PROGRAMMING LANGUAGES:

IMPERATIVE PROGRAM CONSTRUCTION

6. LOOP CONSTRUCTION |l: STRENGTHENING THE
INVARIANT

Shin-Cheng Mu
Autumn, 2024

National Taiwan University and Academia Sinica

1/37

MAXIMUM SEGMENT SUM

A classical problem: given an array of integers, find largest
possible sum of a consecutive segment.

con N:Int {0 < N}
con f:array [0..N) of Int

S
{r=(1pq:0<p<g<N:sumpq)}

a
wheresump g=(Xi:p <i<q:/li).

2/37

DETAILS THAT MATTER

- Note the use of < and < in the specification.

- The range in sum p g is p < | < g. It computes the sum of
f[p..q) — notincluding f[q]!

- Therefore when p = g, sum p g computes the sum of an
empty segment.

- In the postcondition we have p < g — we allow empty
segments in our solution!

- We must have g < N instead of g < N. Otherwise segments
containing the rightmost element would not be valid
solutions.

3/37

PREVIOUSLY INTRODUCED TECHNIQUES

- Replace N by n. Use P A Q as the invariant, where

:<qu 0<p<g<n:sumpq) ,

p
Q n<N .

- Use = (n = N) as guard. This way we immediately have
that P A Q A n = N imply the desired postcondition.

- How do we know we want 0 < n < N? It can be forced by
our development later. But let's expedite the pace.

- Initialisation: n,r:= 0, 0.

- Use N — n as the bound.

- To decrease the bound, let n:=n + 1 be the last
statement of the loop.

4137

We get this program.

con N:Int {0 < N}

con f:array [0..N) of Int

var r,n:Int

r,n:=0,0

{PAQ,bnd:N—n}

don#N-— ???;n:=n+1o0od
{r=(pg:0<p<qg<N:sumpaq)}

Now we need to construct the ??? part.

5/37

CONSTRUCTING THE LOoOP BODY

How to construct the 777 part?
{PANQAN#N}
777
{(PAQ)[n\n+ 1]}
n:=n+1
{PAQ}

6/37

CONSTRUCTING ASSIGNMENTS

How do you construct such an assignment?

{r=(tpg:0<p<g<n:sumpq) A
QA n#N}

r:= 177

{(PAQ)[n\n+1]}

n:=n+1

{PAQ}

Recall what we have learnt: if from (P A Q)[n\n + 1] we can
infer that

r={(rpq:0<p<qg<n:sumpq)dE

the statement 777 could ber:=raeE.

7137

SPLITTING OFF?

Let us look at the step “split off g = n + 1" in more detail:

0<p<g<n+1
=0<p<gAg<n+1
=0<p<gA(g<nvg=n+1)
=0<p<grgsn)V(0<p<sgAg=n+1)
=0<p<g<nv(0<p<gArg=n+1) .

Without information about n, nothing guarantees that the
rangesO0<p<g<nand0<p<qgAqg=n-+1arenotempty.
It does not matter yet, for now.

8/37

Therefore we have:

(tpg:0<p<g<n+1l:sumpaq)

= { previous calculation }
(tpg:0<p<g<nyv
(0O<p<gAg=n+1):sumpq)

= {range split (816) }
(tpg:0<p<g<n:sumpgq)?t
(tpg:0<p<gArg=n+1:sumpq)

= {nesting (8.20) }
(tpg:0<p<g<n:sumpq)t
(1q:gq=n+1:(tp:0<p<qg:sumpq))

= {one-pointrule}
(tpg:0<p<g<n:sumpq)t
(tp:0<p<<n+1l:sump(n+1)) .

9/37

Things to note:

- Calculation for other patterns of ranges (e.g.
0<p<qg<n+1)areslightly different. Watch out!

- In practice, the “splitting off” step is but one quick step.
We do not do the reasoning above in such detail.

- We show you the details above for expository purpose.

- In other problems we may see slightly different ranges,
suchas 0 < p<qg<n+ 1. The result of splitting is
different too. Take extra care!

10/37

STRENGTHENING THE INVARIANT

Knowing that we need to update r with
Tp:0<p<(n+1):sump(n+1)),letusstoreitinsome
variable! Introduce a new variable s, and strengthen the
invariant to P A P; A Q, where

Po=r={(tpq:0<p<qg<n:sumpq) ,
Pr=s={tp:0<p<n:sumpn) ,
Q =0<<n<N .

1/37

MAXIMUM SUFFIX SUM

- That is, while r is the maximum segment sum so far, s is
the maximum suffix sum so far.

- We discover the need of this concept through symbolic
calculation.

- This is a pattern for many “segment problems”: to solve a
problem about segments, solve a suffix problem for all
prefixes.

Q: Why dontwe lets=(tp:0<p<n+1:sump(n+1))7?

A: For this example you will run into some problems. The
details are left as an exercise. But in general it is not
always a bad idea.

12/37

CONSTRUCTING THE LOoOP BODY

Therefore, a possible strategy would be:

{PoAPAAOLS NS NAN#N}
S:= 177

{Po AP [M\n+1]A0<n+1< N}
r=r1s

{(Po A P1 AO < n<N)[n\n+ 1]}
n:=n+1

{Po APTAO< <N}

13/37

UPDATING THE PREFIX SUM

Recall Pr=s=(tp:0<p<n:sumpn).

(tp:0<p<n:sumpn)n\n+1]
=(Tp:0<p<n+1:sump(n+1))
= {splittingoffp=n-+1}
(tp:0<p<n:sump(n+1)1
sum(n+1) (n+1)
= {[n+1.n+1)isan empty range }
(tp:0<p<n:sump(n+1))10
= {splittingoffi =ninsum}
(tp:0<p<n:sumpn+fn]))t
= {distributivity }

((tp:0<p<n:sumpn)+fn]) T

Thus, {P1}s:= 7 {Pi[n\n+ 1]} is satisfied by s := (s + f[n]) 1 0
14 /37

SPLITTING OFF — THINGS TO WATCH OuUT

We look at the step “splitting off i = n” in detail. See the range
calculation:

p</<n+1
=p<IiAN(i<nVi=n)
=p<i<nVv(p<ini=n)

= {weneed0<n'}
p<Li<nVi=n

Compare this to the previous range calculation. This time we
completely remove p < i

15 /37

It allows us to perform one-point rule, without nesting:

sump (n+1)
—(Tip<i<n+1:fi])
{ range calculation }
(Zi:p<i<nvi=n:fli])
=&i:p<i<n:)+ (&Ei:i=n:fli])
{ one-point rule }
(Zi:p<i<n:fli])+fln] -

16 /37

However, that means

- weneedtoreducep<iAi=ntoi=n.

- Thatis, p < i does not put more constraints on i = n. In
particular, i = n, when conjuncted with p </, cannot
reduce to False,

- or, p < n cannot be an empty range.

- Since in the outer quantification we have 0 < p < n, we
need 0 < n.

That is why we need 0 < n in the invariant!

17/37

Lesson: as long as the quantification is around, we do not care
whether the range is empty. We do have to check that the
range is not empty when the one-point rule leaves no
remaining quantifications.

The requirement we need to ensure that the range is not
empty are often added to the loop invariant.

18 /37

A KEY PROPERTY

- The last step labelled “distributivity” uses a rule
mentioned before: provided that —occurs(i, F) and R
non-empty:

F+{(1i:R:S)=(1i:R:F+S)
F+(Ji:R:S)=(li:R:F+S) .

- The rules are valid because addition distributes into
maximum/minimum:

X+ 12)=(x+9)1(x+2)
X+ ylz)=Kx+y)l(x+2) .
- That is the key property that allows us to have an efficient
algorithm for the maximum segment sum problem!
- Through calculation, we not only have an algorithm, but
also identified the key property that makes it work, which 19/37

DERIVED PROGRAM

con N:Int {0 < N}
con f:array [0..N) of Int
var r,s,n:Int

r,s,n:=0,0,0
{Po APy ANQ,bnd:N—n}
don#N—

s:=(s+fn)) 10

r=rts

n:=n+1
od
{r=0tpg:0<p<g<N:sumpq)}

Po=r=(tpg:0<p<qg<n:sumpq)) ,
P1—5_<TP 0<p<n:sumpn)) ,

20/37

“STRENGTHENING"?

- We stay that the invariant Po A P; A Q is “stronger” than
P A Q because the former promises more.

- The resulting loop computes values for two variables
rather than one.

- However, the program ends up being quicker because
more results from the previous iteration of the loop can
be utilised.

- Itis a common phenomena: a generalised theorem is
easier to prove.

- We will see another way to generalise the invariant in the
rest of the course.

21/37

LESSONS LEARNT?

Let the symbols do the work!

- We discover how to strengthen the invariant by calculating
and finding out what is missing.

- Expressions are your friend, and blind guessing can be
minimised. We always get some clue from the expressions.
- Since we rely only on the symbols, the same

calculation/algorithm can be generalised to other

problems (e.g. as long as the same distributivity propery
holds).

2237

If we remove the pre/postconditions and the invariant, can
you tell us what the program does?

- Without the assertions, programs mean nothing. The
assertions are what matter about the program.

- Structured programming is not about making (the
operational parts of) code easier to read/understand.

- Such efforts are bound to end in vain: even a simple
three-line loop can be hard to understand if the
assertions, encoding the intentions of the programmer,
are stripped away.

23 /37

- Instead, structured programming is about organising the
code around the structure of the proofs.

- Once the pre/postconditions are given, and the invariants
and bounds are determined, one can derive the code
accordingly.

- It is pointless arguing, for example, “using a break here
makes the code easier to read.”

- One shall not need to “understand” the operational parts
of the code, but to check whether it meets the
specification.

24 [37

NO. OF PAIRS IN AN ARRAY

Consider constructing the following program:

con N:Int {0 < N};a:array [0..N) of Int
var r:int

S
{r=(#ij:0<i<j<N:a[l] <0Aaj]=0)}

25/37

PREVIOUSLY INTRODUCED TECHNIQUES

- Replace N by n. Use P A Q as the invariant, where

r:(#i,j 0<i<j<n:all<0Aal]=>0),
n <N.

p
Q

Il
//\

- Use = (n = N) as guard. This way we immediately have
that P A Q A n = N imply the desired postcondition.

- Initialisation: n,r:= 0,0.
- Use N — n as the bound.

- To decrease the bound, let n:=n + 1 be the last
statement of the loop.

26 /37

We get this program.

con N:Int {0 < N};a:array [0..N) of Int
varr,n:int

r,n:=0,0

{PAQ,bnd:N—n}
don#N-—..;n:=n+1od
{r={(#1j:0<i<j<N:a[il]<0Aal]=0)}

Now we need to construct the ... part.

27137

CONSTRUCTING THE LOoOP BODY

How to construct the ... part?

{PANQAN#N}

{(PAQ)[n\n+ 1]}
n:=n+1
{PAQ}

28 /37

NO. OF PAIRS IN AN ARRAY

To reason about P[n\n + 1], we calculate (assuming
PAQAN#N):

(#i,j:0<i<j<n+1:a[]<0Aa[]>0)
= { split off j = n, see the next slide }
(#i,j:0<i<j<n:al]<0Aaf] > 0)+

(#i:0<i<n:all<0Aa[n]>0)
= (P}
r+(#i:0<i<n:alilj<0Aaln] >0)
r, if a[n] < 0;
- { +(#i:0<i<n:ali]<0), ifa[n]>0
Let us try storing (#i: 0 < <n:al] <0)inanothervariable?

29 /37

SPLITTING OFF?

For expository purpose let us exam how the splitting was done:

0<i<j<n+1
=0<i<jAj<n+1
=0<i<jJA(<nVj=n)
=0<i<jAj<n)V(0<Li<jANj=n)
=0<i<j<nVv(0<i<jAj=n).

Without information on n, either of the ranges could be empty.

30/37

A FREQUENT PATTERN

We may see this pattern often. For some %, we need to
calculate:
(xj:0<i<j<n+1:R)
= { previous calculation }
(xj:0<i<j<nV(0<i<jAj=n):R)
=j:0<I<j<n:R)x
(¥ j:0<i<jANj=n:R)
= { nesting (8.20) }
(xij:0<i<j<n:R)*
((j:j=n:i:0<i<j:R))
= {one-pointrule}
(xij:0<i<j<n:R)x
(x:0<i<n:RJ\n]) .
Calculation for other ranges (e.g. 0 < i <j < n+ 1) are slightly
different. Watch out! 31/37

STRENGTHENING THE INVARIANT

New plan: define

r=(#i,j:0<i<j<n:all<0Aa]]>0),
P1;s:<#i:O<I<I’):CI[I]\),
Q= 0<n<N,

and try to derive

con N : Int {N > 0}; a:array[0..N)of Int
varn,r,s:Int

n,r,s:=0,0,0
{Po AN Py A Q,bnd:N—n}
don#N—...n:=n+10d

{r=(#1,J:0<i<j<N:a[l<0Aa[] >0)}
32/37

UPDATE THE NEW VARIABLE

(#1:0<i<n:ali] <O)[n\n+1]
= (#i:0<i<n+1:0a[]<0)
= { splitoffi=n(assuming0 < n) }
(#1:0<i<n:a[i] <0)+#(a[n] <0)
= { P~}
s+ #(a[n] < 0)

B E if a[n] > 0,
s+1 ifa[n] <o0.

33/37

RESULTING PROGRAM

n,r,s:=0,0,0
{PoAPyAQ,bnd : N —n}
don#N—{Pob APtAQAN#N}

if a[n] < 0 — skip

laln] >0 —=r:==r+s

fi

{Po[n\n+1APLAQAN#N}

if a[n] > 0 — skip

lan] <0—s:=s+1

fi
{(Po APy AQ)IN\N + 1]}
n:=n+1

od

{r=(#i,j:0<i<j<N:af]<O0Aa[] >

0)}

34/37

RESULTING PROGRAM

Since Po A Pt AQ AN # Nisacommon precondition for the if's

(the second if does not use Pyp), they can be combined:

n,r,s:=0,0,0
{PoAP1AQ,bnd : N —n}
don#N—{PoAPIAQANF#N}
if an]<0—s:=s+1
| aln]=0—r,s:=r+s,s+1
| a[n] >0 —r:=r+s

fi
{(Po APy AQ)[M\N +1]}
n:=n+1

od

{r=(#i,j:0<i<j<N:a[] <OAa[]>0)}

35/37

However, from the point of view of program derivation, the first
program is totally fine.

It closely matches the structure of proofs. If one tries to
understand a program by how its proof proceeds (which is the
way a program should be understood), rather than trying to
read it operationally, one may argue that first program is
easier to understand.

36/37

ISN'T IT GETTING A BIT TOO COMPLICATED?

- Quantifier and indexes manipulation tend to get very long
and tedious.

- Expect to see even longer expressions later!

- To certain extent, it is a restriction of the data structure we
are using. With arrays we have to manipulate the indexes.

- Is it possible to use higher-level data structures? Lists?
Trees?
- Heap-allocated data structure with pointers is a horrifying
beast!
- Trying to be more abstract lead to further developments in
programming languages, e.g. algebraic datatypes.

37/37

	Maximum Segment Sum
	No. of Pairs in an Array

