Programming Languages: Imperative Program Construction Practicals 5: Loop Constuction I

Shin-Cheng Mu

Autumn Term, 2024

1. Derive a program for the computation of square root.

```
con N : Int \{0 \le N\}
var x : Int
squareroot
\{x^2 \le N < (x+1)^2\}.
```

- 2. For each implication below, find a substitution (on variables) such that the implication holds. Note:
 - Names starting with small letters (x, a, b, etc) are variables, while A, B, and C are constants. E denotes an expression.
 - We assume that all variables and constants are Int.
 - For some questions, there could be more than one substitutions that work.
 - (a) $(x = 2 \times E)[? \ ?] \Leftarrow x = E$, where x does not occur free in E.
 - (b) $(x = 2 \times E + A)[? ?] \Leftarrow x = E$, where x does not occur free in E.
 - (c) $(x = f E)[? ?] \Leftarrow x = E$, for some function f. Again, x does not occur free in E.
 - (d) $(x = A)[? \ ?] \Leftarrow x = 2 \times A + B$.
 - (e) $(A = 2 \times b \times x + c)$ [?\?] $\Leftarrow A = b \times x + c \wedge ...$ You may need to discover an additional condition in ... to make the implication valid.
 - (f) $(A = B \times x + B + C)[? \setminus ?] \Leftarrow A = B \times x + C$.
 - (g) $(A = B \times x / 2 + 2 \times C)$ [?\?] $\Leftarrow A = B \times x + C \wedge ...$ You will need a side condition. Note that (×) and (/) are left-associative. That is, $B \times X / C$ is interpreted as $(B \times X) / C$.
- 3. **The Zune problem**. Let D be the number of days since 1st January 1980. What is the current year? Assume that there exists a function $daysInYear: Int \rightarrow Int$ such that daysInYear: i, with $i \ge 1980$, yields the number of days in year i, which is always a positive number. Derive a program having two variables y and d such that, upon termination, y is the current year, and d is the number of days since the beginning of this year.
 - (a) How would you specify the problem? The specification may look like:

```
con D: Int \{0 \le D\}
var y, d: Int
zune
\{???\}
```

What would you put as the postcondition? In this postcondition, is 1st January 1980 day 0 or 1?

(b) Derive the program.

4. Assuming that $-\infty$ is the identity element of (\uparrow). Derive a solution for:

```
con N: Int \{N \geqslant 0\}
con A: array [0..N) of Int
var r: Int
S
\{r = \langle \uparrow i: 0 \leqslant i < N: A[i] \rangle \}.
```

5. Derive a solution for:

```
con N, X : Int \{0 \le N\}

con A : array [0..N) of Int

var r : Int

S

\{r = \langle \Sigma i : 0 \le i < N : A [i] \times X^i \rangle \}.
```