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SYNATX AND EVALUATION OF BOOLEAN
EXPRESSIONS



SYNTAX

• Boolean expressions are constructed from
• constants True and False,
• boolean variables, which can be associated (only) with
values True and False,

• boolean operators ≡, ̸≡, ¬, ∨, ∧,⇒, and⇐.

• True and False are often called boolean values.
• A boolean expression is said to be of type boolean.
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BINARY OPERATORS
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• ∧: “and”, also called conjunction (合取).
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• ∨: “or”, also called disjunction (析取).
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• =: equality (等於). In this book we give it another symbol
≡, called equivalence (等價), whose operands are called
equivalents, for reasons to be explained later.
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• ̸= and ̸≡: inequality and inequivalence. Many people do
not know that ̸= is also xor (exclusive or).
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BINARY OPERATORS
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• ⇒: implication (蘊含). Expression b⇒ c is read as “b
implies c” or “ if b then c”, where b is the antecedent (前
件、前事) and c the consequent (後件、後果).

• Note that b⇒ c is True when b is False.
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• ⇐: consequence. Expression b⇐ c is read a “b follows
from c”, where b is the consequent and c is the
antecedent. b⇐ c is equivalent to c⇒ b

• Many people are not aware that⇐ occurs very often in
proofs.
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• nand and nor stands for “not and” and “not or”.
Expression b nand c is ¬(b ∧ c) and b nor c is ¬(b ∨ c).
Useful when you study digital circuits.
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BINARY OPERATORS
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• precedence: See the table in the handouts. Basically, ∧
binds tighter than ∨, like × binds tighter than +. Note
also that = has a high precedence, while ≡ has a ver low
precedence.
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SATISFIABILITY, VALIDITY, AND DUALITY



USING TRUTH TABLES TO EVALUATE BOOLEAN EXPRESSIONS

How do you evaluate p ∨ (q ∧ ¬r)?

p q r ¬r q ∧ ¬r p ∨ (q ∧ ¬r)
T T T

F F T
T T F T T T
T F T F F T
T F F T F T
F T T F F F
F T F T T T
F F T F F F
F F F T F F

How do you determine whether
p ∨ (q ∧ ¬r) = (p ∨ q) ∧ (p ∨ ¬r)?
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SATISFIABILITY AND VALIDITY

• A boolean expression P is satisfiable in state S if its value
is True in state S;

• P is satisfiable (可滿足) if there exists some S in which P is
satisfiable;

• and P is valid (有效) if it is satisfiable in every state.
• A valid expression is called a tautology (重言式、恆真式、
套套邏輯).

• Tautologies are of interest to us, because they represent
universal truth: some property holds, regardless of the
context.
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SATISFIABILITY AND VALIDITY

• Example: p ∨ q is satisfible in any state having (p, True) (or
(q, True)), thus it is satisfible. It is not valid, however, since
it is falsified in state [(p, False), (q, False)].

• Examples of tautologies (valid expressions):

True True ≡ True
p ∨ True p ∨ q ≡ q ∨ p
p ∨ ¬p (p ≡ q) ≡ (q ≡ p)
¬(p ∧ False) ¬(p ∨ q) ≡ ¬p ∧ ¬q
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SEMANTICS V.S. SYNTAX

• As mentioned before, we are mainly interested in
tautologies, since they represent universal truth.

• How to determine whether an expression (e.g.
¬(p ∧ q) ≡ ¬p ∨ ¬q) is a tautology?

• One may build a truth table — in effect, try all possibilities,
and see whether the expression evaluates to True in all
states.

• This is a semantical approach.
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SEMANTICS (語意)

• What an expression “means”. Or, what the “value” of an
expression is.

• In our current logic (propositional logic), each expression
evaluates to either True or False.

• To be more precise, each expression is a function from
states to True or False.

• Validity of an expression can be checked by enumerating
all possible states and see whether the expression always
evaluate to True.

• A good property of propositional logic: we can always
decide whether an expression is valid.

• However, this approach does not extend to more complex
logic, say, a logic that involves natural numbers.
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A SYNTACTICAL (語法) APPROACH

• A formal system: a collection of symbols, and some rules
to manipulate the symbols.

• A calculus: a formal system designed for reasoning; a
method or process of reasoning by calculation with
symbols.
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FORMAL DEDUCTION SYSTEMS FOR LOGIC

• There are a number of formal deduction systems for
various kinds of logic.

• A collection of axioms (公理) — things that are believed to
be true without doubts.

• A collection of rules that, given true propositions,
guarantee to produce true propositions.

• To prove a theorem (show that it is valid) is to show that
the theorem can be derived, from the axioms, using the
given rules.
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• Example of such systems: natural deduction, sequent
calculus, etc.

• You’d see natural deduction in my Functional Programming
course since it is closely related to types.

• All of them are syntactical rules to manipulate expression
with.

• After designing a formal system, one has to verify, against
the semantics, that the system is sound, and preferably,
complete.
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CALCULATIONAL LOGIC

• For a number of reasons, in this course we advocate a
more algebraic formal system: calculational logic.

• The axioms are expressions like: True ≡ (p ≡ p),
(p ≡ q) ≡ (q ≡ p), etc. There are a lot of them, and we will
discuss them one bye one.

• The inference rules are mainly Substitution (1.1),
Transitivity (1.4), and Leibniz (1.5).

• A theorem (定理) is either an axiom, or an expression that,
using the inference rules, proved to be equal to an axiom
or a previously proved theorem.

13 / 66



REMINDER: SUBSTITUTION, TRANSITIVITY, AND LEIBNIZ

(1.1) Substitution: E
E[v\F]

(1.4) Transitivity: X = Y Y = Z
X = Z

(1.5) Leibniz: X = Y
E[z\X] = E[z\Y]
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EQUIVALENCE AND TRUE



CONJUNCTIONAL EQUALITY

• What does it mean when I write a = b = c?
• We usually think of it as an abbreviation of a = b ∧ b = c
(which, by transitivity, also gives us a = c).

• It is a useful abbreviation to have. In
E0 = E1 = . . . = En < En+1 one immediately see that any
two expressions in E0 . . . En are equal, and they are all
smaller than En+1. That is lots of information in one
expression.
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ASSOCIATIVE EQUALITY

• But, (p = q) = r, when the variables are boolean values,
may also be interpreted as “evaluate p = q to a boolean
value, and compare the result with r”.

• For example, (False = False) = True evaluates to
True = True, which is True.

• Surprisingly, this definition of equality is associative:
(p = q) = r is always equal to p = (q = r).

• Associativity of equality will turn out to be very useful
later: it also allows us to compactly represent lots of
information in a short axiom.

• We thus denote it using a different symbol: ≡.
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EQUALITY V.S. EQUIVALENCE

• When we write = we mean ordinary, conjunctive equality
(等於).

• Another symbol, ≡, referred to as “equivalence” (等價),
denotes equality in the associative sense.

• p ≡ q is read as “p equivals q”.
• ((p ≡ q) ≡ r) = (p ≡ (q ≡ r)).

• We may thus just write p ≡ q ≡ r.

• It is convenience to assign it a very low precedence.
• Compare:

• False ≡ False ≡ True evaluates to True, while
• False = False = True is an abbreviation of
False = False ∧ False = True, which evaluates to False.
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ASSOCIATIVITY (結合律) AND SYMMETRY (對稱性) OF ≡

(3.1) Axiom, Associativity of ≡: ((p ≡ q) ≡ r) ≡ (p ≡ (q ≡ r))

• As mentioned before, (3.1) allows us to write p ≡ q ≡ r.

(3.2) Axiom, Symmetry of ≡: p ≡ q ≡ q ≡ p

• When read as (p ≡ q) ≡ (q ≡ p), it allows us to freely
swap positions of terms connected by ≡.

• When read as p ≡ (q ≡ q ≡ p), it allows us to rewrite
q ≡ q ≡ p to p, and vice versa.
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EXAMPLE OF ASSOCIATIVITY OF ≡

• Consider m+ n is Even ≡ m is Even ≡ n is even.
• When parenthesized as
m+ n is Even ≡ (m is Even ≡ n is even), it says that m+ n
is even exacly when both m and n are even.

• When parenthesized as
(m+ n is Even ≡ m is Even) ≡ n is even, it says that
adding n to m does not change the parity of m exacly when
n is even.

• It actually covers four cases:
• ((m+ n is even) and (m is even) and (n is even)), or
• ((m+ n is odd) and (m is odd) and (n is even)), or
• ((m+ n is odd) and (m is even) and (n is odd)), or
• ((m+ n is even) and (m is odd) and (n is odd)).

We can thus see how associativity makes one expression
so concise and expressive!
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OUR FIRST PROOF

Task: prove p ≡ p ≡ q ≡ q.
Proof:

p ≡ p ≡ q ≡ q

= { Symmetry of ≡ (3.2) — replace p ≡ q ≡ q by p }
p ≡ p

= { Symmetry of ≡ (3.2) — replace p by q ≡ q ≡ p }
p ≡ q ≡ q ≡ p

• The expression has been shown to be equal to an axiom
(3.2). Thus it is proved.

• This is not the only possible proof. We use this example to
demonstrate the use of associativity of ≡.
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IDENTITY OF ≡

(3.3) Axiom, Identity of ≡: True ≡ p ≡ p

• When read as True ≡ (p ≡ p) it says that p always
equivals itself, that is, ≡ is reflexive.

• When read as (True ≡ p) ≡ p, it shows that True is an
identity element of ≡. 1 It allows us to remove
occurrences of True ≡ in an expression.

• Given (3.1) and (3.2), we also have p ≡ (True ≡ p),
(p ≡ True) ≡ p, etc.

1I is a identity element (單位元素), or a unit of a binary operation ◦ if
x ◦ I = I ◦ x = x, for all x. The identity element of + is 0, and that of · is 1.
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SEQUENCES OF EQUIVALENCES

• Consider p ≡ p ≡ q ≡ p ≡ r ≡ q.
• With (3.1) and (3.2) it can be transformed to
p ≡ p ≡ p ≡ q ≡ q ≡ r.

• With (3.1) and (3.3) we may simplify it to:
True ≡ p ≡ True ≡ r.

• which further simplifies to p ≡ r.
• In general, in P0 ≡ P1 ≡ . . .Pn, any Pi that occurs an even
number of times is removed, while any Pj that occurs an
odd number of times is replaced by a single occurrence.

• P0 ≡ P1 ≡ . . .Pn is True exactly when an even number of Pi
are False.

• By identity of ≡ (3.3), each False ≡ False can be rewritten
to True.
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• In general, in P0 ≡ P1 ≡ . . .Pn, any Pi that occurs an even
number of times is removed, while any Pj that occurs an
odd number of times is replaced by a single occurrence.

• P0 ≡ P1 ≡ . . .Pn is True exactly when an even number of Pi
are False.

• By identity of ≡ (3.3), each False ≡ False can be rewritten
to True.
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TWO THEOREMS

(3.4) True
(3.5) Reflexivity of ≡: p ≡ p

• We prove (3.4) below:

True
= { Identity of ≡ (3.3), with p := True }

True ≡ True
= { Identity of ≡ (3.3) — replace the 2nd True }

True ≡ p ≡ p — Identity of ≡ (3.3)

• Prove (3.5) as an exercise! 23 / 66



PROVING A THEOREM

• As mentioned before, to prove a theorem is to show that it
equals an axiom or a previously established theorem.

P
= { Property (i.j), with p := X }

P1
= { Property (k.l), with q := Y }

:

= Pn — Property (m.n)

24 / 66



PROVING A THEOREM

• As mentioned before, to prove a theorem is to show that it
equals an axiom or a previously established theorem.

P
= { Property (i.j), with p := X }

P1
= { Property (k.l), with q := Y }

:

= Pn — Property (m.n)

• “Property (i.j)” is the name and number of each
theorem/axiom used. You can give only the name, or the
number, when it is obvious.
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indicates an application of Substitution (1.1). Can be
omitted when obvious.
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• If a sub-expression is rewritten by the hint, there is an
implicit application of Leibniz (1.5)
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• Chained equality is an application of Transitivity (1.4).
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PROVING A THEOREM

• As mentioned before, to prove a theorem is to show that it
equals an axiom or a previously established theorem.

P
= { Property (i.j), with p := X }

P1
= { Property (k.l), with q := Y }

:

= Pn — Property (m.n)

• You can also proceed the entire calculation the other way
round —- start from a theorem and reach P, depending on
which direction is easier.
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PROVING AN EQUIVALENCE

• When proving an equivalence P ≡ Q, we can use a
simplified format:

P
= { Property (i.j), with p := X }

P1
= { Property (k.l), with q := Y }

:

= Q
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NEGATION, INEQUIVALENCE, AND FALSE



DEFINITIONS

Two axioms regarding negation. The first defines ¬ and False,
and the second defines inequality ̸≡.

¬p ≡ p ≡ False
(3.15) Axiom, Definition of False:

(p ̸≡ q) ≡ ¬(p ≡ q)
(3.10) Axiom, Definition of ̸≡:
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THEOREMS RELATING ≡, ̸≡, ¬

(3.8) False ≡ ¬True
(3.9) Distributivity of ¬ over ≡ : ¬(p ≡ q) ≡ ¬p ≡ q
(3.11) ¬p ≡ q ≡ p ≡ ¬q
(3.12) Double negation : ¬¬p ≡ p
(3.13) Negation of False : ¬False ≡ True
(3.14) (p ̸≡ q) ≡ ¬p ≡ q
(3.16) Symmetry of ̸≡ : (p ̸≡ q) ≡ (p ̸≡ p)
(3.17) Associativity of ̸≡ : ((p ̸≡ q) ̸≡ r) ≡ (p ̸≡ (q ̸≡ r))
(3.18) Mutual associativity : ((p ̸≡ q) ≡ r) ≡ (p ̸≡ (q ≡ r))
(3.19) Mutual interchangeability : p ̸≡ q ≡ r ≡ p ≡ q ̸≡ r
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DISTRIBUTIVITY OF ¬ OVER ≡

Proving (3.9).

¬(p ≡ q)

= { (3.15) }
p ≡ q ≡ False

= { Symmetry and Associativity of ≡ }
p ≡ False ≡ q

= { (3.15) }
¬p ≡ q
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SEQUENCE OF ≡ AND ̸≡

• (3.11) is an important law that allows us to shunt ¬ (and
thus ̸≡) around.

• Mutual associativity (3.17) and (3.18) allows us to omit
parentheses in sequence of ≡ and ̸≡.

• Mutual associativity (3.19) allows us to exchange adjacent
≡ and ̸≡.
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SEQUENCES OF ≡ AND ̸≡

• Consider p ≡ p ≡ q ≡ ¬p ≡ r ≡ ¬q.

• With the associativity laws it can be transformed to
p ≡ p ≡ ¬p ≡ q ≡ ¬q ≡ r.

• With (3.15) we may simplify it to: p ≡ False ≡ False ≡ r.
• which further simplifies to p ≡ True ≡ r, and p ≡ r.

• Moreover,
• None or both of p and q is True:

p ≡ q

.
• Exactly one of p and q is True:

p ̸≡ q

.
• 0, 2, or 4 of p, q, r, s are True:

p ≡ q ≡ r ≡ s

.
• 1 or 3 of p, q, r, s are True:

¬(p ≡ q ≡ r ≡ s)

.
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HEURISTIC OF STRUCTURAL MATCHING

Identify applicable theorems by matching the structure of
expressions or subexpressions. The operators that appear in a
boolean expression and the shape of its subexpressions can
focus the choice of theorems to be used in manipulating it.
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AVOID REPEATING THE SAME EXPRESSION.

Principle: structure proofs to avoid repeating the same
expression on many lines.
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HEURISTIC OF DEFINITION ELIMINATION

To prove a theorem concerning an operator ◦ that is defined in
terms of another, say •, expand the definition of ◦ to arrive at a
formula that contains •; exploit propertis of • to manipulate
the formula, and then (possibly) reintroduce ◦ using its
definition.
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DISJUNCTION



DEFINITIONS

The disjunction operator ∨ is defined by the following five
axioms.

(3.24) Axiom, Symmetry of ∨ : p ∨ q ≡ q ∨ p
(3.25) Axiom, Associativity of ∨ :

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
(3.26) Axiom, Idempotency of ∨ : p ∨ p ≡ p
(3.27) Axiom, Distributivity of ∨ over ≡ :

p ∨ (q ≡ r) ≡ p ∨ q ≡ p ∨ r
(3.28) Axiom, Excluded Middle : p ∨ ¬p
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BASIC PROPERTIES OF ∨

(3.29) Zero of ∨: p ∨ True ≡ True
(3.30) Identity of ∨ : p ∨ False ≡ p
(3.31) Distributivity of ∨ over ∨ :

p ∨ (q ∨ r) ≡ (p ∨ q) ∨ (p ∨ r)
(3.32) p ∨ q ≡ p ∨ ¬q ≡ p
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EXAMPLE: PROVING (3.29) ZERO OF ∨

(3.29) p ∨ True ≡ True

Proof.

p ∨ True
= { (3.3) }

p ∨ (p ≡ p)
= { (3.27) }

p ∨ p ≡ p ∨ p
= { (3.3) }

True
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EXAMPLE: PROVING (3.29) ZERO OF ∨

The proof could have gone the other way round. But the first
step would be “pulling a rabbit out of a hat!”

Proof.

True
= { (3.3) }

p ∨ p ≡ p ∨ p
= { (3.27) }

p ∨ (p ≡ p)
= { (3.3) }

p ∨ True
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PROOF HEURISTICS AND PRINCIPLES

Heuristic: To prove P ≡ Q, transform the expression with the
most structure into the other.

Principle: Structure the proof to minimize the number of
rabbits pulled out of a hat — make each step seem obvious,
based on the structure of the expression and the goal of the
manipulation.
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THE GOLDEN RULE

(3.35) Axiom, Golden rule : p ∧ q ≡ p ≡ q ≡ p ∨ q

• We can see it as a definition of ∧: p ∧ q ≡ (p ≡ q ≡ p ∨ q).
• Or (p ≡ q) ≡ (p ∧ q ≡ p ∨ q), meaning that p and q are
equal if their conjunction and disjunction are equal.

• Or we may use it to transform p ∧ q ≡ p to q ≡ p ∨ q, and
vice versa.

• It is the only axiom we need regarding ∧.
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BASIC PROPERTIES OF ∧

(3.36) Symmetry of ∧ : p ∧ q ≡ q ∧ p
(3.37) Associativity of ∧ :

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
(3.38) Idempotency of ∧ : p ∧ p ≡ p
(3.39) Identity of ∧ : p ∧ True ≡ p
(3.40) Zero of ∧ : p ∧ False ≡ False
(3.41) Distributivity of ∧ over ∧ :

p ∧ (q ∧ r) ≡ (p ∧ q) ∧ (p ∧ r)
(3.42) Contradiction : p ∧ ¬p ≡ False
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THEOREMS RELATING ∧ AND ∨

(3.43) Absorption : (a) p ∧ (p ∨ q) ≡ p
(b) p ∨ (p ∧ q) ≡ p

(3.44) Absorption : (a) p ∧ (¬p ∨ q) ≡ p ∧ q
(b) p ∨ (¬p ∧ q) ≡ p ∨ q

(3.45) Distributivity of ∨ over ∧ :

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
(3.46) Distributivity of ∧ over ∨ :

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
(3.47) De Morgan : (a) ¬(p ∧ q) ≡ ¬p ∨ ¬q

(b) ¬(p ∨ q) ≡ ¬p ∧ ¬q
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PROPOSITIONS AS SETS

• To make sense of and to memorize the absorption laws, it
helps to know that propositions are isomorphic to sets of
states that satisfy the proposition.

• That is, a boolean expression E can be seen as the set of
states that satisfy E.

• Disjunction (∨) is set union (∪); conjunction (∧) is
intersection (∩); negation (¬) is set compliment.

• Indeed, p ∩ (p ∪ q) equals p. The same with other
absorption laws.

• True is the set of all states — all states satisfy True. False
is the empty set — nothing satisfies False.
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THEOREMS RELATING ∧ AND ≡

(3.48) p ∧ q ≡ p ∧ ¬q ≡ ¬p
(3.49) p ∧ (q ≡ r) ≡ p ∧ q ≡ p ∧ r ≡ p
(3.50) p ∧ (q ≡ p) ≡ p ∧ q
(3.51) Replacement :

(p ≡ q) ∧ (r ≡ p) ≡ (p ≡ q) ∧ (r ≡ q)
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ALTERNATIVE DEFINITIONS OF ≡ AND ̸≡

(3.52) Definition of ≡ : p ≡ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q)
(3.53) Exclusive or : p ̸≡ q ≡ (¬p ∧ q) ∨ (p ∧ ¬q)
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PROVING (3.37) ASSOCIATIVITY OF ∧

(3.37) (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

Proof

(p ∧ q) ∧ r
= { (3.35) }

p ≡ q ≡ p ∨ q ≡ r ≡ (p ≡ q ≡ p ∨ q) ∨ r
= { (3.27) }

p ≡ q ≡ r ≡ p ∨ q ≡ p ∨ r ≡ q ∨ r ≡ p ∨ q ∨ r

But this property is useful on its own! We will prove it as a
lemma.
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(p ∧ q) ∧ r ≡
(3.55)

p ≡ q ≡ r ≡ p ∨ q ≡ p ∨ r ≡ q ∨ r ≡ p ∨ q ∨ r

Proof: as in the previous slide.
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PROVING (3.37) ASSOCIATIVITY OF ∧, AGAIN

(3.37) (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

Proof

p ∧ (q ∧ r)
= { (3.36) }

(q ∧ r) ∧ p
= { (3.55) }

q ≡ r ≡ p ≡ q ∨ r ≡ q ∨ p ≡ r ∨ p ≡ q ∨ r ∨ p
= { (3.24) and (3.2) }

p ≡ q ≡ r ≡ p ∨ q ≡ p ∨ r ≡ q ∨ r ≡ p ∨ q ∨ r
= { (3.55) }

(p ∧ q) ∧ r
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USING LEMMAS

Principle: Lemmas can provide structure, bring to light
interesting facts, and ultimately shorten a proof.
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HEURISTIC

Theorems stated in terms of ≡ can be parsed in many ways.
Exploit this ability.
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IMPLICATION



DEFINITION OF IMPLICATION

(3.57) Axiom, Definition of implication :

p⇒ q ≡ p ∨ q ≡ q
(3.58) Axiom, Consequences : p⇐ q ≡ q⇒ p
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IMPLICATION IS SET INCLUSION

• To understand the definition (3.57), again it helps to see
propositions as sets.

• p⇒ q is understood as “if a state is in p, then it is in q”.
That is, p is a subset of q.

• Certainly, p ∪ q equals q exacly when p is a subset of q.
• But there are other definitions too!
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REWRITING IMPLICATION

(3.59) Definition of implication :

p⇒ q ≡ ¬p ∨ q
(3.60) Definition of implication :

p⇒ q ≡ p ≡ p ∧ q
(3.61) Contrapositive : p⇒ q ≡ ¬q⇒ ¬p
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A PUZZLE USING CONTRAPOSITION

Six pencils stand in a pencil vase. Some pencils has a rubber
eraser on one end, some do not. It is also assumed that a
pencil is either just sharpened, or used.

The vase is opaque, so you could only see one end of each
pencil. The six pencils you see now are respectively

1. without an eraser,
2. with an eraser,
3. used,
4. sharp,
5. sharp, and
6. with an eraser.

Some one claims that “all pencils with an eraser are used.” To
verify her claim, how many pencils do you have to pull out of
the vase to check? 53 / 66



MISCELLANEOUS THEOREMS ABOUT IMPLICATION

(3.62) p⇒ (q ≡ r) ≡ p ∧ q ≡ p ∧ r
(3.63) Distributivity of⇒ over ≡ :

p⇒ (q ≡ r) ≡ p⇒ q ≡ p⇒ r
(3.64) p⇒ (q⇒ r) ≡ (p⇒ q) ⇒ (p⇒ r)
(3.65) Shunting : p ∧ q⇒ r ≡ p⇒ (q⇒ r)
(3.66) p ∧ (p⇒ q) ≡ p ∧ q
(3.67) p ∧ (q⇒ p) ≡

p

(3.68) p ∨ (p⇒ q) ≡

True

(3.69) p ∨ (q⇒ p) ≡

q⇒ p

(3.70) p ∨ q⇒ p ∧ q ≡ p ≡ q
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IMPLICATION AND BOOLEAN CONSTANTS

(3.71) Reflexivity of⇒ : p⇒ p ≡ True
(3.72) Right zero of⇒ : p⇒ True ≡ True
(3.73) Left identity of⇒ : True⇒ p ≡ p
(3.74) p⇒ False ≡ ¬p
(3.75) False⇒ p ≡ True
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WEAKENING, STRENGTHENING, AND MODUS PONENS

(3.76) Weakening, Strengthening :

(a) p⇒ p ∨ q
(b) p ∧ q⇒ p
(c) p ∧ q⇒ p ∨ q
(d) p ∨ (q ∧ r) ⇒ p ∨ q
(e) p ∧ q⇒ p ∧ (q ∨ r)

(3.77) Modus ponens : p ∧ (p⇒ q) ⇒ q
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FORMS OF CASE ANALYSIS

(3.78) (p⇒ r) ∧ (q⇒ r) ≡ (p ∨ q⇒ r)
(3.79) (p⇒ r) ∧ (¬p⇒ r) ≡ r
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PROVING IMPLICATION BY DEDUCTION

There is another way to prove p⇒ q, inspired by natural
deduction: if we can prove q, assuming that p is an
established property, that is,

q
= { ... }

...

= { p }
...

= { ... }
True

then we have proved p⇒ q. In practice, many implications are
proved this way.
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MUTUAL IMPLICATION AND TRANSITIVITY

(3.80) Mutual implication :

(p⇒ q) ∧ (q⇒ p) ≡ p ≡ q
(3.81) Antisymmetry :

(p⇒ q) ∧ (q⇒ p) ⇒ (p ≡ q)
(3.82) Transitivity :

(a) (p⇒ q) ∧ (q⇒ r) ⇒ (p⇒ r)
(b) (p ≡ q) ∧ (q⇒ r) ⇒ (p⇒ r)
(c) (p⇒ q) ∧ (q ≡ r) ⇒ (p⇒ r)
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INEQUALITY REASONING

Transitivity allows us to prove an implication p⇒ q in yet
another way.

q
= { ... }

...

⇐ { ... }
...

⇐ { ... }
p
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COMMON PITFALLS

What is wrong with the following reasoning?

(¬p⇒ p) ∧ q
= { ¬p⇒ p does not hold }

False ∧ q
= { (3.40) }

False .
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• ¬p⇒ p is not False!
• ¬p⇒ p is not valid. That is, it is not True for some values
of p; meanwhile, False is not True for all values of p.

• In fact, we have

¬p⇒ p
= ¬(¬p) ∨ p
= p ∨ p
= p .
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COMMON PITFALLS

• Is it correct that x > 0⇒ x ⩾ 2 = False?

• In fact,

x > 0⇒ x ⩾ 2
= ¬(x > 0) ∨ x ⩾ 2
= x ⩽ 0 ∨ x ⩾ 2 .
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(3.83) Axiom, Leibniz :
(e = f) ⇒ (E[z\e] = E[z\F])
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RULES OF SUBSTITUTION

(3.84) Substitution :

(a) (e = f) ∧ Eze ≡ (e = f) ∧ EzF
(b) (e = f) ⇒ Eze ≡ (e = f) ⇒ EzF
(c) q ∧ (e = f) ⇒ Eze ≡ q ∧ (e = f) ⇒ EzF
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REPLACING VARIABLES BY BOOLEAN CONSTANTS

(3.85) Replace by True :

(a) p⇒ Ezp ≡ p⇒ EzTrue
(b) q ∧ p⇒ Ezp ≡ q ∧ p⇒ EzTrue

(3.86) Replace by False :

(a) Ezp ⇒ p ≡ EzFalse ⇒ p
(b) Ezp ⇒ p ∨ q ≡ EzFalse ⇒ p ∨ q

(3.87) Replace by True : p ∧ Ezp ≡ p ∧ EzTrue
(3.88) Replace by False : p ∨ Ezp ≡ p ∨ EzFalse
(3.89) Shannon :

Ezp ≡ (p ∧ EzTrue) ∨ (¬p ∧ EzFalse)
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