
Programming Languages: Imperative Program Construction
Practicals 7: Loop Constuction III

Shin-Cheng Mu

Autumn Term, 2024

1. Solve:

con A,B : Int{A ⩾ 0 ∧ B ⩾ 0};
var r : Int ;
S
{r = A× B} ,

using only (/2) (integral division by two), (×2), even, odd , addition, and subtraction.

Solution: Use the invariant

r + a× b = A× B ∧ 0 ⩽ a ∧ 0 ⩽ b,

with initialisation r , a, b := 0,A,B. If b is even:

r + a× b

= r + a× 2× (b/2)

= r + (a× 2)× (b/2).

If b is odd:

r + a× b

= r + a× (1 + (b − 1))

= (r + a) + a× (b − 1).

The program:

con A,B : Int{A ⩾ 0 ∧ B ⩾ 0}
var r , a, b : Int

r , a, b := 0,A,B
{r + a× b = A× B ∧ 0 ⩽ a ∧ 0 ⩽ b, bnd : b}
do b > 0 ∧ even b → a, b := a× 2, b/2
| b > 0 ∧ odd b → r , b := r + a, b − 1

od
{r = A× B} .

2. The sum of all digits of a natural number can be computed by

1

sd 0 = 0
sd x = x % 10 + sd (x / 10) , for|x > 0|,

where (/) is integral division and a % b computes the remainder of a / b. Solve

con N : Int {0 ⩽ N}
var r : Int
?
{r = sd N }

Solution: Introduce an auxiliary variable n and use the invariant

r + sd n = sd N ∧ 0 ⩽ n .

For n> 0 we have

r + sd n
= r + x % 10 + sd (x / 10) .

The program is:

con N : Int {0 ⩽ N}
var r , n : Int

r , n := 0,N
{r + sd n = sd N ∧ 0 ⩽ n, bnd : n}
do n ̸= 0 → r , n := r + n % 10, n / 10 od
{r = sd N}

3. Given integral number N , derive a program that computes the number of factors 3 of N . For example, when
N = 945 = 33× 5× 7, the program should store the value 3 in variable r . You are allowed to use integral division
and (%) (the operator for remainders).

con N : Int {N . ..} -- what should the constraint on N be to make the problem easier?
var r : Int
?
{…r = …how do you write the post condition?}

Solution: Introduce an auxiliary variable n. Let the postcondition be

3r × n = N ∧ n % 3 ̸= 0 .

Use the invariant

3r × n = N ∧ 0< n ,

and let n % 3 = 0 be the guard of the loop.

When n % 3 = 0 we have

Page 2

3r × n
= { division and remainder: 3× n / 3 + n % 3 }
3r × (3× n / 3 + n % 3)

= { n % 3 = 0 }
3r × 3× n / 3

= 3r+1 × n / 3 .

The program is shown below. Note that we need 0 < n to prove that the bound decreases. Therefore we
want N > 0.

con N : Int {N > 0}
var r , n : Int

r , n := 0,N
{3r × n = N ∧ 0< n, bnd : n}
do n % 3 = 0 → r , n := r + 1, n / 3 od
{3r × n = N ∧ n % 3 ̸= 0}

4. Solve:

con N ,X : Int {0 ⩽ N}
con f : array [0..N) of Int
var r : Int
?
{r = ⟨Σi : 0 ⩽ i < N : f [i]× X i⟩}

We have seen this problem before but let us do it slightly differently this time. (This problem is not that much
about associativity, but a practice constructing and using recursive function definition.)

(a) Define g n = ⟨Σi : n ⩽ i < N : f [i]× X i−n⟩ for 0 ⩽ n ⩽ N , derive a recursive definition of g.

Solution: For an easy base case, g N = ⟨Σi : N ⩽ i<N : f [i]×X i−n⟩ = 0. For 0 ⩽ n<N we calculate:

g n
= ⟨Σi : n ⩽ i < N : f [i]× X i−n⟩
= { since 0 ⩽ n< N , split off i = n }
f [n]× Xn−n + ⟨Σi : n + 1 ⩽ i < N : f [i]× X i−n⟩

= { with n + 1 ⩽ i < N , arithmetics }
f [n] + ⟨Σi : n + 1 ⩽ i < N : f [i]× X i−(n+1) × X⟩

= { distributivity }
f [n] + X × ⟨Σi : n + 1 ⩽ i < N : f [i]× X i−(n+1)⟩

= f [n] + X × g (n + 1) .

Therefore we conclude:

g N = 0
g n = f [n] + X × g (n + 1), if 0 ⩽ n < N .

(b) Use r = g n as the main invariant, construct a program that solves the problem.

Page 3

Solution: Introduce a new variable n and use r = g n ∧ 0 ⩽ n ⩽ N as the main invariant, and use
n ̸= 0 as the loop guard since r = g 0 is the postcondition we want, which can be satisfied by initialising
r , n := 0,N .
We decrease the bound by n := n− 1. To find out how to update r we calculate:

(g n)[n\n− 1]
= f [n− 1] + X × g n
= { r = g n ∧ 0 ⩽ n ⩽ N ∧ n ̸= 0 }
f [n− 1] + X × r .

The resulting program (supplementary proofs omitted for now):

con N ,X : Int {0 ⩽ N}
con f : array [0..N) of Int
var r , n : Int
r , n := 0, n
{r = g n ∧ 0 ⩽ n ⩽ N , bnd : n}
do n ̸= 0 →
r := f [n− 1] + X × r
n := n− 1

od
{r = ⟨Σi : 0 ⩽ i < N : f [i]× X i⟩}

5. The function fusc is defined on natural numbers by:

fusc 0 = 0
fusc 1 = 1
fusc (2× n) = fusc n
fusc (2× n + 1) = fusc n + fusc (n + 1).

Derive a program computing fusc N for N ⩾ 0. Hint: try fusc 78.

Solution: Use the invariant

a× fusc n + b × fusc (n + 1) = fusc N ∧ 0 ⩽ n ⩽ N ,

which can be established by a, b, n := 1, 0,N . When n is even (let n = 2×m):

a× fusc n + b × fusc (n + 1)

= a× fusc (2×m) + b × fusc (2×m + 1)

= a× fusc m + b × fusc m + b × fusc (m + 1)

= (a + b)× fusc m + b × fusc (m + 1)

= (a + b)× fusc (n div 2) + b × fusc (n div 2 + 1).

When n is odd (let n = 2×m + 1):

a× fusc n + b × fusc (n + 1)

= a× fusc (2×m + 1) + b × fusc (2×m + 2)

= a× fusc m + a× fusc (m + 1) + b × fusc (m + 1)

Page 4

= a× fusc m + (a + b)× fusc (m + 1)

= a× fusc (n div 2) + (a + b)× fusc (n div 2 + 1).

When n = 0, we have b = fusc N .

The program:

con N : Int {N ⩾ 0}
var a, b, n : Int

a, b, n := 1, 0,N
{a× fusc n + b × fusc (n + 1) = fusc N ∧ 0 ⩽ n ⩽ N , bnd : n}
do n > 0 ∧ even n → a, n := a + b, n div 2
| n > 0 ∧ odd n → b, n := a + b, n div 2

od
{b = fusc N} .

6. Solve:

con N : Int {0 ⩽ N}
con f : array [0..N) of Int
var r : Bool
?
{r = ⟨∃i : 0 ⩽ i < N : f [i] = 0⟩}

(a) Define, for 0 ⩽ n ⩽ N , g n = ⟨∃i : n ⩽ i < N : f [i] = 0⟩. Come up with a recursive definition of g.

Solution: We have g N = False. For 0 ⩽ n< N ,

g n
= ⟨∃i : n ⩽ i < N : f [i] = 0⟩
= { 0 ⩽ n< N , split off i = n }
f [n] = 0 ∨ ⟨∃i : n + 1 ⩽ i < N : f [i] = 0⟩

= f [n] = 0 ∨ g (n + 1) .

Therefore

g N ≡ False
g n ≡ f [n] = 0 ∨ g (n + 1), if 0 ⩽ n < N .

(b) Try come up with a program that, as soon as a zero is found in the array, terminates without having to
scan the entire list. What invariant would you choose?

Solution: Define

P ≡ (r ∨ g n) = ⟨∃i : 0 ⩽ i < N : f [i] = 0⟩ .

and use P ∧ 0 ⩽ n ⩽ N as the invariant. It can be established by the initialisation r , n := False, 0.
To allow early termination we use ¬ r ∧ n ̸= N as the loop guard, since

Page 5

¬ (¬ r ∧ n ̸= N) ∧ P ∧ 0 ⩽ n ⩽ N
≡ { de Morgan }
(r ∨ n = N) ∧ P ∧ 0 ⩽ n ⩽ N

≡ { distributivity }
(r ∧ P ∧ 0 ⩽ n ⩽ N) ∨ (n = N ∧ P) .

Consider the branch n = N ∧ P :

n = N ∧ ((r ∨ g n) = ⟨∃i : 0 ⩽ i < N : f [i] = 0⟩)
≡ (r ∨ g N) = ⟨∃i : 0 ⩽ i < N : f [i] = 0⟩
≡ { g N = False }

r = ⟨∃i : 0 ⩽ i < N : f [i] = 0⟩ .

Consider the branch r ∧ P ∧ 0 ⩽ n ⩽ N :

r ∧ P ∧ 0 ⩽ n ⩽ N
⇒ r ∧ ((r ∨ g n) = ⟨∃i : 0 ⩽ i < N : f [i] = 0⟩)
≡ { replace r by True, and True ∨ g n = True }

r ∧ ⟨∃i : 0 ⩽ i < N : f [i] = 0⟩
⇒ r = ⟨∃i : 0 ⩽ i < N : f [i] = 0⟩ .

Therefore ¬ (¬ r ∧ n ̸= N) ∧ P ∧ 0 ⩽ n ⩽ N implies r = ⟨∃i : 0 ⩽ i < N : f [i] = 0⟩.
Let the bound be N − n and let the last statement of the loop be n := n + 1. Consider:

(r ∨ g n)[n\n + 1]
= r ∨ g (n + 1)

If we apply a substitution [r\r ∨ f [n] = 0] we get

((r ∨ g n)[n\n + 1])[r\r ∨ f [n] = 0]
= (r ∨ g (n + 1))[r\r ∨ f [n] = 0]
= (r ∨ f [n] = 0) ∨ g (n + 1)
= { disjunction associative }
r ∨ (f [n] = 0 ∨ g (n + 1))

= { calculation above }
r ∨ g n .

Therefore we get (P[n\n + 1])[r\r ∨ f [n] = 0] = P .
In conclusion, the program can be

con N : Int {0 ⩽ N}
con f : array [0..N) of Int
var r : Bool
var n : Int
r , n := False, 0
{P ∧ 0 ⩽ n ⩽ N , bnd : N − n}
do ¬ r ∧ n ̸= N →

r := r ∨ f [n] = 0
n := n + 1

od
{r = ⟨∃i : 0 ⩽ i < N : f [i] = 0⟩}

Supplementary proofs omitted for now.

Page 6

