Programming Languages: Imperative Program Construction Practicals 7: Loop Constuction III

Shin-Cheng Mu

Autumn Term, 2024

1. Solve:

 $\begin{array}{l} \operatorname{con} A, B : Int\{A \ge 0 \land B \ge 0\};\\ \operatorname{var} r : Int;\\ S\\ \{r = A \times B\} \end{array},\end{array}$

using only (/2) (integral division by two), $(\times 2)$, even, odd, addition, and subtraction.

Solution: Use the invariant $r + a \times b = A \times B \land 0 \leq a \land 0 \leq b$, with initialisation r, a, b := 0, A, B. If b is even: $r + a \times b$ $= r + a \times 2 \times (b/2)$ $= r + (a \times 2) \times (b/2).$ If *b* is odd: $r + a \times b$ $= r + a \times (1 + (b - 1))$ $= (r + a) + a \times (b - 1).$ The program: **con** $A, B : Int \{ A \ge 0 \land B \ge 0 \}$ **var** r, a, b : Intr, a, b := 0, A, B $\{r + a \times b = A \times B \land 0 \leqslant a \land 0 \leqslant b, bnd : b\}$ **do** $b > 0 \land even b \rightarrow a, b := a \times 2, b/2$ $b > 0 \land odd \ b \rightarrow r, \ b := r + a, \ b - 1$ od $\{r = A \times B\}$.

2. The sum of all digits of a natural number can be computed by

 $sd \ 0 = 0$ $sd \ x = x \% \ 10 + sd \ (x \ / \ 10) \ , for |x > 0|,$

where (/) is integral division and a % b computes the remainder of a / b. Solve

 $con N : Int \{0 \le N\}$ var r : Int ? $\{r = sd N\}$

Solution: Introduce an auxiliary variable *n* and use the invariant

 $r + sd \ n = sd \ N \land 0 \leqslant n \ .$ For n > 0 we have $r + sd \ n$ $= r + x \% \ 10 + sd \ (x \ / \ 10) \ .$

The program is:

 $con N : Int \{ 0 \le N \}$ var r, n : Int r, n := 0, N $\{r + sd \ n = sd \ N \land 0 \le n, bnd : n \}$ $do \ n \neq 0 \rightarrow r, n := r + n \% \ 10, n / \ 10 \quad od$ $\{r = sd \ N \}$

3. Given integral number *N*, derive a program that computes the number of factors 3 of *N*. For example, when $N = 945 = 3^3 \times 5 \times 7$, the program should store the value 3 in variable *r*. You are allowed to use integral division and (%) (the operator for remainders).

con N : Int {N...} -- what should the constraint on N be to make the problem easier?
var r : Int
?
{...r = ...how do you write the post condition?}

Solution: Introduce an auxiliary variable *n*. Let the postcondition be

 $3^r \times n = N \wedge n \% \ 3 \neq 0$.

Use the invariant

 $3^r \times n = N \wedge 0 < n$,

and let n % 3 = 0 be the guard of the loop. When n % 3 = 0 we have $3^{r} \times n$ $= \{ \text{ division and remainder: } 3 \times n / 3 + n \% 3 \}$ $3^{r} \times (3 \times n / 3 + n \% 3)$ $= \{ n \% 3 = 0 \}$ $3^{r} \times 3 \times n / 3$ $= 3^{r+1} \times n / 3 .$

The program is shown below. Note that we need 0 < n to prove that the bound decreases. Therefore we want N > 0.

 $con N : Int \{N > 0\}$ var r, n : Intr, n := 0, N $\{3^r × n = N \land 0 < n, bnd : n\}$ $do n % 3 = 0 <math>\rightarrow$ r, n := r + 1, n / 3 od $\{3^r × n = N \land n \% 3 \neq 0\}$

4. Solve:

 $\begin{array}{l} \operatorname{con} N, X : Int \left\{ 0 \leqslant N \right\} \\ \operatorname{con} f : \operatorname{array} \left[0..N \right) \operatorname{of} Int \\ \operatorname{var} r : Int \\ ? \\ \left\{ r = \left\langle \Sigma i : 0 \leqslant i < N : f[i] \times X^i \right\rangle \right\} \end{array}$

We have seen this problem before but let us do it slightly differently this time. (This problem is not that much about associativity, but a practice constructing and using recursive function definition.)

(a) Define $g \ n = \langle \Sigma i : n \leq i < N : f[i] \times X^{i-n} \rangle$ for $0 \leq n \leq N$, derive a recursive definition of g.

Solution: For an easy base case, $g \ N = \langle \Sigma i : N \leq i < N : f[i] \times X^{i-n} \rangle = 0$. For $0 \leq n < N$ we calculate: $\begin{array}{l} g \ n \\ = \langle \Sigma i : n \leq i < N : f[i] \times X^{i-n} \rangle \\ = \{ \text{ since } 0 \leq n < N, \text{ split off } i = n \} \\ f[n] \times X^{n-n} + \langle \Sigma i : n+1 \leq i < N : f[i] \times X^{i-n} \rangle \\ = \{ \text{ with } n+1 \leq i < N, \text{ arithmetics } \} \\ f[n] + \langle \Sigma i : n+1 \leq i < N : f[i] \times X^{i-(n+1)} \times X \rangle \\ = \{ \text{ distributivity } \} \\ f[n] + X \times \langle \Sigma i : n+1 \leq i < N : f[i] \times X^{i-(n+1)} \rangle \\ = f[n] + X \times g \ (n+1) \ . \end{array}$ Therefore we conclude: $\begin{array}{c} g \ N = 0 \\ g \ n = f[n] + X \times g \ (n+1), \text{ if } 0 \leq n < N. \end{array}$

(b) Use r = g n as the main invariant, construct a program that solves the problem.

Solution: Introduce a new variable *n* and use $r = g n \land 0 \le n \le N$ as the main invariant, and use $n \ne 0$ as the loop guard since r = g 0 is the postcondition we want, which can be satisfied by initialising r, n := 0, N.

We decrease the bound by n := n - 1. To find out how to update *r* we calculate:

 $(g n)[n \setminus n - 1]$ = $f[n-1] + X \times g n$ = $\{r = g n \land 0 \leq n \leq N \land n \neq 0\}$ $f[n-1] + X \times r$.

The resulting program (supplementary proofs omitted for now):

 $\begin{array}{l} \operatorname{con} N, X : Int \{ 0 \leqslant N \} \\ \operatorname{con} f : \operatorname{array} [0..N) \text{ of } Int \\ \operatorname{var} r, n : Int \\ r, n := 0, n \\ \{ r = g \ n \land 0 \leqslant n \leqslant N, bnd : n \} \\ \operatorname{do} n \neq 0 \rightarrow \\ r := f[n-1] + X \times r \\ n := n-1 \\ \operatorname{od} \\ \{ r = \langle \Sigma i : 0 \leqslant i < N : f[i] \times X^i \rangle \} \end{array}$

5. The function *fusc* is defined on natural numbers by:

fusc 0 = 0 fusc 1 = 1 $fusc (2 \times n) = fusc n$ $fusc (2 \times n + 1) = fusc n + fusc (n + 1).$

Derive a program computing *fusc* N for $N \ge 0$. Hint: try *fusc* 78.

Solution: Use the invariant $a \times fusc \ n + b \times fusc \ (n + 1) = fusc \ N \land 0 \leq n \leq N$, which can be established by $a, b, n \coloneqq 1, 0, N$. When n is even (let $n = 2 \times m$): $a \times fusc \ n + b \times fusc \ (n + 1)$ $= a \times fusc \ (2 \times m) + b \times fusc \ (2 \times m + 1)$ $= a \times fusc \ m + b \times fusc \ m + b \times fusc \ (m + 1)$ $= (a + b) \times fusc \ m + b \times fusc \ (m + 1)$ $= (a + b) \times fusc \ (n \ div \ 2) + b \times fusc \ (n \ div \ 2 + 1)$. When n is odd (let $n = 2 \times m + 1$): $a \times fusc \ n + b \times fusc \ (n + 1)$ $= a \times fusc \ n + b \times fusc \ (n + 1)$ $= a \times fusc \ (2 \times m + 1) + b \times fusc \ (2 \times m + 2)$ $= a \times fusc \ m + a \times fusc \ (m + 1) + b \times fusc \ (m + 1)$ $= a \times fusc \ m + (a + b) \times fusc \ (m + 1)$ $= a \times fusc \ (n \ div \ 2) + (a + b) \times fusc \ (n \ div \ 2 + 1).$ When n = 0, we have $b = fusc \ N$. The program: **con** $N : Int \ \{N \ge 0\}$ **var** a, b, n := 1, 0, N $\{a \times fusc \ n + b \times fusc \ (n + 1) = fusc \ N \land 0 \le n \le N, bnd : n\}$ **do** $n > 0 \land even \ n \rightarrow a, n := a + b, n \ div \ 2$ $| n > 0 \land odd \ n \rightarrow b, n := a + b, n \ div \ 2$ **od** $\{b = fusc \ N\}$.

6. Solve:

 $\begin{array}{l} \operatorname{con} N : Int \left\{ 0 \leqslant N \right\} \\ \operatorname{con} f : \operatorname{array} \left[0..N \right) \operatorname{of} Int \\ \operatorname{var} r : Bool \\ ? \\ \left\{ r = \left\langle \exists i : 0 \leqslant i < N : f[i] = 0 \right\rangle \right\} \end{array}$

(a) Define, for $0 \le n \le N$, $g \ n = \langle \exists i : n \le i < N : f[i] = 0 \rangle$. Come up with a recursive definition of g.

Solution: We have $g \ N = False$. For $0 \le n < N$, $g \ n$ $= \langle \exists i : n \le i < N : f[i] = 0 \rangle$ $= \{ \ 0 \le n < N, \text{ split off } i = n \}$ $f[n] = 0 \lor \langle \exists i : n + 1 \le i < N : f[i] = 0 \rangle$ $= f[n] = 0 \lor g (n + 1) .$ Therefore

> $g N \equiv False$ $g n \equiv f[n] = 0 \lor g (n + 1), \text{ if } 0 \leq n < N.$

(b) Try come up with a program that, as soon as a zero is found in the array, terminates without having to scan the entire list. What invariant would you choose?

Solution: Define

 $P \equiv (r \lor g n) = \langle \exists i : 0 \leqslant i < N : f[i] = 0 \rangle .$

and use $P \land 0 \le n \le N$ as the invariant. It can be established by the initialisation $r, n \coloneqq False, 0$. To allow early termination we use $\neg r \land n \ne N$ as the loop guard, since $\neg (\neg r \land n \neq N) \land P \land 0 \leqslant n \leqslant N$ $\equiv \{ \text{de Morgan} \} \}$ $(r \lor n = N) \land P \land 0 \leqslant n \leqslant N$ $\equiv \{ \text{distributivity} \} \}$ $(r \land P \land 0 \leqslant n \leqslant N) \lor (n = N \land P) .$

Consider the branch $n = N \land P$:

 $n = N \land ((r \lor g n) = \langle \exists i : 0 \leq i < N : f[i] = 0 \rangle)$ $\equiv (r \lor g N) = \langle \exists i : 0 \leq i < N : f[i] = 0 \rangle$ $\equiv \{g N = False \}$ $r = \langle \exists i : 0 \leq i < N : f[i] = 0 \rangle$

Consider the branch $r \land P \land 0 \leq n \leq N$:

 $\begin{array}{l} r \land P \land 0 \leqslant n \leqslant N \\ \Rightarrow r \land ((r \lor g n) = \langle \exists i : 0 \leqslant i < N : f[i] = 0 \rangle) \\ \equiv & \{ \text{ replace } r \text{ by } True, \text{ and } True \lor g n = True \} \\ & r \land \langle \exists i : 0 \leqslant i < N : f[i] = 0 \rangle \\ \Rightarrow r = \langle \exists i : 0 \leqslant i < N : f[i] = 0 \rangle \end{array} .$

Therefore $\neg (\neg r \land n \neq N) \land P \land 0 \leq n \leq N$ implies $r = \langle \exists i : 0 \leq i < N : f[i] = 0 \rangle$. Let the bound be N - n and let the last statement of the loop be n := n + 1. Consider:

0]

$$(r \lor g n)[n \land n+1]$$

= $r \lor g (n+1)$

If we apply a substitution $[r \setminus r \lor f[n] = 0]$ we get

$$((r \lor g n)[n \setminus n + 1])[r \setminus r \lor f[n] =$$

$$= (r \lor g (n + 1))[r \setminus r \lor f[n] = 0]$$

$$= (r \lor f[n] = 0) \lor g (n + 1)$$

$$= \{ \text{ disjunction associative } \}$$

$$r \lor (f[n] = 0 \lor g (n + 1))$$

$$= \{ \text{ calculation above } \}$$

$$r \lor g n .$$

Therefore we get $(P[n \setminus n + 1])[r \setminus r \lor f[n] = 0] = P$. In conclusion, the program can be

```
con N : Int \{0 \leq N\}
con f : array [0..N) of Int
var r : Bool
var n : Int
r, n := False, 0
\{P \land 0 \leq n \leq N, bnd : N - n\}
do \neg r \land n \neq N \rightarrow
r := r \lor f[n] = 0
n := n + 1
od
\{r = \langle \exists i : 0 \leq i < N : f[i] = 0 \rangle\}
```

Supplementary proofs omitted for now.