PROGRAMMING LANGUAGES:

IMPERATIVE PROGRAM CONSTRUCTION

4, HOARE LOGIC AND WEAKEST PRECONDITION:
Loop

Shin-Cheng Mu
Autumn. 2024

National Taiwan University and Academia Sinica

1/ 14

LOOP AND LOOP INVARIANTS

Loops

- Repetition takes the form do By — So | ... | Bn — Sn od.

- If none of the guards By ... B, evaluate to true, the loop

terminates. Otherwise one of the commands is chosen
non-deterministically, before the next iteration.

2/ 14

Loops

- Repetition takes the form do By — So | ... | Bn — Sn od.
- If none of the guards By ... B, evaluate to true, the loop

terminates. Otherwise one of the commands is chosen
non-deterministically, before the next iteration.

- To annotate a loop (for partial correctness):

{P}
do By — {P AN Bo}So {P}
| By — {PABi}S1{P}
od

{Q P},

- where Pf refers to a proof of PA =By A =By = Q.

2/ 14

Loops

- Repetition takes the form do By — So | ... | Bn — Sn od.

- If none of the guards By ... B, evaluate to true, the loop

terminates. Otherwise one of the commands is chosen
non-deterministically, before the next iteration.

- To annotate a loop (for partial correctness):

{P}
do By — {P AN Bo}So {P}
| By — {PABi}S1{P}
od

{Q P},

- where Pf refers to a proof of PA =By A =By = Q.
- P is called the loop invariant. Every loop should be

constructed with an invariant in mind!

2/ 14

LINEAR-TIME EXPONENTIATION

con N {0 < N}; varx,n : Int
xX,n:=10
don#N—
X, N :=X+XxX,n+1
od

x=2")

3/14

LINEAR-TIME EXPONENTIATION

con N {0 < N}; varx,n : Int
xX,n:=10

{x=2"}
don#N—

X, N :=X+XxX,n+1

od
x=2")

3/14

LINEAR-TIME EXPONENTIATION

con N {0 < N}; varx,n : Int

xX,n:=10
{x=2"}
don#N—
Pf2:

X, N :=X+XxX,n+1
’ x=2"An<NA=(n#N)

od :>X:2N
fx=2"pf2)

3/14

LINEAR-TIME EXPONENTIATION

con N {0 < N}; varx,n : Int

xX,n:=10
{x=2"}
don#N—
Pf2:

X,nN:=X+Xx,n+1

' ' x=2"An<NA-(n#N
{x=2" Pf1} (n#N)
od :>X:2N

{x=2",Pf2}

3/14

LINEAR-TIME EXPONENTIATION

con N {0 < N}; varx,n : Int

xX,n:=10
{x=2"}
don#N—

{x=2"An+N} Pf2:
X,N:=Xx+x,n+1

' ' x=2"An<NA-(n#N
{x=2" Pf1} (n#N)
od :>X:2N
{x=2".pf2)

3/14

LINEAR-TIME EXPONENTIATION

con N {0 < N}; varx,n : Int

xX,n:=10

{x=2"}

don#N—
{x=2"An#N}
X, N :=X+XxX,n+1
{x=2" Pf1}

od

{x=2N P2}

Pf1:

(x =2M[x,n\Xx + x,n + 1]
= x+x=2"""
<= x=2"An#N

Pf2:

x=2"An<NA=(n#N)
= x=2N

3/14

GREATEST COMMON DIVISOR

- Known: gcd(x,x) = x; gcd(x,y) = ged(y,x —y) if x > y.

4114

GREATEST COMMON DIVISOR

- Known: gcd(x,x) = x; gcd(x,y) = gcd(y,x —y) if x > y.

conA,B:int{0<AAO0<B}
var x,y : int

X,y:=A,B
{0 <xAN0<yAgcd(x,y)=gcd(A,B)}
doy<x—x:=x—y
| X<y—y:=y—x
od
{x=gcd(A,B) ANy = gcd(A,B)}

4114

GREATEST COMMON DIVISOR

- Known: gcd(x,x) = x; gcd(x,y) = gcd(y,x —y) if x > y.

conA,B:int{0<AAO0<B}
var x,y : int

X,y:=A,B
{0 <xAN0<yAgcd(x,y)=gcd(A,B)}
doy<x—x:=x—y

| X<y—y:=y—x
od
{x=gcd(A,B) ANy = gcd(A,B)}

(0 <xA0<yAgcd(x,y) =gcd(A,B))[x\x —y]
= 0<x—yAO<yAgcd(x—y,y)=gcd(A,B)
< 0<XxAN0<yAgcd(x,y)=gcd(A,B)Ay <X
4114

A WEIRD EQUILIBRIUM

- Consider the following program:

var x,y,z:int
{true }
dox<y—x:=x+1
| y<z—=yi=y+1
| Z<x—z:=2+1
od
{x=y=12z}.
- If it terminates at all, we do have x = y = z. But why does
it terminate?

5/14

A WEIRD EQUILIBRIUM

- Consider the following program:
var x,y,z:int
{true,bnd : 3 x (xtytz)—(x+y+2)}
dox<y—x:=x+1
| y<z—=y:=y+1

| Z<x—z:=2+1
od

{x=y=12z}.

- If it terminates at all, we do have x = y = z. But why does
it terminate?

1. bnd > 0, and bnd = 0 implies none of the guards are true
2. {x<ynbnd=t}x:=x+1{bnd < t}.

5/14

REPETITION

To annotate a loop for total correctness:

(P,bnd: t}
do By — {P A BQ}SO {P}
| By {PAB}S (P}
od

{Q} .

we have got a list of things to prove:

6/14

REPETITION

To annotate a loop for total correctness:

(P,bnd: t}
do By — {P A Bo}SO {P}
| By {PAB}S (P}
od

{Q} .

we have got a list of things to prove:

1. PA=Bo A—=B1=Q,

6/14

REPETITION

To annotate a loop for total correctness:

(P.bnd : t}

do By — {P A Bo}SO {P}
| B1 — {P AN 81}51 {P}
od

{Q} ,
we have got a list of things to prove:

1. PA =By A =By = Q,
2. foralli, {P A B;}S; {P},

6/14

REPETITION

To annotate a loop for total correctness:

(P.bnd : t}

do By — {P A Bo}SO {P}
| B1 — {P AN 81}51 {P}
od

{Q} ,
we have got a list of things to prove:

1. P/\—|Bo/\—|Bq :>Q,
2. foralli, {P A B;} S {P},
3. PA(BoVB)=t>0,

6/14

REPETITION

To annotate a loop for total correctness:

{P,bnd : t}
do By — {P A Bo} So {P}
| B1—={PAB}S{P}
od
{Q} .
we have got a list of things to prove:
1. PA=Bo A=B1=Q,
2. foralli, {P A B;j}S;{P},
3. PA(BoVBy)=t>0,
4o foralll, {PABAt=C}Si{t<C}.

6/14

E.G. LINEAR-TIME EXPONENTIATION

- What is the bound function?
con N {0 < N}; varx,n : Int

x,n:=1,0
{x=2"An<N }
don#N—
X, N i=X4+x,n+1
od
{x=2")
|

7114

E.G. LINEAR-TIME EXPONENTIATION

- What is the bound function?
con N {0 < N}; varx,n : Int

x,n:=1,0

{x=2"An<N,bnd:N—n}

don#N—

X, N :i=x+x,n+1

od

{x=2"}

I
X=2"An<NANn#N=N-n2=0,
“{...AN=—n=t}x,n:=x+x,n+1{N—n < t}.

7114

E.G. GREATEST COMMON DIVISOR

- What is the bound function?

conA,B:Int{0 <AAO0<B}
var x,y : Int

X,y:=AB
{0 <xA0<yAgcd(x,y) =gcd(A, B) }
doy<x—x:=x—-y
| X<y—=y:=y—x
od
{x=gcd(A,B) Ay = gcd(A, B)}
I

8 /14

E.G. GREATEST COMMON DIVISOR

- What is the bound function?

conA,B:Int{0 <AAO0<B}
var x,y : Int

X,y:=AB
{0 <xA0<yAgcd(x,y) =gcd(A,B),bnd : x+y}
doy<x—x:=x—-y
| X<y—=y:=y—x
od
{x=gcd(A,B) Ay = gcd(A, B)}
I

L= X4y >0,
{0 YAYSXAXFYy=tixi=Xx—y{x+y <t}

8 /14

WEAKEST PRECONDITION

- What about the weakest precondition?

- Denote the program do B — S od by DO. It should behave
the same as

if B— S;DO |- B —sRipfi .

- Forany R, if wp DO R = X, it should satisfy
X=B=wpSX)AN(-B=R),

- which is equivalent to

X=(BAwpSX)V (~BAR) . (Why?)

- We let wp DO R be the strongest X satifying the equation
above.

9/14

WEAKEST PRECONDITION FOR LOOP

To be slightly more general,

- denote do By — Sp | By — Sq 0d by DO,

- denote if By — So | By — 54 fi by IF, and

- denote By V By by BB.

- Forall R, wp DO R is the strongest predicate satisfying

X=wpIFXV (RA-BB) .

10 /14

A BOTTOM-UP FORMULATION

- Alternatively, let H; denote “DO terminates, in at most |
iterations, in a state satisfying R

- Hp=RA - BB.
* Hny1 =wp IF (Hp) V (R A — BB).
- We may define

wpDOR=(3i:0<1i:H;) .

- Theory on fixed points shows that the two definitions are
equivalent.

11/14

RELATIONSHIP TO HOARE LOGIC

- However, how does wp DO R relate to the way we annotate
loops in the previous section?

- We had a theorem about IF which justified the way to
annotate branches:

wp IF R = (Bo = wp So R)
/\(B1:‘Wp51 R)/\(Bo\/Bq) .

- Do we have a similar result about loops?

12/14

FUNDAMENTAL INVARIANCE THEOREM

Theorem Let (D, <) be a partially ordered set; let C be a
subset of D such that (C, <) is well-founded. Let t be a
function on the state with value of type D. Then

(PABB=teC)A
(W PAt=x=wplIF(PAt<X))
= (P=wp DO (P AN - BB)) .

13 /14

- Informally, (C, <) being well-founded means that there is
no infinite chain ¢1>c2 > c3...in C.

- The Fundamental Invariance Theorem was proved several
times. Proving this theorem motivated developments in
many related fields.

14 /14

	Loop and loop invariants
	Weakest Precondition

