Programming Languages: Imperative Program Construction
Practicals 6: Loop Constuction Il

Shin-Cheng Mu

Autumn Term, 2024

1. Recall the maximum segment sum problem. What if we want to compute the maximum sum of non-empty
segments?

(a) How would you write the specification? Does the specification still make sense with N being constrained
only by 0 < N?

Solution: The specification could be:

con N:Int {0 < N}
con f :array [0..N) of Int

S
{r=(pPq:0<p<qg<N:sumpgq)},

where the definition of sum is unchanged:
sumpq={(Xi:p<i<q:f[i]) .

When N = 0,0 < p< g < Nreduces to False and r should be —oco. The specification is fine if —co is a
value allowed in our program.

(b) Derive a program solving the problem, assuming —oo to be the identity of (1).

Solution: Like in the handouts, we start with

Po
Q

r={Tpq:0<p<q<n:sumpq) ,
0<n<N,

and use N — n as bound.

To find out what we can do with r before n:= n+ 1, we calculate:
(tpq:0<p<q<n:sumpq)[n\n+1]

=(Tpq:0<p<qg<n+l:sumpq)
= {splitoff g = n+ 1 (safe since 0 < n) }

Tpg:0<p<g<n:sumpq)T{(tp:0<p<n+1:sump(n+1)) .
Therefore we add another invariant:

Pi=s=(Tp:0<p<n:sumpn) .

Variables r, s, n can be initialised by —o0, —00, 0. To find out how to update s, we calculate:




tp:0<p<n:sumpn)[n\n+1]

=(Tp:0<p<n+1:sump(n+1))

= { split off p = n (safe since 0 < n) }
Tp:0<p<n:sump(n+1))Tsumn(n+1)

= { definition of sum, one-point rule }
tp:0<p<n:sump(n+1))1f[n]

= { split off i = nin definition of sum, (safe since 0 < n) }
(tp:0< p<nssumpne+fln)) 1 fn]

= {pnotfreeinf[n] }
(1p:0<p<n:sumpn)+fln)+ fln] .

The constructed program is:

con N:Int {0 < N}
con f :array [0..N) of Int
var r,s,n: Int

r,s,n:=—00,—00,0
{Py A Py A Q bnd: N — n}
don#N—
s:=(s+f[n]) 1 fIn]
r=rts
n:=n+1
od

{r=(Tpq:0<p<qg<N:sumpq)}

2. Let n: Nat. Trying explaining why the following “splitting off” step is wrong by trying out the range calculation.

(Zi:n+1<i<n+1:f[i])
= {splitting off i = n}
(Zi:n+1<i<n:f[i])+f[n] .

Solution: Let’s calculate:

n+1<i<n+1
=n+1<iAN(i<nVi=n)
=n+1<i<nV{n+1<iANi=n)
=n+1<i<nV False
=n+1<i<n.

The term n+ 1 < i A i = nsimplifies to False, not i = n, which the “splitting off” step might expect.
What we do have is

(Zitn+1<i<n+1:f[])
= (Zitn+1<i<n:f[i]) .

In fact, both expressions evalulate to 0.

Page 2



3. Derive a solution for:

con N : Int{N > 0};a: array [0..N) of Int
var r: Int
S

{r=(1ij:0<i<j<N:alil]—a[j])} .

Solution: Replace constant N by variable n, and use a loop that increments n in each step. Use the follow-
ing P as a candidate of the loop invariant

P=r=(1ij:0<i<j<n:ali]—a[])
To find out how to update r such that we may increment n, we calculate (assuming 0 < n):
(tij:0<i<j<n+1:a[i]l—a[j])
{ since 0 < n,splitoff j=n }
(tij:0<i<j<n:alil—a[j])1{(ti:0<i<n:ali]—a[n])
{ nnot bounded }
(tij:0<i<j<n:alil—alj])T({(1Ti:0<i<n:a[i])— a[n]).

So we strengthen the invariant by adding a variable s satisfying
Q=s=(1i:0<i<n:aqa[i]).

The invariantis PA QA0 < n< N.

The program:

con N:Int {0 < N}
con a:array [0..N) of Int
var r,s,n: Int

r,s,n:=—o00,—00,0 -- Pf0
{PAQAOn< N,bnd: N —n} -- Pf1
don#N—

r,s,n:=r71(s—aln]),sTaln],n+1 -- Pf2
od

{r=(1ij:0<i<j<N:ali]—a[j])} - Pf3
Here | am omitting other proofs and presenting only Pf2:

Pf2

(PAQANOL n< N)r,s,n\r T (s—a[n]), st a[n], n+1]
=rft(s—aln)=(tij:0<i<j<n+T1:a[i]l—alj])A
stan={(ti:0<i<n+1:ali]) AOLn+1<N
< { splitoffi=n }
P (s —alnl) = (170 <i<j<nsalil—aljl)+(1i:0<i<nsalil)—aln)) A
staln]=(ti:0<i<n:ali]y+aln] ANO<n<N
< r=(1ij:0<i<j<n:ali]l—aljl)A
s=(1i:0<i<n:ali]) AOSn< N An#N
PAQAOLSn< NAnIN.

Page 3



4. Derive a solution for:

con N: Int{N > 1};a: array [0..N) of Int
var r: Int
S

{r={#i,j:0<i<j<N:a[i] xa[j]>0)} .

Solution: Replace constant N by variable n, and use a loop that increments n in each step. Let
P=r=(#,j:0<i<j<n:ali]xa[j]>0).

We first attempt to use P A 0 < n < N as the invariant and, apparently, N — n as the bound. To find out
how to update r such that we may increment n, we calculate (assuming 0 < n):

(#i,j:0<i<j<n+1:ali] xa[j]>0)
= { since 0 < n, splitting off j = n }
(#ij:0<i<j<n:alil xaljl >0)+(#i:0<i<n:ali] xa[n] >0).

To further simplify (#i: 0 < i < n:a[i] x a[n] > 0), we do a case analysis on a[n]:

(#i:0<i<n:a[il] xa[n] 20)= (#i:0<i<n:al[i] 20), if a[n] > 0;
n, if a[n] = 0;
(#i:0<i<n:a[i]<0),ifaln] <O.

Thus we strengthen the invariant by adding two more variables:

Q] = 5 = <#I

Q = s;=(#i:
The invariantisP A Q A Q@ A 0 < n<N.
The program:

con N: Int{N > 1};a: array [0..N) of Int
varr,s;, sy, n: Int

r,81,8,n = 0,0,0,0
{(PAQ AQAOSnEN, bnd:N— n}

don< N —
ifaln] >0—r,s;,n:=r+s;, s;+1, n+1
| a[n]=0—=r 51,8, ni=r+n s1+1, 55+1, n+1
| aln] <0—=r, 5, n:=r+s, s5+1, n+1
fi
od

{r=(#ij:0<i<j<N:ali]xaljl]>0)} .

5. Consider again the maximum segment sum problem and its derivation in the handouts. Since the computation
of r requires the value of the subterm (1 p: 0 < p < n+1:sum p (n+ 1)), some would think it makes more
sense to use the following loop invariant Py A Py A Q, where

Po=r=(tpq:0<p<q<n:sumpgq) ,
Pi=s=(Tp:0<p<n+T:sump(n+1)),
Q=0<n<N .

Page 4



What situation could you run into, if you try to construct a program using the invariant above? What if the
array is non-empty, that is, 1 < N?

Solution: With 0 < N we would run into problem initialising s. The initialisation may look like:

r,s,n:=0,?,0
{Py AP ANQ}

and the value of s should be

Pi[r,s,n\0,?,0]
?=(tp:0<p<1:sumpl)
?=sum01+sum11
?=f[0]+0

?=f[0] .

However, f[0] does not have a value when N = 0.
When we have 1 < N instead of 0 < N we will be able to initialize the variables by r, s, n:=0, f[0],0. When

we construct the loop body, knowing that Pj[m\n+ 1] =r=r1 (T p: 0 < p < (n+1): sum p (n+ 1)), the
constructed loop body would be:

{PbAPLAOLS NS NANnZN}
ri=r1s
{P[M\n+1] AP, A0 n+1< N}
s:=(s+f[n+1])1T0
{(Po AP A0S n< N)[n\n+ 1]}
n:=n+1
(P AP AO< n< N}
Note that the order of assignments is different from that in the handouts.

However, upon termination (that is, n = N) we would need to establish
s=(Tp:0<p<N+1:sump(N+1)),

which we cannot do because f[N] is not defined.

It is possible to fix all these: for example, terminate the loop one step earlier and do some post processing,
and put the entire loop under an if to ensure that 1 < N. The resulting program would not be as clean as
the one in the handouts, though.

Page 5



