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LOOP AND LOOP INVARIANTS



LOOPS

• Repetition takes the form do B0 → S0 | ... | Bn→ Sn od.
• If none of the guards B0 . . .Bn evaluate to true, the loop
terminates. Otherwise one of the commands is chosen
non-deterministically, before the next iteration.

• To annotate a loop (for partial correctness):

{P}
do B0 → {P ∧ B0} S0 {P}
| B1 → {P ∧ B1} S1 {P}
od
{Q,Pf} ,

• where Pf refers to a proof of P ∧ ¬B0 ∧ ¬B1 ⇒ Q.
• P is called the loop invariant. Every loop should be
constructed with an invariant in mind!
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LINEAR-TIME EXPONENTIATION

con N {0 ⩽ N}; var x,n : Int

x,n := 1, 0

{x = 2n}

do n ̸= N→

{x = 2n ∧ n ̸= N}

x,n := x+ x,n+ 1

{x = 2n,Pf1}

od
{x = 2N

,Pf2

}

Pf1:

(x = 2n)[x,n\x+ x,n+ 1]
≡ x+ x = 2n+1

⇐ x = 2n ∧ n ̸= N

Pf2:

x = 2n ∧ n ⩽ N ∧ ¬(n ̸= N)
⇒ x = 2N
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GREATEST COMMON DIVISOR

• Known: gcd(x, x) = x; gcd(x, y) = gcd(y, x− y) if x > y.

•
con A,B : int {0 < A ∧ 0 < B}
var x, y : int

x, y := A,B
{0 < x ∧ 0 < y ∧ gcd(x, y) = gcd(A,B)}
do y < x→ x := x− y
| x < y→ y := y− x

od
{x = gcd(A,B) ∧ y = gcd(A,B)}

•
(0 < x ∧ 0 < y ∧ gcd(x, y) = gcd(A,B))[x\x− y]

≡ 0 < x− y ∧ 0 < y ∧ gcd(x− y, y) = gcd(A,B)
⇐ 0 < x ∧ 0 < y ∧ gcd(x, y) = gcd(A,B) ∧ y < x
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A WEIRD EQUILIBRIUM

• Consider the following program:

var x, y, z : int
{true

,bnd : 3× (x ↑ y ↑ z)− (x+ y+ z)

}
do x < y→ x := x+ 1
| y < z→ y := y+ 1
| z < x→ z := z+ 1

od
{x = y = z}.

• If it terminates at all, we do have x = y = z. But why does
it terminate?

1. bnd ⩾ 0, and bnd = 0 implies none of the guards are true.
2. {x < y ∧ bnd = t} x := x+ 1 {bnd < t}.
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REPETITION

To annotate a loop for total correctness:

{P,bnd : t}
do B0 → {P ∧ B0} S0 {P}
| B1 → {P ∧ B1} S1 {P}
od
{Q} ,

we have got a list of things to prove:

1. P ∧ ¬B0 ∧ ¬B1 ⇒ Q,
2. for all i, {P ∧ Bi} Si {P},
3. P ∧ (B0 ∨ B1) ⇒ t ⩾ 0,
4. for all i, {P ∧ Bi ∧ t = C} Si {t < C}.
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E.G. LINEAR-TIME EXPONENTIATION

• What is the bound function?
con N {0 ⩽ N}; var x,n : Int

x,n := 1, 0
{x = 2n ∧ n ⩽ N

,bnd : N− n

}
do n ̸= N→

x,n := x+ x,n+ 1
od
{x = 2N}
]|

• x = 2n ∧ n ⩽ N ∧ n ̸= N⇒ N− n ⩾ 0,
• {. . . ∧ N− n = t} x,n := x+ x,n+ 1 {N− n < t}.
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WEAKEST PRECONDITION



• What about the weakest precondition?
• Denote the program do B→ S od by DO. It should behave
the same as

if B→ S;DO | ¬ B→ skip fi .

• For any R, if wp DO R = X, it should satisfy

X = (B⇒ wp S X) ∧ (¬ B⇒ R) ,

• which is equivalent to

X = (B ∧ wp S X) ∨ (¬ B ∧ R) . (Why?)

• We let wp DO R be the strongest X satifying the equation
above.
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WEAKEST PRECONDITION FOR LOOP

To be slightly more general,

• denote do B0 → S0 | B1 → S1 od by DO,
• denote if B0 → S0 | B1 → S1 fi by IF, and
• denote B0 ∨ B1 by BB.
• For all R, wp DO R is the strongest predicate satisfying

X ≡ wp IF X ∨ (R ∧ ¬ BB) .
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A BOTTOM-UP FORMULATION

• Alternatively, let Hi denote “DO terminates, in at most i
iterations, in a state satisfying R.”

• H0 = R ∧ ¬ BB.
• Hn+1 = wp IF (Hn) ∨ (R ∧ ¬ BB).
• We may define

wp DO R = ⟨∃i : 0 ⩽ i : Hi⟩ .

• Theory on fixed points shows that the two definitions are
equivalent.
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RELATIONSHIP TO HOARE LOGIC

• However, how does wp DO R relate to the way we annotate
loops in the previous section?

• We had a theorem about IF which justified the way to
annotate branches:

wp IF R = (B0 ⇒ wp S0 R)
∧ (B1 ⇒ wp S1 R) ∧ (B0 ∨ B1) .

• Do we have a similar result about loops?

12 / 14



FUNDAMENTAL INVARIANCE THEOREM

Theorem Let (D,⩽) be a partially ordered set; let C be a
subset of D such that (C, <) is well-founded. Let t be a
function on the state with value of type D. Then

(P ∧ BB⇒ t ∈ C) ∧
⟨∀x :: P ∧ t = x⇒ wp IF (P ∧ t< x)⟩

⇒ (P⇒ wp DO (P ∧ ¬ BB)) .
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• Informally, (C, <) being well-founded means that there is
no infinite chain c1> c2> c3... in C.

• The Fundamental Invariance Theorem was proved several
times. Proving this theorem motivated developments in
many related fields.
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