Programming Languages: Imperative Program Construction
Practicals 6: Loop Constuction Il

Shin-Cheng Mu

Autumn Term, 2024

. Recall the maximum segment sum problem. What if we want to compute the maximum sum of non-empty
segments?

(a) How would you write the specification? Does the specification still make sense with N being constrained
only by 0 < N?

(b) Derive a program solving the problem, assuming —oo to be the identity of (7).

. Let n: Nat. Trying explaining why the following “splitting off” step is wrong by trying out the range calculation.
(Zi:n+1<i<n+1:f[i])

= {splittingoffi=n}
(Zitn+1<i<n:f[i])+f[n] .

. Derive a solution for:

con N : Int{N > 0};a: array [0..N) of Int
var r: Int

s
{r=(1ij:0<i<j<N:alil—al])} .

. Derive a solution for:

con N : Int{N > 1};a: array [0..N) of Int

var r: Int

S

{r=(#ij:0<i<j<N:a[i] xa[jl>0)} .

. Consider again the maximum segment sum problem and its derivation in the handouts. Since the computation
of r requires the value of the subterm (1 p: 0 < p < n+1:sum p (n+ 1)), some would think it makes more
sense to use the following loop invariant Py, A P; A Q, where

Po=r=(tpq:0<p<q<n:sumpgq)) ,
Pi=s=(tp:0<p<n+l:sump(n+1)),
Q=0<n<N .

What situation could you run into, if you try to construct a program using the invariant above? What if the
array is non-empty, thatis, 1 < N?



