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CORRECT BY CONSTRUCTION

Dijkstra: “The only effective way to raise the confidence
level of a program significantly is to give a convincing
proof of its correctness. But one should not first make
the program and then prove its correctness, because
then the requirement of providing the proof would only
increase the poor programmer’s burden. On the con-
trary: the programmer should …”
“…[let] correctness proof and program grow hand in
hand: with the choice of the structure of the correct-
ness proof one designs a program for which this proof
is applicable.”
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DERIVING PROGRAMS FROM SPECIFICATIONS

• From such a specification:

con declarations
{preconditions}
prog
{postcondition}

• we hope to derive prog.
• We usually work backwards from the post condition.
• The techniques we are about to learn is mostly about
constructing loops and loop invariants.

3 / 13



TAKING CONJUNCTS AS INVARIANTS



CONJUNCTIVE POSTCONDITIONS

• When the post condition has the form P ∧ Q, one may take
one of the conjuncts as the invariant and the other as the
guard:

• {P}do ¬Q→ S od {P ∧ Q}.
• In some extreme cases, since P ≡ true ∧ P, one may try:

• {True}do ¬P→ S od {P}.
• E.g. to sort four variables:

{True}
do a> b→ a,b := b,a
| b> c→ b, c := c,b
| c> d→ c,d := d, c
od
{a ⩽ b ⩽ c ⩽ d}

• Why does it terminate?
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INTEGRAL DIVISION AND REMINDER

• Consider the specficication:

con A,B : Int{0 ⩽ A ∧ 0 < B}
var q, r : Int
divmod
{q = A div B ∧ r = A mod B} .

• The post condition expands to
A = q× B+ r ∧ 0 ⩽ r ∧ r < B.

5 / 13



BUT WHICH CONJUNCT TO CHOOSE?

• q = A div B ∧ r = A mod B expands to
A = q× B+ r ∧ 0 ⩽ r ∧ r < B. Denote it by R. It leads to a
number of possibilities:

• {0 ⩽ r ∧ r < B}do A ̸= q× B+ r→ S od {R},
• {A = q× B+ r ∧ r < B}do 0 > r→ S od {R}, or
• {A = q× B+ r ∧ 0 ⩽ r}do r ⩾ B→ S od {R}, etc.
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COMPUTING THE QUOTIENT AND THE REMAINDER

Try A = q× B+ r ∧ 0 ⩽ r as the invariant and ¬(r < B) as the
guard:

q, r := 0,A

{P : A = q× B+ r ∧ 0 ⩽ r}
do B ⩽ r→
{P ∧ B ⩽ r}

q := q+ 1
{P′}
r := r− B

{P}
od
{P ∧ r< B}

• P is established by q, r := 0,A.
• Choose r as the bound.
• Since B > 0, try r := r− B:

P[r\r− B]
≡ A = q× B+ r− B ∧ 0 ⩽ r− B
≡ A = (q− 1)× B+ r ∧ B ⩽ r.

Denote it by P′.
•

P′[q\q+ 1]
≡ A = (q+ 1− 1)× B+ r ∧ B ⩽ r
≡ A = q× B+ r ∧ B ⩽ r.
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ON CONSTRUCTING ASSIGNMENTS



UPDATING A VARIABLE

We will see this pattern often:

• We want to establish:
{x = E ∧ …}

x := x⊕ E′

{x = E⊕ E′}

• It works because:

(x = E⊕ E′)[x\x⊕ E′]
≡ x⊕ E′ = E⊕ E′

⇐ x = E.
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• In general, given a function f, to establish:

{x = E}
x := ...

{x = f E}

• we can use an assignment x := f x. It works because

(x = f E)[x\f x]
≡ f x = f E
⇐ x = E .
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REPLACING CONSTANTS BY VARIABLES



EXPONENTIATION

• Consider the problem:

con A,B : Int {A ⩾ 0 ∧ B ⩾ 0}
var r : Int
exponentiation
{r = AB} .

• There is not much we can do with a state space consisting
of only one variable.

• Replacing constants by variables may yield some possible
invariants.

• Again we have several choices: r = xB, r = Ax, r = xy, etc.
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EXPONENTIATION

• Use the invariant P0 : r = Ax,
thus P0 ∧ x = B implies the
post-condition.

• Strategy: increment x in the
loop. An upper bound
P1 : x ⩽ B.

• (r = Ax)[x\x+ 1] ≡ r = Ax+1.
However, when r = Ax holds,
Ax+1 = A× Ax = A× r!

• Indeed, (r = Ax+1)[r\A× r]
≡ A× r = Ax+1

⇐ r = Ax.

r, x := 1, 0

{r = Ax

∧ x ⩽ B,bnd : B− x

}

do x ̸= B→
r := A× r
{r = Ax+1 ∧ x+ 1 ⩽ B}
x := x+ 1

od
{r = AB}
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SUMMING UP AN ARRAY

• Another simple exercise.
• We talk about it because we need range splitting.

con N : Int {0 ⩽ N}; f : array [0..N) of Int
var x : Int
sum
{x = ⟨Σi : 0⩽i<N : f[i] ⟩}
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SUMMING UP AN ARRAY

con N : Int {0 ⩽ N}; f : array [0..N) of Int;

n, x := 0, 0

{P : x = ⟨Σi : 0⩽i<n : f[i] ⟩,bnd : N− n}
do n ̸= N→ {P ∧ n ̸= N}

x := x+ f[n]; n := n+ 1

{P} od
{x = ⟨Σi : 0⩽i<N : f[i] ⟩}

•

(x = ⟨Σi : 0⩽i<n : f[i] ⟩+ f[n] ∧ 0 ⩽ n)

[x\x+ f[n]]
≡ x+ f[n] = ⟨Σi : 0⩽i<n : f[i] ⟩+ f[n] ∧ 0 ⩽ n

⇐ x = ⟨Σi : 0⩽i<n : f[i] ⟩ ∧ 0 ⩽ n.
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