{x \geq 0 \land y \geq 0\}$;
 - (e) $\{even \ x \land even \ y\}$ if $x \leq y \rightarrow y := y x \mid x \geq y \rightarrow x := x y$ fi $\{even \ x \land even \ y\}$.

Solution: As the first exercise I expect merely that you answer by informal reasoning. What follows is the more formal approach which you will learn later.

(a) The Hoare triple holds because:

 $= \begin{cases} wp \ skip \ (odd \ x) \\ \{ \ definition \ of \ wp \ \} \\ odd \ x \\ \notin x = 7 \end{cases}.$

(b) The Hoare triple holds because:

 $wp (x \coloneqq x \times 2) (x > 100)$ $\equiv \begin{cases} \text{definition of } wp \\ x \times 2 > 100 \\ \Leftrightarrow x > 60 \end{cases}$

(c) The Hoare triple does not hold because:

$$wp (x \coloneqq x \times 2) (x > 100)$$

$$\equiv x \times 2 > 100$$

$$\notin x > 40$$
.

(d) The annotated **if** statement is

$$\begin{cases} True \\ \text{if } x \leq y \rightarrow \{x \leq y\} \ y \coloneqq y - x \ \{x \geq 0 \land y \geq 0\} \\ x \geq y \rightarrow \{x \geq y\} \ x \coloneqq x - y \ \{x \geq 0 \land y \geq 0\} \\ \text{fi} \\ \{x \geq 0 \land y \geq 0\} \end{cases}.$$

That $x \leq y \lor x \geq y$ certainly holds. For the Hoare triple in the first branch we reason:

$$(x \ge 0 \land y \ge 0)[y \backslash y - x]$$

$$\equiv x \ge 0 \land y - x \ge 0$$

$$\equiv x \ge 0 \land x \le y$$

$$\notin x \le y .$$

The situation with the other branch is similar. The bottom line is that the initial Hoare triple does *not* hold.

The initial Hoare triple would be true if the precondition were $x \ge 0 \land y \ge 0$.

(e) The annotated if statement is

 $\{ even \ x \land even \ y \}$ if $x \leq y \rightarrow \{ even \ x \land even \ y \land x \leq y \} \ y := y - x \{ even \ x \land even \ y \}$ $x \geq y \rightarrow \{ even \ x \land even \ y \land x \geq y \} \ x := x - y \{ even \ x \land even \ y \}$ fi $\{ even \ x \land even \ y \}$.

That $x \leq y \lor x \geq y$ certainly holds. For the Hoare triple in the first branch we reason:

 $(even x \land even y)[y \backslash y - x]$ $\equiv even x \land even (y - x)$ $\equiv even x \land even y$ $\Leftarrow even x \land even y \land x \leqslant y .$

The situation with the other branch is similar. The bottom line is that the initial Hoare triple does hold.

2. Is it always true that $\{True\} x := E \{x = E\}$? If you think the answer is yes, explain why. If your answer is no, give a counter example.

Solution: No. For a counterexample, let *E* be x + 1.

When do we do have the property that {*True*} x := E {x = E}? Since (x = E)[$x \setminus E$] \equiv (E = E [$x \setminus E$]), the Hoare triple holds if and only if E = E [$x \setminus E$]. Examples of such E include those that do not contain x, or those that are idempotent functions on x, for example $E = 0 \uparrow x$.

The actual forward rule for assignment (due to Floyd) is:

 $\{P\} x \coloneqq E \{ (\exists x_0 :: x = E [x \setminus x_0] \land P [x \setminus x_0]) \} ,$

where x_0 is a fresh name.

3. Verify:

 $\{x = X \land y = Y\}$ $x \coloneqq x \Leftrightarrow y$ $y \coloneqq x \Leftrightarrow y$ $x \coloneqq x \Leftrightarrow y$ $x \coloneqq x \Leftrightarrow y$ $\{x = Y \land y = X\}$

where x and y are boolean and $(\not\Leftrightarrow)$ is the "not equal" or "exclusive or" operator. In fact, the code above works

for any (\otimes) that satisfies the properties that for all *a*, *b*, and *c*:

associative : $a \otimes (b \otimes c) = (a \otimes b) \otimes c$, unipotent : $a \otimes a = 1$,

where 1 is the unit of (\otimes), that is, 1 \otimes *b* = *b* = *b* \otimes 1.

```
Solution: The annotated program is:

 \begin{cases} x = X \land y = Y, Pf_2 \\ x := x \otimes y \\ \{y = Y \land x \otimes y = X, Pf_1 \} \\ y := x \otimes y \\ \{x \otimes y = Y \land y = X \} \\ x := x \otimes y \\ \{x = Y \land y = X \} \end{cases}.
```

```
Pf_1:
```

```
(x \otimes y = Y \land y = X) [x \otimes y / y]

\equiv x \otimes (x \otimes y) = Y \land x \otimes y = X

\equiv \{ (\otimes) \text{ associative } \}

(x \otimes x) \otimes y = Y \land x \otimes y = X

\equiv \{ \text{ unipotence } \}

1 \otimes y = Y \land x \otimes y = X

\equiv \{ \text{ identity } \}

y = Y \land x \otimes y = X .
```

```
Pf_2:
```

```
(y = Y \land x \otimes y = X) [x \otimes y / x]

\equiv y = Y \land (x \otimes y) \otimes y = X

\equiv \{ (\otimes) \text{ associative } \}

y = Y \land x \otimes (y \otimes y) = X

\equiv \{ \text{ unipotence } \}

y = Y \land x \otimes 1 = X

\equiv \{ \text{ identity } \}

y = Y \land x = X .
```

4. Verify the following program:

var r, b : lnt $\{0 \le r < 2 \times b\}$ **if** $b \le r \rightarrow r := r - b$ $\mid r < b \rightarrow skip$ **fi** $\{0 \le r < b\}$ Solution: The annotated program is:

 $\begin{array}{l} \operatorname{var} r, b \colon lnt \\ \{ 0 \leqslant r < 2 \times b \} \\ \operatorname{if} b \leqslant r \to \{ 0 \leqslant r < 2 \times b \wedge b \leqslant r \} r \coloneqq r - b \{ 0 \leqslant r < b, \mathsf{Pf}_1 \} \\ \mid r < b \to \{ 0 \leqslant r < 2 \times b \wedge r < b \} skip \{ 0 \leqslant r < b, \mathsf{Pf}_2 \} \\ \operatorname{fi} \\ \{ 0 \leqslant r < b, \mathsf{Pf}_3 \} \end{array}$

 Pf_1 . We reason:

$$(0 \leq r < b) [r \setminus r - b]$$

$$\equiv 0 \leq r - b < b$$

$$\equiv b \leq r < 2 \times b$$

$$\Leftrightarrow 0 \leq r < 2 \times b \land b \leq r .$$

Pf₂. Trivial.

Pf₃. Certainly any proposition implies $b \leq r \lor r < b$.

5. Verify:

 $\begin{array}{l} \operatorname{var} x, y : \operatorname{Int} \\ \{\operatorname{True}\} \\ x, y := x \times x, y \times y \\ \operatorname{if} x \geqslant y \to x := x - y \\ \mid y \geqslant x \to y := y - x \\ \operatorname{fi} \\ \{x \geqslant 0 \land y \geqslant 0\} \end{array}$

Solution: For brevity we abbreviate $x \ge 0 \land y \ge 0$ to *P*. The fully annotated program could be:

 $\{True\} \\ x, y := x \times x, y \times y \\ \{P, \mathsf{Pf}_4\} \\ \mathbf{if} \ x \ge y \to \{x \ge y \land P\} \ x := x - y \{P, \mathsf{Pf}_1\} \\ | \ y \ge x \to \{y \ge x \land P\} \ y := y - x \{P, \mathsf{Pf}_2\} \\ \mathbf{fi} \\ \{P, \mathsf{Pf}_3\} \ .$

To verify the if branching, we check that

Pf₁. $\{x \ge y \land P\} x \coloneqq x - y \{P\}$. The Hoare triple is valid because $(x \ge 0 \land y \ge 0)[x \setminus x - y]$ $\Leftrightarrow x - y \ge 0 \land y \ge 0$ $\Leftrightarrow x \ge y \land y \ge 0$ $\Leftarrow x \ge y \land x \ge 0 \land y \ge 0.$ Pf₂. $\{y \ge x \land P\} y := y - x \{P\}$. Omitted. Pf₃. And indeed $x \ge y \lor y \ge x$ always holds, thus $P \Rightarrow x \ge y \lor y \ge x$. Do not forget that we have yet to verify $\{true\} x, y := x \times x, y \times y \{P\}$, which is not difficult either: Pf₄. $(x \ge 0 \land y \ge 0)[x, y \setminus x \times x, y \times y]$ $\Leftrightarrow x \times x \ge 0 \land y \times y \ge 0$

6. Verify:

```
var a, b: Bool
{True}
if \neg a \lor b \rightarrow a := \neg a
\mid a \lor \neg b \rightarrow b := \neg b
fi
{a \lor b}.
```

 \Leftrightarrow true.

Solution:

```
var a, b: Bool

{True}

if \neg a \lor b \rightarrow \{\neg a \lor b\} a \coloneqq \neg a \{a \lor b, Pf_1\}

\mid a \lor \neg b \rightarrow \{a \lor \neg b\} b \coloneqq \neg b \{a \lor b, Pf_2\}

fi

{a \lor b, Pf_3}.
```

Pf₁. To verify the first branch:

 $(a \lor b)[a \backslash \neg a] \\ \equiv \neg a \lor b.$

Pf₂. The other branch is similar.

- Pf₃. Certainly *true* $\Rightarrow \neg a \lor b \lor a \lor \neg b$.
- 7. Assuming that x, y, and z are integers, prove the following
 - (a) $\{True\}$ if $x \ge 1 \rightarrow x \coloneqq x + 1 \mid x \le 1 \rightarrow x \coloneqq x 1$ fi $\{x \ne 1\}$.
 - (b) {*True*} if $x \ge y \rightarrow skip \mid y \ge x \rightarrow x, y \coloneqq y, x$ fi { $x \ge y$ }.
 - (c) $\{x = 0\}$ if $True \to x := 1 | True \to x := -1 \{x = 1 \lor x = -1\}$.
 - (d) $\{A = x \times y + z\}$ if even $x \to x, y := x / 2, y \times 2 | True \to y, z := y 1, z + x \{A = x \times y + z\}$.

Solution: The annotated program is

 $\begin{array}{l} \{A = x \times y + z\} \\ \text{if } even \ x \to \{A = x \times y + z \land even \ x\} \ x, y \coloneqq x \ / \ 2, y \times 2 \ \{A = x \times y + z, \mathsf{Pf}_0\} \\ | \ True \ \to \{A = x \times y + z\} \ y, z \coloneqq y - 1, z + x \ \{A = x \times y + z, \mathsf{Pf}_1\} \\ \text{fi} \\ \{A = x \times y + z, \mathsf{Pf}_2\} \end{array}$

 Pf_0 : We reason:

 $(A = x \times y + z)[x, y \setminus x / 2, y \times 2]$ $\equiv A = (x / 2) \times (y \times 2) + z$ $\Leftarrow A = x \times y + z \land even x .$

Pf₂: We reason:

 $(A = x \times y + z)[y, z \setminus y - 1, z + x]$ $\equiv A = x \times (y - 1) + (z + x)$ $\Leftarrow A = x \times y + z .$

Pf₂: Certainly $P \Rightarrow Q \land True$ for any P and Q.

(e) $\{x \times y = 0 \land y \leq x\}$ if $y < 0 \rightarrow y := -y \mid y = 0 \rightarrow x := -1 \{x < y\}.$

Solution: The annotated program is

 $\begin{array}{l} \left\{ x \times y = 0 \land y \leqslant x \right\} \\ \text{if } y < 0 \rightarrow \left\{ x \times y = 0 \land y \leqslant x \land y < 0 \right\} y \coloneqq -y \left\{ x < y, \mathsf{Pf}_0 \right\} \\ \mid y = 0 \rightarrow \left\{ x \times y = 0 \land y \leqslant x \land y = 0 \right\} x \coloneqq -1 \left\{ x < y, \mathsf{Pf}_1 \right\} \\ \text{fi} \\ \left\{ x < y, \mathsf{Pf}_2 \right\} \end{array}$

Pf₀: Note that $x \times y = 0$ equivals $x = 0 \lor y = 0$. Therefore

 $\begin{aligned} x \times y &= 0 \land y \leqslant x \land y < 0 \\ &\equiv (x = 0 \lor y = 0) \land y \leqslant x \land y < 0 \\ &\equiv \{ \text{distributivity} \} \\ (x = 0 \land y \leqslant x \land y < 0) \lor (y = 0 \land y \leqslant x \land y < 0) \\ &\equiv \{ \text{since} (y = 0 \land y \leqslant x \land y < 0) \equiv False \} \\ &x = 0 \land y \leqslant x \land y < 0 \\ &\equiv x = 0 \land y < 0 . \end{aligned}$

To prove the Hoare triple we reason:

 $(x < y)[y \setminus -y] \\ \equiv x < -y \\ \Leftarrow x = 0 \land y < 0 .$

 Pf_1 : We reason:

 $(x < y)[x \setminus -1]$ $\equiv -1 < y$ $\Leftarrow x \times y = 0 \land y \leqslant x \land y = 0 .$ Pf_2 : We reason:

 $x \times y = 0 \land y \leqslant x$ $\equiv (x = 0 \lor y = 0) \land y \leqslant x$ $\equiv \{ \text{ distributivity } \}$ $(x = 0 \land y \leqslant x) \lor (y = 0 \land y \leqslant x)$ $\Rightarrow y < 0 \lor y = 0 .$

Weakest Precondition of Simple Statements

- 8. Given below is a list of statements and predicates. What are the weakest precondition for the predicates to be true after the statement?
 - (a) $x := x \times 2, x > 100;$
 - (b) $x := x \times 2$, even x;
 - (c) $x := x \times 2, x > 100 \land even x;$
 - (d) $x \coloneqq x \times 2$, odd x.
 - (e) skip, odd x.

Solution:

- (a) $x \times 2 > 100$, that is, x > 50.
- (b) *even* ($x \times 2$), which simplifies to *True*.
- (c) $x \times 2 > 100 \land even (x \times 2)$, that is, x > 50.
- (d) odd ($x \times 2$), that is, *False*.
- (e) *odd x*.
- 9. Determine the weakest *P* that satisfies
 - (a) $\{P\} x := x + 1; x := x + 1 \{x \ge 0\}.$
 - (b) $\{P\} x := x + y; y := 2 \times x \{y \ge 0\}.$
 - (c) $\{P\} x := y; y := x \{x = A \land y = B\}.$
 - (d) $\{P\} x := E; x := E \{x = E\}.$

Solution:

(a) $wp (x := x + 1; x := x + 1) (x \ge 0)$ $= wp (x := x + 1) (wp (x := x + 1) (x \ge 0))$ $= wp (x := x + 1) (x + 1 \ge 0)$ $= (x + 1) + 1 \ge 0$ $= x \ge -2 .$

```
(b)
                  wp (x := x + y; y := 2 \times x) (y \ge 0)
               = wp (x := x + y) (wp (y := 2 \times x) (y \ge 0))
               = wp (x := x + y) (2 \times x \ge 0)
               = 2 \times (x + y) \ge 0.
(c)
                   wp (x := y; y := x) (x = A \land y = B)
               \equiv wp (x := y) (wp (y := x) (x = A \land y = B))
               \equiv wp (x \coloneqq y) (x = A \land x = B)
               \equiv y = A \wedge y = B
               \equiv y = A = B.
(d)
                   wp(x := E; x := E)(x = E)
               \equiv wp (x \coloneqq E) (wp (x \coloneqq E) (x = E))
               \equiv wp (x \coloneqq E) ((x = E)[x \setminus E])
               \equiv wp (x \coloneqq E) (E = E[x \setminus E])
               \equiv (E = E[x \setminus E])[x \setminus E]
               \equiv E[x \setminus E] = (E[x \setminus E])[x \setminus E] .
     The equation certainly does not hold in general. One example where it does hold is E = (-x) \uparrow 0, for
     which we have:
              E[x \setminus E]
               =(-((-x)\uparrow 0))\uparrow 0
               = (x \downarrow 0) \uparrow 0
               = 0
```

```
= 0
= (-0) \uparrow 0
= (-((-((-x) \uparrow 0)) \uparrow 0)) \uparrow 0
= (E[x \setminus E])[x \setminus E].
```

Let me know if you have a more interesting E.

10. What is the weakest *P* such that the following holds?

```
var x : lnt
\{P\}
x := x + 1
if x > 0 \rightarrow x := x + 1
| x < 0 \rightarrow x := x + 2
| x = 1 \rightarrow skip
fi
\{x \ge 1\}
```

Solution: Denote the **if** statement by IF. The aim is to compute wp (x := x + 1; IF) ($x \ge 1$). Recall the definition of wp for **if**. We have

 $wp \ \mathsf{IF} \ (x \ge 1) = (x > 0 \Rightarrow wp \ (x \coloneqq x + 1) \ (x \ge 1)) \land \\ (x < 0 \Rightarrow wp \ (x \coloneqq x + 2) \ (x \ge 1)) \land \\ (x = 1 \Rightarrow wp \ skip \ (x \ge 1)) \land \\ (x > 0 \lor x < 0 \lor x = 1) \ .$

We calculate the four conjuncts separately: • $x > 0 \Rightarrow wp (x \coloneqq x + 1) (x \ge 1)$ $\equiv x > 0 \Rightarrow x + 1 \ge 1$ $\equiv x > 0 \Rightarrow x \ge 0$ \equiv True. $x < 0 \Rightarrow wp (x \coloneqq x + 2) (x \ge 1)$ $\equiv x < 0 \Rightarrow x + 2 \ge 1$ $\equiv x < 0 \Rightarrow x \ge -1$ $\equiv \{ (P \Rightarrow Q) = (\neg P \lor Q) \}$ $x \ge 0 \lor x \ge -1$ $\equiv x \ge -1$. $x = 1 \Rightarrow wp \ skip \ (x \ge 1)$ $\equiv x = 1 \Rightarrow x \ge 1$ \equiv True . • Furthermore, $x > 0 \lor x < 0 \lor x = 1$ simplifies to $x \neq 0$. Therefore, wp IF ($x \ge 1$) = $True \land x \ge -1 \land True \land x \ne 0$ $= x \ge -1 \wedge x \ne 0$. Finally, recall what we want to compute: $wp (x \coloneqq x + 1; \mathsf{IF}) (x \ge 1)$ $= wp (x := x + 1) (wp \text{ IF } (x \ge 1))$ $= wp (x := x + 1) (x \ge -1 \land x \ne 0)$ $= x + 1 \ge -1 \land x + 1 \ne 0$ $= x \ge -2 \wedge x \ne -1$.

11. Two programs S_0 and S_1 are equivalent if, for all Q, $wp S_0 Q = wp S_1 Q$. Show that the two following programs are equivalent.

 $\begin{array}{l} \text{if } B_0 \rightarrow S_0 \mid B_1 \rightarrow S_1 \text{ fi}; S \\ \text{if } B_0 \rightarrow S_0; S \mid B_1 \rightarrow S_1; S \text{ fi} \end{array}$

Solution:

$$\begin{array}{l} wp \left(\mathbf{if} \ B_0 \rightarrow S_0 \ \middle| \ B_1 \rightarrow S_1 \ \mathbf{fi}; S \right) Q \\ = & \left\{ \begin{array}{l} \text{definition of } wp \end{array} \right\} \\ wp \left(\mathbf{if} \ B_0 \rightarrow S_0 \ \middle| \ B_1 \rightarrow S_1 \ \mathbf{fi} \right) \left(wp \ S \ Q \right) \\ = & \left\{ \begin{array}{l} \text{definition of } wp \end{array} \right\} \\ \left(B_0 \Rightarrow wp \ S_0 \ (wp \ S \ Q) \right) \land \\ \left(B_1 \Rightarrow wp \ S_1 \ (wp \ S \ Q) \right) \land \\ \left(B_1 \Rightarrow wp \ S_1 \ (wp \ S \ Q) \right) \land \left(B_0 \lor B_1 \right) \\ = & \left\{ \begin{array}{l} \text{definition of } wp \end{array} \right\} \\ \left(B_0 \Rightarrow wp \ (S_0; S) \ Q \right) \land \\ \left(B_1 \Rightarrow wp \ (S_1; S) \ Q \right) \land \left(B_0 \lor B_1 \right) \\ = & \left\{ \begin{array}{l} \text{definition of } wp \end{array} \right\} \\ \left(B_1 \Rightarrow wp \ (S_1; S) \ Q \right) \land \left(B_0 \lor B_1 \right) \\ = & \left\{ \begin{array}{l} \text{definition of } wp \end{array} \right\} \\ wp \left(\mathbf{if} \ B_0 \rightarrow S_0; S \ \middle| \ B_1 \rightarrow S_1; S \ \mathbf{fi} \right) Q \end{array} . \end{array}$$

12. Consider the two programs:

$$\begin{split} \mathsf{IF}_0 &= \mathbf{if} \ B_0 \to S_0 \mid B_1 \to S_1 \ \mathbf{fi} \ , \\ \mathsf{IF}_1 &= \mathbf{if} \ B_0 \to S_0 \mid B_1 \land \neg B_0 \to S_1 \ \mathbf{fi} \ . \end{split}$$

Show that for all Q, $wp \ \mathsf{IF}_0 \ Q \Rightarrow wp \ \mathsf{IF}_1 \ Q$.

Solution: Firstly, we show that $B_0 \vee (B_1 \wedge \neg B_0) = B_0 \vee B_1$.

 $B_0 \lor (B_1 \land \neg B_0)$ $= \begin{cases} \text{distributivity} \\ (B_0 \lor B_1) \land (B_0 \lor \neg B_0) \end{cases}$ $= (B_0 \lor B_1) \land True$ $= B_0 \lor B_1 .$

Secondly, recall that

- conjunction is monotonic, that is, $(P_0 \land Q) \Rightarrow (P_1 \land Q)$ if $P_0 \Rightarrow P_1$;
- implication is anti-monotonic in its first argument, that is $(P_0 \Rightarrow Q) \Rightarrow (P_1 \Rightarrow Q)$ if $P_1 \Rightarrow P_0$.

Therefore we have

 $\begin{array}{l} wp \ (\mathbf{if} \ B_0 \rightarrow S_0 \ | \ B_1 \rightarrow S_1 \ \mathbf{fi}) \ Q \\ = (B_0 \Rightarrow wp \ S_0 \ Q) \land (B_1 \Rightarrow wp \ S_1 \ Q) \land (B_0 \lor B_1) \\ = \ \left\{ \ \mathrm{since} \ B_0 \lor (B_1 \land \neg B_0) = B_0 \lor B_1 \ \right\} \\ (B_0 \Rightarrow wp \ S_0 \ Q) \land (B_1 \Rightarrow wp \ S_1 \ Q) \land (B_0 \lor (B_1 \land \neg B_0)) \\ \Rightarrow \ \left\{ \ \mathrm{since} \ B_1 \land \neg B_0 \Rightarrow B_1, (\mathrm{anti-})\mathrm{monotonicity} \ \mathrm{as} \ \mathrm{discussed} \ \mathrm{above.} \ \right\} \\ (B_0 \Rightarrow wp \ S_0 \ Q) \land (B_1 \land \neg B_0 \Rightarrow wp \ S_1 \ Q) \land (B_0 \lor (B_1 \land \neg B_0)) \\ \Rightarrow \ \left\{ \ \mathrm{since} \ B_1 \land \neg B_0 \Rightarrow B_1, (\mathrm{anti-})\mathrm{monotonicity} \ \mathrm{as} \ \mathrm{discussed} \ \mathrm{above.} \ \right\} \\ (B_0 \Rightarrow wp \ S_0 \ Q) \land (B_1 \land \neg B_0 \Rightarrow wp \ S_1 \ Q) \land (B_0 \lor (B_1 \land \neg B_0)) \\ = \ wp \ (\mathbf{if} \ B_0 \rightarrow S_0 \ | \ B_1 \land \neg B_0 \rightarrow S_1 \ \mathbf{fi}) \ Q \ . \end{array}$

Properties of Weakest Precondition

13. Prove that (wp S $Q_0 \lor wp S Q_1$) $\Rightarrow wp S (Q_0 \lor Q_1)$.

Solution: Recall from propositional logic that $(P \lor Q) \Rightarrow R$ iff. $(P \Rightarrow R) \land (Q \Rightarrow R)$.

 $\begin{array}{l} (wp \ S \ Q_0 \lor wp \ S \ Q_1) \Rightarrow wp \ S \ (Q_0 \lor Q_1) \\ \equiv & \{ \ \text{said property above} \ \} \\ (wp \ S \ Q_0 \Rightarrow wp \ S \ (Q_0 \lor Q_1)) \land \\ (wp \ S \ Q_1 \Rightarrow wp \ S \ (Q_0 \lor Q_1)) \\ \Leftarrow & \{ \ \text{Monotonicity} \ \} \\ (Q_0 \Rightarrow (Q_0 \lor Q_1)) \land (Q_1 \Rightarrow (Q_0 \lor Q_1)) \\ \equiv \ True \ . \end{array}$

14. Recall the definition of Hoare triple in terms of *wp*:

$$\{P\} S \{Q\} = P \Rightarrow wp S Q$$
.

Prove that

1.
$$({P} S {Q} \land (P_0 \Rightarrow P)) \Rightarrow {P_0} S {Q}.$$

2. ${P} S {Q} \land {P} S {R} \equiv {P} S {Q \land R}$

Solution:

```
1. We reason:
                \{P_0\} S \{Q\}
              \equiv { definition of Hoare triple }
                P_0 \Rightarrow wp \ S \ Q
              \leftarrow \{ \text{ since } P_0 \Rightarrow P \}
                P \Rightarrow wp \ S \ Q
              \equiv { definition of Hoare triple }
                \{P\}S\{Q\}.
2. We reason:
                \{P\} S \{Q \land R\}
              \equiv \quad \{ \text{ definition of Hoare triple } \}
                P \Rightarrow wp S (Q \land R)
              \equiv { distributivity over conjunction }
                P \Rightarrow (wp \ S \ Q \land wp \ S \ R)
              \equiv \{ \text{ since } (P \Rightarrow (X \land Y)) \equiv (P \Rightarrow X) \land (P \Rightarrow Y) \}
                (P \Rightarrow wp \ S \ Q) \land (P \Rightarrow wp \ S \ R)
              \equiv { definition of Hoare triple }
                \{P\} S \{Q\} \land \{P\} S \{R\}.
```

15. Recall the weakest precondition of **if**:

 $wp (\mathbf{if} \ B_0 \rightarrow S_0 \mid B_1 \rightarrow S_1 \ \mathbf{fi}) \ Q = (B_0 \Rightarrow wp \ S_0 \ Q) \land (B_1 \Rightarrow wp \ S_1 \ Q) \land (B_0 \lor B_1) \ .$

Prove that

$$\{P\} \text{ if } B_0 \to S_0 \mid B_1 \to S_1 \text{ fi} \{Q\} \equiv \{P \land B_0\} S \{Q\} \land \{P \land B_1\} S \{Q\} \land (P \Rightarrow (B_0 \lor B_1))$$

Note: having proved so shows that the way we annotate if is correct:

 $\begin{array}{l} \{P\} \\ \text{if } B_0 \rightarrow \{P \land B_0\} S_0 \{Q\} \\ \mid B_1 \rightarrow \{P \land B_1\} S_1 \{Q\} \\ \text{fi} \\ \{Q\} \end{array} .$

Solution: We reason: $\{P\}$ if $B_0 \rightarrow S_0 \mid B_1 \rightarrow S_1$ fi $\{Q\}$ = { definition of Hoare triple } $P \Rightarrow wp$ (if $B_0 \rightarrow S_0 \mid B_1 \rightarrow S_1$ fi) Q= { definition of *wp* } $P \Rightarrow ((B_0 \Rightarrow wp \ S_0 \ Q) \land (B_1 \Rightarrow wp \ S_1 \ Q) \land (B_0 \lor B_1))$ = $\{ \text{ since } (P \Rightarrow (Q \land R)) \equiv (P \Rightarrow Q) \land (P \Rightarrow R) \}$ $(P \Rightarrow (B_0 \Rightarrow wp S_0 Q)) \land$ $(P \Rightarrow (B_1 \Rightarrow wp S_1 Q)) \land$ $(P \Rightarrow (B_0 \lor B_1))$ $= \{ \text{ since } (P \Rightarrow (Q \Rightarrow R)) \equiv ((P \land Q) \Rightarrow R) \}$ $((P \land B_0) \Rightarrow wp S_0 Q) \land$ $((P \land B_1) \Rightarrow wp S_1 Q) \land$ $(P \Rightarrow (B_0 \lor B_1))$ { definition of Hoare triple } $\{P \land B_0\} S_0 \{Q\} \land$ $\{P \land B_1\} S_1 \{Q\} \land$ $(P \Rightarrow (B_0 \lor B_1))$.

- 16. Recall that *wp S Q* stands for "the weakest precondition for program *S* to terminate in a state satisfying *Q*". What programs *S*, if any, satisfy each of the following conditions?
 - 1. wp S True = True.
 - 2. wp S True = False.
 - 3. wp S False = True.
 - 4. wp S False = False.

Solution:

- 1. *wp S True* = *True*: *S* is a program that always terminates.
- 2. *wp S True* = *False*: *S* is a program that never terminates.
- 3. *wp S False* = *True*: there is no such a program *S*.
- 4. *wp S False* = *False*: *S* can be any program.