
Programming Languages: Imperative Program Construction
Practicals 6: Loop Constuction II

Shin-Cheng Mu

Autumn Term, 2024

1. Recall the maximum segment sum problem. What if we want to compute the maximum sum of non-empty
segments?

(a) How would you write the specification? Does the specification still make sense with N being constrained
only by 0 ⩽ N?

(b) Derive a program solving the problem, assuming −∞ to be the identity of (↑).

2. Let n :Nat . Trying explaining why the following “splitting off” step is wrong by trying out the range calculation.

⟨Σi : n + 1 ⩽ i < n + 1 : f [i]⟩
= { splitting off i = n }
⟨Σi : n + 1 ⩽ i < n : f [i]⟩ + f [n] .

3. Derive a solution for:

con N : Int{N ⩾ 0}; a : array [0..N)of Int
var r : Int
S
{r = ⟨ ↑ i, j : 0 ⩽ i < j < N : a[i]− a[j] ⟩} .

4. Derive a solution for:

con N : Int{N ⩾ 1}; a : array [0..N)of Int
var r : Int
S
{r = ⟨ #i, j : 0 ⩽ i < j < N : a[i]× a[j] ⩾ 0 ⟩} .

5. Consider again the maximum segment sum problem and its derivation in the handouts. Since the computation
of r requires the value of the subterm ⟨↑ p : 0 ⩽ p ⩽ n + 1 : sum p (n + 1)⟩, some would think it makes more
sense to use the following loop invariant P0 ∧ P1 ∧ Q, where

P0 ≡ r = ⟨↑ p q : 0 ⩽ p ⩽ q ⩽ n : sum p q⟩) ,
P1 ≡ s = ⟨↑ p : 0 ⩽ p ⩽ n + 1 : sum p (n + 1)⟩ ,
Q ≡ 0 ⩽ n ⩽ N .

What situation could you run into, if you try to construct a program using the invariant above? What if the
array is non-empty, that is, 1 ⩽ N?

1


