
PROGRAMMING LANGUAGES:
IMPERATIVE PROGRAM CONSTRUCTION
1. HOARE LOGIC AND WEAKEST PRECONDITION:
NON-LOOPING CONSTRUCTS

Shin-Cheng Mu
Autumn Term, 2024

National Taiwan University and Academia Sinica

1 / 30

HOARE LOGIC

THE GUARDED COMMAND LANGUAGE

In this course we will talk about program construction using
Dijkstra’s calculus. Most of the materials are from Kaldewaij.

• A program computing the greatest common divisor:

con A,B : Int

{0 < A ∧ 0 < B}

var x, y : Int
x, y := A,B
do y< x→ x := x− y
| x< y→ y := y− x
od

{x = y = gcd (A,B)}

.

• do denotes loops with guarded bodies.

• Assertions delimited in curly brackets.

2 / 30

THE GUARDED COMMAND LANGUAGE

In this course we will talk about program construction using
Dijkstra’s calculus. Most of the materials are from Kaldewaij.

• A program computing the greatest common divisor:

con A,B : Int {0 < A ∧ 0 < B}
var x, y : Int
x, y := A,B
do y< x→ x := x− y
| x< y→ y := y− x
od
{x = y = gcd (A,B)} .

• do denotes loops with guarded bodies.
• Assertions delimited in curly brackets.

2 / 30

THE HOARE TRIPLE

• Given a program statement S and predicates P and Q, the
Hoare triple {P} S {Q} is a Boolean value.

• Operationally, {P} S {Q} is True iff. the statement S, when
executed in a state satisfying P, terminates in a state
satisfying Q.

3 / 30

EXAMPLES

• {x ⩾ 0 ∧ y ⩾ 0} S {r = x× y} is True iff. S is a program
that, given non-negative x and y, terminates and stores
x× y in r.

• Nothing is said about values of x and y upon termination.
• When x ⩾ 0 ∧ y ⩾ 0 does not hold, S may do anything —
including looping forever.

• {z ⩾ 0} S {x× y = z} is True iff. S, given non-negative z,
computes a factorization of z, and terminates.

• {x> 0} S {True} is True iff. S is any program that
terminates, provided that x> 0.

4 / 30

EXAMPLES

• {x ⩾ 0 ∧ y ⩾ 0} S {r = x× y} is True iff. S is a program
that, given non-negative x and y, terminates and stores
x× y in r.

• Nothing is said about values of x and y upon termination.
• When x ⩾ 0 ∧ y ⩾ 0 does not hold, S may do anything —
including looping forever.

• {z ⩾ 0} S {x× y = z} is True iff. S, given non-negative z,
computes a factorization of z, and terminates.

• {x> 0} S {True} is True iff. S is any program that
terminates, provided that x> 0.

4 / 30

EXAMPLES

• {x ⩾ 0 ∧ y ⩾ 0} S {r = x× y} is True iff. S is a program
that, given non-negative x and y, terminates and stores
x× y in r.

• Nothing is said about values of x and y upon termination.
• When x ⩾ 0 ∧ y ⩾ 0 does not hold, S may do anything —
including looping forever.

• {z ⩾ 0} S {x× y = z} is True iff. S, given non-negative z,
computes a factorization of z, and terminates.

• {x> 0} S {True} is True iff. S is any program that
terminates, provided that x> 0.

4 / 30

EXAMPLES

• {x ⩾ 0 ∧ y ⩾ 0} S {r = x× y} is True iff. S is a program
that, given non-negative x and y, terminates and stores
x× y in r.

• Nothing is said about values of x and y upon termination.
• When x ⩾ 0 ∧ y ⩾ 0 does not hold, S may do anything —
including looping forever.

• {z ⩾ 0} S {x× y = z} is True iff. S, given non-negative z,
computes a factorization of z, and terminates.

• {x> 0} S {True} is True iff. S is any program that
terminates, provided that x> 0.

4 / 30

SOME PROPERTIES

• {P} S {Q} and P0 ⇒ P implies {P0} S {Q}.
• {P} S {Q} and Q⇒ Q0 implies {P} S {Q0}.
• {P} S {Q} and {P} S {R} equivales {P} S {Q ∧ R}.
• {P} S {Q} and {R} S {Q} equivales {P ∨ R} S {Q}.
• Note: “A equivales B” is another way to say “A if and only
if B”, also denoted by A ≡ B.

5 / 30

THE NO-OP STATEMENT

• Perhaps the simplest statement: {P} skip {Q} iff. P⇒ Q.
• E.g. {x> 0 ∧ y> 0} skip {x ⩾ 0}.
• Note that the annotations need not be “exact.”

• Operationally, skip is a statement that does nothing.
• Why do we need a program that does nothing?
• It is like why we need a number 0 that represents
“nothing”. It can be very useful sometimes.

6 / 30

ASSIGNMENTS

SUBSTITUTION

• P[x\E]: substituting free occurrences of x in P for E.
• We do so in mathematics all the time. A formal definition
of substitution, however, is rather tedious.

• For this lecture we will only appeal to “common sense”:
• E.g. (x ⩽ 3)[x\x− 1] ≡ x− 1 ⩽ 3 ≡ x ⩽ 4.
•

(⟨∃y : y ∈ N : x < y⟩ ∧ y < x)[y\y+ 1]
≡ ⟨∃y : y ∈ N : x < y⟩ ∧ y+ 1 < x.

•

⟨∃y : y ∈ N : x < y⟩[x\y]
≡ ⟨∃z : z ∈ N : y < z⟩.

7 / 30

• The notation [x\E] hints at “divide by x and multiply by E.”
• We have x[x\E] = E. Nice!

• Just in case you may see different notations in other
papers...

• Many papers use the notation [E/x]. Either way, x is the
denominator.

• Kaldewaij actually wrote [x := E], since substitution is
closely related to assignments.

• Some papers write PxE for P[x\E].

8 / 30

SUBSTITUTION AND ASSIGNMENTS

• Which is correct:
1. {P} x := E {P[x\E]}, or
2. {P[x\E]} x := E {P}?

• Answer: 2! For example:

{(x ⩽ 3)[x\x+ 1]} x := x+ 1 {x ⩽ 3}
≡ {x+ 1 ⩽ 3} x := x+ 1 {x ⩽ 3}
≡ {x ⩽ 2} x := x+ 1 {x ⩽ 3}.

9 / 30

SUBSTITUTION AND ASSIGNMENTS

• Which is correct:
1. {P} x := E {P[x\E]}, or
2. {P[x\E]} x := E {P}?

• Answer: 2! For example:

{(x ⩽ 3)[x\x+ 1]} x := x+ 1 {x ⩽ 3}
≡ {x+ 1 ⩽ 3} x := x+ 1 {x ⩽ 3}
≡ {x ⩽ 2} x := x+ 1 {x ⩽ 3}.

9 / 30

SEQUENCING

CATENATION

• {P} S; T {Q} equivals that there exists R such that
{P} S {R} and {R} T {Q}.

• Verify:

var x, y : Int
{x = A ∧ y = B}

⇒ {y = B ∧ x− y+ y = A}

x := x− y

{y = B ∧ x+ y = A} ⇒ {x+ y− x = B ∧ x+ y = A}

y := x+ y

{y− x = B ∧ y = A}

x := y− x
{x = B ∧ y = A}

10 / 30

CATENATION

• {P} S; T {Q} equivals that there exists R such that
{P} S {R} and {R} T {Q}.

• Verify:

var x, y : Int
{x = A ∧ y = B}

⇒ {y = B ∧ x− y+ y = A}

x := x− y

{y = B ∧ x+ y = A} ⇒ {x+ y− x = B ∧ x+ y = A}

y := x+ y
{y− x = B ∧ y = A}
x := y− x
{x = B ∧ y = A}

10 / 30

CATENATION

• {P} S; T {Q} equivals that there exists R such that
{P} S {R} and {R} T {Q}.

• Verify:

var x, y : Int
{x = A ∧ y = B}

⇒ {y = B ∧ x− y+ y = A}

x := x− y

{y = B ∧ x+ y = A} ⇒

{x+ y− x = B ∧ x+ y = A}
y := x+ y
{y− x = B ∧ y = A}
x := y− x
{x = B ∧ y = A}

10 / 30

CATENATION

• {P} S; T {Q} equivals that there exists R such that
{P} S {R} and {R} T {Q}.

• Verify:

var x, y : Int
{x = A ∧ y = B}

⇒ {y = B ∧ x− y+ y = A}

x := x− y
{y = B ∧ x+ y = A} ⇒ {x+ y− x = B ∧ x+ y = A}
y := x+ y
{y− x = B ∧ y = A}
x := y− x
{x = B ∧ y = A}

10 / 30

CATENATION

• {P} S; T {Q} equivals that there exists R such that
{P} S {R} and {R} T {Q}.

• Verify:

var x, y : Int
{x = A ∧ y = B} ⇒ {y = B ∧ x− y+ y = A}
x := x− y
{y = B ∧ x+ y = A}

⇒ {x+ y− x = B ∧ x+ y = A}

y := x+ y
{y− x = B ∧ y = A}
x := y− x
{x = B ∧ y = A}

10 / 30

CATENATION

• {P} S; T {Q} equivals that there exists R such that
{P} S {R} and {R} T {Q}.

• Verify:

var x, y : Int
{x = A ∧ y = B}

⇒ {y = B ∧ x− y+ y = A}

x := x− y
{y = B ∧ x+ y = A}

⇒ {x+ y− x = B ∧ x+ y = A}

y := x+ y
{y− x = B ∧ y = A}
x := y− x
{x = B ∧ y = A}

10 / 30

SELECTION

IF-CONDITIONALS

• Selection takes the form if B0 → S0 | ... | Bn→ Sn fi.
• Each Bi is called a guard; Bi → Si is a guarded command.
• If none of the guards B0 . . .Bn evaluate to true, the
program aborts. Otherwise, one of the command with a
true guard is chosen non-deterministically and executed.

11 / 30

To annotate an if statement:

{P}
if B0 → {P ∧ B0} S0 {Q,Pf0}
| B1 → {P ∧ B1} S1 {Q,Pf1}
fi
{Q,Pf2} ,

where Pf0, Pf1, Pf2 are labels referring to proofs.

• Pf0 refers to a proof of {P ∧ B0} S0 {Q};
• Pf1 refers to a proof of {P ∧ B1} S1 {Q};
• Pf2 refers to a proof of P⇒ B0 ∨ B1.
• The proofs and labels are sometimes omitted if they are
trivial.

12 / 30

BINARY MAXIMUM

• Goal: to assign x ↑ y to z. By definition,
z = x ↑ y ≡ (z = x ∨ z = y) ∧ x ⩽ z ∧ y ⩽ z.

• Try z := x. We reason:

((z = x ∨ z = y) ∧ x ⩽ z ∧ y ⩽ z)[z\x]
≡ (x = x ∨ x = y) ∧ x ⩽ x ∧ y ⩽ x
≡ y ⩽ x,

which hinted at using a guarded command: y ⩽ x→ z := x.
• Indeed:

{True}
if y ⩽ x→ {y ⩽ x} z := x {z = x ↑ y}
| x ⩽ y→ {x ⩽ y} z := y {z = x ↑ y}
fi
{z = x ↑ y} .

13 / 30

BINARY MAXIMUM

• Goal: to assign x ↑ y to z. By definition,
z = x ↑ y ≡ (z = x ∨ z = y) ∧ x ⩽ z ∧ y ⩽ z.

• Try z := x. We reason:

((z = x ∨ z = y) ∧ x ⩽ z ∧ y ⩽ z)[z\x]
≡ (x = x ∨ x = y) ∧ x ⩽ x ∧ y ⩽ x
≡ y ⩽ x,

which hinted at using a guarded command: y ⩽ x→ z := x.

• Indeed:
{True}
if y ⩽ x→ {y ⩽ x} z := x {z = x ↑ y}
| x ⩽ y→ {x ⩽ y} z := y {z = x ↑ y}
fi
{z = x ↑ y} .

13 / 30

BINARY MAXIMUM

• Goal: to assign x ↑ y to z. By definition,
z = x ↑ y ≡ (z = x ∨ z = y) ∧ x ⩽ z ∧ y ⩽ z.

• Try z := x. We reason:

((z = x ∨ z = y) ∧ x ⩽ z ∧ y ⩽ z)[z\x]
≡ (x = x ∨ x = y) ∧ x ⩽ x ∧ y ⩽ x
≡ y ⩽ x,

which hinted at using a guarded command: y ⩽ x→ z := x.
• Indeed:

{True}
if y ⩽ x→ {y ⩽ x} z := x {z = x ↑ y}
| x ⩽ y→ {x ⩽ y} z := y {z = x ↑ y}
fi
{z = x ↑ y} .

13 / 30

ON UNDERSTANDING PROGRAMS

• There are two ways to understand the program below:

if B00 → S00 | B01 → S01 fi
if B10 → S10 | B11 → S11 fi

:

if Bn0 → Sn0 | Bn1 → Sn1 fi.
• One takes effort exponential to n; the other is linear.
• Dijkstra: “…if we ever want to be able to compose really
large programs reliably, we need a programming
discipline such that the intellectual effort needed to
understand a program does not grow more rapidly than in
proportion to the program length.”

14 / 30

WEAKEST PRECONDITION

STATE SPACE AND PREDICATES

More precisely speaking...

• A predicate on A is a function having type A→ Bool.
• E.g. even :: Int→ Bool is a predicate on Int.

• The state space of a program is the states of all its
variables.

• E.g. state space for the GCD program, which has two
variables x and y, is (Int× Int).

• An expression having free variables can be seen as a
function.

• E.g. x ⩽ y is a predicate (a function) with type
(Int× Int) → Bool that yields True for, e.g. (x, y) = (3, 4)
and False for (x, y) = (4, 3).

15 / 30

STATE SPACE AND PREDICATES

More precisely speaking...

• A predicate on A is a function having type A→ Bool.
• E.g. even :: Int→ Bool is a predicate on Int.

• The state space of a program is the states of all its
variables.

• E.g. state space for the GCD program, which has two
variables x and y, is (Int× Int).

• An expression having free variables can be seen as a
function.

• E.g. x ⩽ y is a predicate (a function) with type
(Int× Int) → Bool that yields True for, e.g. (x, y) = (3, 4)
and False for (x, y) = (4, 3).

15 / 30

STATE SPACE AND PREDICATES

More precisely speaking...

• A predicate on A is a function having type A→ Bool.
• E.g. even :: Int→ Bool is a predicate on Int.

• The state space of a program is the states of all its
variables.

• E.g. state space for the GCD program, which has two
variables x and y, is (Int× Int).

• An expression having free variables can be seen as a
function.

• E.g. x ⩽ y is a predicate (a function) with type
(Int× Int) → Bool that yields True for, e.g. (x, y) = (3, 4)
and False for (x, y) = (4, 3).

15 / 30

IN A HOARE TRIPLE...

• In {P} S {Q}, P and Q shall be seen as predicates on the
state space of the program S.

• E.g. In {z ⩾ 0} S {x× y = z}, assuming that the program S
uses only three variables x, y, and z.

• The part z ⩾ 0 shall be understood as a predicate that
takes x, y, and z, and returns True iff. z ⩾ 0.

• The part x× y = z shall be understood as a predicate that
takes x, y, and z, and returns True iff. x× y = z.

• True in a Hoare triple can be understood as a predicate
that returns True for any input; similarly with False.

16 / 30

IN A HOARE TRIPLE...

• In {P} S {Q}, P and Q shall be seen as predicates on the
state space of the program S.

• E.g. In {z ⩾ 0} S {x× y = z}, assuming that the program S
uses only three variables x, y, and z.

• The part z ⩾ 0 shall be understood as a predicate that
takes x, y, and z, and returns True iff. z ⩾ 0.

• The part x× y = z shall be understood as a predicate that
takes x, y, and z, and returns True iff. x× y = z.

• True in a Hoare triple can be understood as a predicate
that returns True for any input; similarly with False.

16 / 30

IN A HOARE TRIPLE...

• In {P} S {Q}, P and Q shall be seen as predicates on the
state space of the program S.

• E.g. In {z ⩾ 0} S {x× y = z}, assuming that the program S
uses only three variables x, y, and z.

• The part z ⩾ 0 shall be understood as a predicate that
takes x, y, and z, and returns True iff. z ⩾ 0.

• The part x× y = z shall be understood as a predicate that
takes x, y, and z, and returns True iff. x× y = z.

• True in a Hoare triple can be understood as a predicate
that returns True for any input; similarly with False.

16 / 30

IN A HOARE TRIPLE...

• In {P} S {Q}, P and Q shall be seen as predicates on the
state space of the program S.

• E.g. In {z ⩾ 0} S {x× y = z}, assuming that the program S
uses only three variables x, y, and z.

• The part z ⩾ 0 shall be understood as a predicate that
takes x, y, and z, and returns True iff. z ⩾ 0.

• The part x× y = z shall be understood as a predicate that
takes x, y, and z, and returns True iff. x× y = z.

• True in a Hoare triple can be understood as a predicate
that returns True for any input; similarly with False.

16 / 30

• Let S be a program having variables x, y, z. That {P} S {Q}
being True means that if S starts running in a state such
that P (x, y, z) = True, it terminates and yields a state such
that Q (x, y, z) = True.

17 / 30

STRONGER? WEAKER?

• Given propositions P and Q, if P⇒ Q, we say that Q is the
weaker one, and P is the stronger one.

• Precisely speaking, P is no weaker than Q and Q is no
stronger than P. But let’s be a bit sloppy to avoid
confusion...

18 / 30

STRONGER? WEAKER?

• Given propositions P and Q, if P⇒ Q, we say that Q is the
weaker one, and P is the stronger one.

• Precisely speaking, P is no weaker than Q and Q is no
stronger than P. But let’s be a bit sloppy to avoid
confusion...

18 / 30

STRONGER AND WEAKER PREDICATES

• The convention extends to predicates. If P x⇒ Q x for
every x, Q is the weaker one, while P is the stronger one.

• Example: 0 ⩽ x< 4 is weaker than 0 ⩽ x< 3, which is in
turn weaker than 1 ⩽ x< 3.

• Intuition: for first-order values, the set of values satisfying
a weaker predicate is larger than that satisfying a stronger
predicate.

• Example: P can be weaker than P ∧ Q (since (P ∧ Q) ⇒ P);
P ∨ Q can be weaker than P (since P⇒ (P ∨ Q)).

• Intuition: a weaker predicate enforces less restriction, is
more tolerant, and allows more inputs/states to be True.

19 / 30

STRONGER AND WEAKER PREDICATES

• The convention extends to predicates. If P x⇒ Q x for
every x, Q is the weaker one, while P is the stronger one.

• Example: 0 ⩽ x< 4 is weaker than 0 ⩽ x< 3, which is in
turn weaker than 1 ⩽ x< 3.

• Intuition: for first-order values, the set of values satisfying
a weaker predicate is larger than that satisfying a stronger
predicate.

• Example: P can be weaker than P ∧ Q (since (P ∧ Q) ⇒ P);
P ∨ Q can be weaker than P (since P⇒ (P ∨ Q)).

• Intuition: a weaker predicate enforces less restriction, is
more tolerant, and allows more inputs/states to be True.

19 / 30

STRONGER AND WEAKER PREDICATES

• The convention extends to predicates. If P x⇒ Q x for
every x, Q is the weaker one, while P is the stronger one.

• Example: 0 ⩽ x< 4 is weaker than 0 ⩽ x< 3, which is in
turn weaker than 1 ⩽ x< 3.

• Intuition: for first-order values, the set of values satisfying
a weaker predicate is larger than that satisfying a stronger
predicate.

• Example: P can be weaker than P ∧ Q (since (P ∧ Q) ⇒ P);
P ∨ Q can be weaker than P (since P⇒ (P ∨ Q)).

• Intuition: a weaker predicate enforces less restriction, is
more tolerant, and allows more inputs/states to be True.

19 / 30

STRONGER AND WEAKER PREDICATES

• The convention extends to predicates. If P x⇒ Q x for
every x, Q is the weaker one, while P is the stronger one.

• Example: 0 ⩽ x< 4 is weaker than 0 ⩽ x< 3, which is in
turn weaker than 1 ⩽ x< 3.

• Intuition: for first-order values, the set of values satisfying
a weaker predicate is larger than that satisfying a stronger
predicate.

• Example: P can be weaker than P ∧ Q (since (P ∧ Q) ⇒ P);
P ∨ Q can be weaker than P (since P⇒ (P ∨ Q)).

• Intuition: a weaker predicate enforces less restriction, is
more tolerant, and allows more inputs/states to be True.

19 / 30

PREDICATE-SET CORRESPONDENCE

• Functions can be hard to grasp.

• A predicate P is isomorphic to the set of values that
satisfy the predicate — at least for first order values.
Therefore I tend to equate them.

• E.g. think of x ⩽ 3 as the set of values satisfying x ⩽ 3.
• False is the empty set, True is the set of all values (of the
right type).

• P⇒ Q iff. P ⊆ Q.
• A weaker predicate is a bigger set!

• P ∧ Q corresponds to P ∩ Q; P ∨ Q corresponds to P ∪ Q.

20 / 30

PREDICATE-SET CORRESPONDENCE

• Functions can be hard to grasp.
• A predicate P is isomorphic to the set of values that
satisfy the predicate — at least for first order values.
Therefore I tend to equate them.

• E.g. think of x ⩽ 3 as the set of values satisfying x ⩽ 3.
• False is the empty set, True is the set of all values (of the
right type).

• P⇒ Q iff. P ⊆ Q.
• A weaker predicate is a bigger set!

• P ∧ Q corresponds to P ∩ Q; P ∨ Q corresponds to P ∪ Q.

20 / 30

PREDICATE-SET CORRESPONDENCE

• Functions can be hard to grasp.
• A predicate P is isomorphic to the set of values that
satisfy the predicate — at least for first order values.
Therefore I tend to equate them.

• E.g. think of x ⩽ 3 as the set of values satisfying x ⩽ 3.

• False is the empty set, True is the set of all values (of the
right type).

• P⇒ Q iff. P ⊆ Q.
• A weaker predicate is a bigger set!

• P ∧ Q corresponds to P ∩ Q; P ∨ Q corresponds to P ∪ Q.

20 / 30

PREDICATE-SET CORRESPONDENCE

• Functions can be hard to grasp.
• A predicate P is isomorphic to the set of values that
satisfy the predicate — at least for first order values.
Therefore I tend to equate them.

• E.g. think of x ⩽ 3 as the set of values satisfying x ⩽ 3.
• False is the empty set, True is the set of all values (of the
right type).

• P⇒ Q iff. P ⊆ Q.
• A weaker predicate is a bigger set!

• P ∧ Q corresponds to P ∩ Q; P ∨ Q corresponds to P ∪ Q.

20 / 30

PREDICATE-SET CORRESPONDENCE

• Functions can be hard to grasp.
• A predicate P is isomorphic to the set of values that
satisfy the predicate — at least for first order values.
Therefore I tend to equate them.

• E.g. think of x ⩽ 3 as the set of values satisfying x ⩽ 3.
• False is the empty set, True is the set of all values (of the
right type).

• P⇒ Q iff. P ⊆ Q.
• A weaker predicate is a bigger set!

• P ∧ Q corresponds to P ∩ Q; P ∨ Q corresponds to P ∪ Q.

20 / 30

PREDICATE-SET CORRESPONDENCE

• Functions can be hard to grasp.
• A predicate P is isomorphic to the set of values that
satisfy the predicate — at least for first order values.
Therefore I tend to equate them.

• E.g. think of x ⩽ 3 as the set of values satisfying x ⩽ 3.
• False is the empty set, True is the set of all values (of the
right type).

• P⇒ Q iff. P ⊆ Q.
• A weaker predicate is a bigger set!

• P ∧ Q corresponds to P ∩ Q; P ∨ Q corresponds to P ∪ Q.

20 / 30

WEAKEST PRECONDITION

• Recall that the predicates in a Hoare triple need not be
exact.

• {x ⩽ 2} x := x+ 1 {x ⩽ 3} is a valid triple.
• So is {0 < x ⩽ 2} x := x+ 1 {x ⩽ 3}. Note that x ⩽ 2 is
weaker than 0 < x ⩽ 2.

• x ⩽ 2 is in fact the weakest (most tolerating) P such that
{P} x := x+ 1 {x ⩽ 3} holds.

21 / 30

• Defining weakest precondition in terms of Hoare triple....
• Definition: given a statement S, its weakest precondition
with respect to Q, denoted wp S Q, is the weakest
predicate such that {wp S Q} S {Q} holds.

22 / 30

PREDICATE TRANSFORMER

wp S is a function from predicates to predicates.

• Also called a predicate transformer.
• I myself find it sometimes easier to think of a predicate
transformer as a function from sets to sets.

• E.g. wp S Q gives you the largest set P such that for all
x ∈ P, running S starting from initial state x gives you a
final state in Q.

23 / 30

WEAKEST PRECONDITION: SKIP AND ASSIGNMENT

• Weakest preconditions for skip and assignment:
• wp skip P = P.
• wp (x := E) P = P[x\E].

24 / 30

HOARE TRIPLE, REVISITED

• We can do it the other way round: specify wp for each
program construct, and define Hoare triple in terms of wp.

• Definition: {P} S {Q} if and only if P⇒ wp S Q.

25 / 30

EXAMPLES

• {x> 0} skip {x ⩾ 0} is valid, because:

wp skip (x ⩾ 0)
≡ { definition of wp }
x ⩾ 0

⇐ x> 0 .

• {0 < x< 2} x := x+ 1 {x ⩽ 3} is valid, because

wp (x := x+ 1) (x ⩽ 3)
≡ { definition of wp }

(x ⩽ 3)[x\x+ 1]
≡ x+ 1 ⩽ 3
⇐ 0 < x< 2 .

26 / 30

EXAMPLES

• {x> 0} skip {x ⩾ 0} is valid, because:

wp skip (x ⩾ 0)
≡ { definition of wp }
x ⩾ 0

⇐ x> 0 .

• {0 < x< 2} x := x+ 1 {x ⩽ 3} is valid, because

wp (x := x+ 1) (x ⩽ 3)
≡ { definition of wp }

(x ⩽ 3)[x\x+ 1]
≡ x+ 1 ⩽ 3
⇐ 0 < x< 2 .

26 / 30

SEQUENCING AND BRANCHING

• wp (S; T) Q = wp S (wp T Q).
• Or wp (S; T) = wp S · wp T, where (·) denotes function
composition.

• wp (if B0 → S0 | B1 → S1 fi) Q =

(B0 ⇒ wp S0 Q) ∧ (B1 ⇒ wp S1 Q) ∧ (B0 ∨ B1).

27 / 30

SEMANTICS

What does a program mean?

• Denotational semantics: what a program is. Mapping
programs to mathematical objects.

• Operational semantics: what a program does. How one
program term transforms to another.

• Axiomatic semantics: what a program guarantees.

28 / 30

• Predicate transformer semantics can be seen as a kind of
denotational semantics, and axiomatic semantics.

• The meaning of a program is a predicate transformer: give
it a post condition Q, it tells us what precondition is
sufficient to guarantee Q.

• It is a “goal oriented” semantics that is more suitable for
reasoning about and constructing imperative programs.

29 / 30

PROPERTIES OF PREDICATE TRANSFORMERS

• wp must satisfy certain conditions.
• Strictness: wp S False = False.
• Monotonicity: P⇒ Q implies wp S P⇒ wp S Q.
• Distributivity over Conjunction:
(wp S Q0 ∧ wp S Q1) ≡ wp S (Q0 ∧ Q1).

• One can prove that (wp S Q0 ∨ wp S Q1) ⇒ wp S (Q0 ∨ Q1).
• (wp S Q0 ∨ wp S Q1) ≡ wp S (Q0 ∨ Q1) holds only for
deterministic programs.

30 / 30

PROPERTIES OF PREDICATE TRANSFORMERS

• wp must satisfy certain conditions.
• Strictness: wp S False = False.
• Monotonicity: P⇒ Q implies wp S P⇒ wp S Q.
• Distributivity over Conjunction:
(wp S Q0 ∧ wp S Q1) ≡ wp S (Q0 ∧ Q1).

• One can prove that (wp S Q0 ∨ wp S Q1) ⇒ wp S (Q0 ∨ Q1).

• (wp S Q0 ∨ wp S Q1) ≡ wp S (Q0 ∨ Q1) holds only for
deterministic programs.

30 / 30

PROPERTIES OF PREDICATE TRANSFORMERS

• wp must satisfy certain conditions.
• Strictness: wp S False = False.
• Monotonicity: P⇒ Q implies wp S P⇒ wp S Q.
• Distributivity over Conjunction:
(wp S Q0 ∧ wp S Q1) ≡ wp S (Q0 ∧ Q1).

• One can prove that (wp S Q0 ∨ wp S Q1) ⇒ wp S (Q0 ∨ Q1).
• (wp S Q0 ∨ wp S Q1) ≡ wp S (Q0 ∨ Q1) holds only for
deterministic programs.

30 / 30

	Hoare Logic
	Assignments
	Sequencing
	Selection
	Weakest Precondition

