
PROGRAMMING LANGUAGES:
IMPERATIVE PROGRAM CONSTRUCTION
0. INTRODUCTION

Shin-Cheng Mu
Autumn Term, 2024

National Taiwan University and Academia Sinica

1 / 19



CAN YOU IMPLEMENT BINARY SEARCH?

Given a sorted array of N numbers and a key, either locate the
position where the key resides in the array, or report that the
key does not present in the array, in O(logN) time.

• You would not expect it to be a hard programming task.
• Jon Bentley, however, noted:

“I’ve assigned this problem in courses at Bell Labs and
IBM. Professional programmers had a couple of hours to
convert the above description into a program in the lan-
guage of their choice; …90% of the programmers found bugs
in their programs.

…Knuth points out that while the first binary search was
published in 1946, the first published binary search without
bugs did not appear until 1962.”

2 / 19



GIVE IT A TRY?

• Bentley: “The only way you’ll believe this is by putting
down this column right now and writing the code yourself.”

• Given: an array a [0..N) of N elements,
• that is sorted: ⟨∀i, j : 0 ⩽ i< j< N : a[i] ⩽ a[j]⟩.
• Find i such that a[i] = K, or report that K is not in the array.

3 / 19



PROGRAMMING IS HARD

We have heard about plenty of “horror story” about software
errors.

• NASA’s Mars Climate Orbiter, 1998.
• Conversion from imperial units to metric.

• Ariane 5 explosion, 1996.
• Cramming a 64-bit number into a 16-bit space.

• Baggage handling system in Heathrow Terminal 5, 2008.
• Cannot cope with “real world” situation.

• Patriot Missile system failed to detect an attack, 1991.
• Rounding error caused a delay of 1/3 second after 100
hours.

But today let us look at a more recent bug caused by a tiny
piece of code.

4 / 19



THE ZUNE BUG

• Zune: a line of portable media players and software,
produced by Microsoft.

• “First-generation Zunes — those with 30-gigabyte disk
drives — went silent everywhere on December 31. The
cause was soon traced to calendrical code in the device’s
firmware. The bug is an interesting one, if only because all
the details, including the source code, immediately came
to light.” .

5 / 19



THE TASK

• The variable days is set to the number of days since
January 1, 1980.

• The task: what is the current year?
• Each common year has 365 days; each leap year has 366
days.

• The predicate IsLeapYear(year) yields true if year is
a leap year.

6 / 19



THE CODE THAT CAUSED ALL THE TROUBLE

year = 1980;
while (days > 365) {

if (IsLeapYear(year)) {
if (days > 366) {

days -= 366;
year += 1;

}
}
else {

days -= 365;
year += 1;

}
}

7 / 19



FIX?

• A reader at Zuneboards.com suggested a fix: replace
(days > 366) with (days >= 366).

• The program returns the wrong year on the last day of
every leap year.

8 / 19



A PROGRAM THAT WORKS

year = 1980;
while (days > 365) {

if (IsLeapYear(year)) {
if (days > 366) {

days -= 366;
year += 1;

}
else break;

}
else { days -= 365;

year += 1;
}}

“... but the logic is anything but perspicuous.”
9 / 19



HOW TO ENSURE THAT A PROGRAM IS CORRECT?

Programming is more than producing the code. At the very
least we should produce code that is correct.

But how do we ensure that the code is correct?

• Testing.
• Verification.
• Derivation.

10 / 19



HOW TO ENSURE THAT A PROGRAM IS CORRECT?

Programming is more than producing the code. At the very
least we should produce code that is correct.

But how do we ensure that the code is correct?

• Testing.
• Verification.
• Derivation.

10 / 19



SOFTWARE TESTING

A technique widely used in industry. A matured discipline in
its own right, which I cannot claim I know very well.

Due to its very nature, however, testing can never be complete.

11 / 19



Dijkstra: “Today a usual technique is to make a pro-
gram and then to test it. But: program testing can be
a very effective way to show the presence of bugs, but
is hopelessly inadequate for showing their absence.”

— The humble programmer, 1972.

12 / 19



Dijkstra: “Today a usual technique is to make a pro-
gram and then to test it. But: program testing can be
a very effective way to show the presence of bugs, but is
hopelessly inadequate for showing their absence. The
only effective way to raise the confidence level of a pro-
gram significantly is to give a convincing proof of its
correctness.”

13 / 19



FORMAL VERIFICATION

To prove that a program is correct, via formal/mathematical
means.

Also a matured discipline, used for software whose
correctness is of vital importance.

The main difficulties:

• programs written without proofs in mind are often hard to
prove;

• programmers don’t bother to prove their code once it is
written.

14 / 19



Dijkstra: “The only effective way to raise the confidence
level of a program significantly is to give a convincing
proof of its correctness. But one should not first make
the program and then prove its correctness, because
then the requirement of providing the proof would only
increase the poor programmer’s burden. On the con-
trary: the programmer should …”
“…[let] correctness proof and program grow hand in
hand: with the choice of the structure of the correct-
ness proof one designs a program for which this proof
is applicable.”

15 / 19



PROGRAM DERIVATION

Program Derivation: developing a program and its
correctness proof at the same time.

Why?

• Programs developed with proofs in mind are easier to
prove.

• Programming is made easier too! In fact, “how to prove
the program” may give you hints on “how the program can
be written.”

16 / 19



GOALS THIS TERM

Formal approaches to (imperative) program construction —
constructing programs with sufficient confidence that they are
correct.

• We will start with learning an imaginary programming
language: the Guarded Command Language.

• Starting with: given a program, how to prove that it is
correct?

• Tools: Hoare logic, weakest precondition, predicate logic...
• Then we move on to learn about deriving programs.

• Most of the tricks will be about constructing loops.

• If time allows, we will talk about reasoning about heaps
and pointers using separation logic.

17 / 19



TESTING, VERIFICATION, AND DERIVATION

We will emphasise on program derivation when possible, and
switch to program verification when we have to.

While early debates sometimes positioned testing, verification,
and derivation as rivaling techniques, I tend to see them as
related disciplines sharing common theories. People in these
disciplines can communicate and learn from each other.

18 / 19



TESTING, VERIFICATION, AND DERIVATION

We will emphasise on program derivation when possible, and
switch to program verification when we have to.

While early debates sometimes positioned testing, verification,
and derivation as rivaling techniques, I tend to see them as
related disciplines sharing common theories. People in these
disciplines can communicate and learn from each other.

18 / 19



TEXTBOOK AND HOMEPAGE

• We will not follow any textbook completely, but most of
this course are adapted from Kaldewaij 90.

• Other highly recommended materials include: Dijkstra 76,
Gries 81, Morgan 90, Backhouse 11.

• Some materials are borrowed from “(In)formal Methods” a
very recommended course given by Prof. Carroll Morgan.

• Prof. Yih-Kuen Tsay’s course on Software Specification and
Verification tells the verification side of the story.

• Course homepage: https://scmu.github.io/plip/.
We might use NTU COOL too.

19 / 19

https://scmu.github.io/plip/

