
PROGRAMMING LANGUAGES:
IMPERATIVE PROGRAM CONSTRUCTION
6. LOOP CONSTRUCTION II: STRENGTHENING THE
INVARIANT

Shin-Cheng Mu
Autumn, 2024

National Taiwan University and Academia Sinica

1 / 37



MAXIMUM SEGMENT SUM



A classical problem: given an array of integers, find largest
possible sum of a consecutive segment.

con N : Int {0 ⩽ N}
con f : array [0..N) of Int
S
{r = ⟨↑ p q : 0 ⩽ p ⩽ q ⩽ N : sum p q⟩}

where sum p q = ⟨Σi : p ⩽ i< q : f[i]⟩.

2 / 37



DETAILS THAT MATTER

• Note the use of ⩽ and < in the specification.
• The range in sum p q is p ⩽ i< q. It computes the sum of
f [p..q) — not including f[q]!

• Therefore when p = q, sum p q computes the sum of an
empty segment.

• In the postcondition we have p ⩽ q — we allow empty
segments in our solution!

• We must have q ⩽ N instead of q<N. Otherwise segments
containing the rightmost element would not be valid
solutions.

3 / 37



PREVIOUSLY INTRODUCED TECHNIQUES

• Replace N by n. Use P ∧ Q as the invariant, where

P ≡ r = ⟨↑ p q : 0 ⩽ p ⩽ q ⩽ n : sum p q⟩ ,

Q ≡ 0 ⩽ n ⩽ N .

• Use ¬ (n = N) as guard. This way we immediately have
that P ∧ Q ∧ n = N imply the desired postcondition.

• How do we know we want 0 ⩽ n ⩽ N? It can be forced by
our development later. But let’s expedite the pace.

• Initialisation: n, r := 0, 0.
• Use N− n as the bound.
• To decrease the bound, let n := n+ 1 be the last
statement of the loop.

4 / 37



We get this program.

con N : Int {0 ⩽ N}
con f : array [0..N) of Int
var r,n : Int

r,n := 0, 0
{P ∧ Q,bnd : N− n}
do n ̸= N→ ??? ;n := n+ 1 od
{r = ⟨↑ p q : 0 ⩽ p ⩽ q ⩽ N : sum p q⟩}

Now we need to construct the ??? part.

5 / 37



CONSTRUCTING THE LOOP BODY

How to construct the ??? part?

{P ∧ Q ∧ n ̸= N}
???

{(P ∧ Q)[n\n+ 1]}
n := n+ 1
{P ∧ Q}

6 / 37



CONSTRUCTING ASSIGNMENTS

How do you construct such an assignment?

{r = ⟨↑ p q : 0 ⩽ p ⩽ q ⩽ n : sum p q⟩ ∧
Q ∧ n ̸= N}

r := ???

{(P ∧ Q)[n\n+ 1]}
n := n+ 1
{P ∧ Q}

Recall what we have learnt: if from (P ∧ Q)[n\n+ 1] we can
infer that

r = ⟨↑ p q : 0 ⩽ p ⩽ q ⩽ n : sum p q⟩ ⊕ E ,

the statement ??? could be r := r⊕ E.
7 / 37



SPLITTING OFF?

Let us look at the step “split off q = n+ 1” in more detail:

0 ⩽ p ⩽ q ⩽ n+ 1
= 0 ⩽ p ⩽ q ∧ q ⩽ n+ 1
= 0 ⩽ p ⩽ q ∧ (q ⩽ n ∨ q = n+ 1)
= (0 ⩽ p ⩽ q ∧ q ⩽ n) ∨ (0 ⩽ p ⩽ q ∧ q = n+ 1)
= 0 ⩽ p ⩽ q ⩽ n ∨ (0 ⩽ p ⩽ q ∧ q = n+ 1) .

Without information about n, nothing guarantees that the
ranges 0 ⩽ p ⩽ q ⩽ n and 0 ⩽ p ⩽ q ∧ q = n+ 1 are not empty.
It does not matter yet, for now.

8 / 37



Therefore we have:

⟨↑ p q : 0 ⩽ p ⩽ q ⩽ n+ 1 : sum p q⟩
= { previous calculation }
⟨↑ p q : 0 ⩽ p ⩽ q ⩽ n ∨
(0 ⩽ p ⩽ q ∧ q = n+ 1) : sum p q⟩

= { range split (8.16) }
⟨↑ p q : 0 ⩽ p ⩽ q ⩽ n : sum p q⟩ ↑
⟨↑ p q : 0 ⩽ p ⩽ q ∧ q = n+ 1 : sum p q⟩

= { nesting (8.20) }
⟨↑ p q : 0 ⩽ p ⩽ q ⩽ n : sum p q⟩ ↑
⟨↑ q : q = n+ 1 : ⟨↑ p : 0 ⩽ p ⩽ q : sum p q⟩⟩

= { one-point rule }
⟨↑ p q : 0 ⩽ p ⩽ q ⩽ n : sum p q⟩ ↑
⟨↑ p : 0 ⩽ p ⩽ n+ 1 : sum p (n+ 1)⟩ .

9 / 37



Things to note:

• Calculation for other patterns of ranges (e.g.
0 ⩽ p ⩽ q ⩽ n+ 1) are slightly different. Watch out!

• In practice, the “splitting off” step is but one quick step.
We do not do the reasoning above in such detail.

• We show you the details above for expository purpose.
• In other problems we may see slightly different ranges,
such as 0 ⩽ p< q< n+ 1. The result of splitting is
different too. Take extra care!

10 / 37



STRENGTHENING THE INVARIANT

Knowing that we need to update r with
⟨↑ p : 0 ⩽ p ⩽ (n+ 1) : sum p (n+ 1)⟩, let us store it in some
variable! Introduce a new variable s, and strengthen the
invariant to P0 ∧ P1 ∧ Q, where

P0 ≡ r = ⟨↑ p q : 0 ⩽ p ⩽ q ⩽ n : sum p q⟩ ,

P1 ≡ s = ⟨↑ p : 0 ⩽ p ⩽ n : sum p n⟩ ,

Q ≡ 0 ⩽ n ⩽ N .

11 / 37



MAXIMUM SUFFIX SUM

• That is, while r is the maximum segment sum so far, s is
the maximum suffix sum so far.

• We discover the need of this concept through symbolic
calculation.

• This is a pattern for many “segment problems”: to solve a
problem about segments, solve a suffix problem for all
prefixes.

Q: Why don’t we let s = ⟨↑ p : 0 ⩽ p ⩽ n+ 1 : sum p (n+ 1)⟩?
A: For this example you will run into some problems. The
details are left as an exercise. But in general it is not
always a bad idea.

12 / 37



CONSTRUCTING THE LOOP BODY

Therefore, a possible strategy would be:

{P0 ∧ P1 ∧ 0 ⩽ n ⩽ N ∧ n ̸= N}
s := ???

{P0 ∧ P1[n\n+ 1] ∧ 0 ⩽ n+ 1 ⩽ N}
r := r ↑ s
{(P0 ∧ P1 ∧ 0 ⩽ n ⩽ N)[n\n+ 1]}
n := n+ 1
{P0 ∧ P1 ∧ 0 ⩽ n ⩽ N}

13 / 37



UPDATING THE PREFIX SUM

Recall P1 ≡ s = ⟨↑ p : 0 ⩽ p ⩽ n : sum p n⟩.

⟨↑ p : 0 ⩽ p ⩽ n : sum p n⟩[n\n+ 1]
= ⟨↑ p : 0 ⩽ p ⩽ n+ 1 : sum p (n+ 1)⟩
= { splitting off p = n+ 1 }

⟨↑ p : 0 ⩽ p ⩽ n : sum p (n+ 1)⟩ ↑
sum (n+ 1) (n+ 1)

= { [n+ 1..n+ 1) is an empty range }
⟨↑ p : 0 ⩽ p ⩽ n : sum p (n+ 1)⟩ ↑ 0

= { splitting off i = n in sum }
⟨↑ p : 0 ⩽ p ⩽ n : sum p n+ f[n]⟩) ↑ 0

= { distributivity }
(⟨↑ p : 0 ⩽ p ⩽ n : sum p n⟩+ f[n]) ↑ 0 .

Thus, {P1} s := ? {P1[n\n+ 1]} is satisfied by s := (s+ f[n]) ↑ 0.
14 / 37



SPLITTING OFF — THINGS TO WATCH OUT

We look at the step “splitting off i = n” in detail. See the range
calculation:

p ⩽ i< n+ 1
= p ⩽ i ∧ (i< n ∨ i = n)
= p ⩽ i< n ∨ (p ⩽ i ∧ i = n)
= { we need 0 ⩽ n! }
p ⩽ i< n ∨ i = n

Compare this to the previous range calculation. This time we
completely remove p ⩽ i.

15 / 37



It allows us to perform one-point rule, without nesting:

sum p (n+ 1)
= ⟨Σi : p ⩽ i< n+ 1 : f[i]⟩
= { range calculation }

⟨Σi : p ⩽ i< n ∨ i = n : f[i]⟩
= ⟨Σi : p ⩽ i< n : f[i]⟩+ ⟨Σi : i = n : f[i]⟩
= { one-point rule }

⟨Σi : p ⩽ i< n : f[i]⟩+ f[n] .

16 / 37



However, that means

• we need to reduce p ⩽ i ∧ i = n to i = n.
• That is, p ⩽ i does not put more constraints on i = n. In
particular, i = n, when conjuncted with p ⩽ i, cannot
reduce to False,

• or, p ⩽ n cannot be an empty range.
• Since in the outer quantification we have 0 ⩽ p ⩽ n, we
need 0 ⩽ n.

That is why we need 0 ⩽ n in the invariant!

17 / 37



Lesson: as long as the quantification is around, we do not care
whether the range is empty. We do have to check that the
range is not empty when the one-point rule leaves no
remaining quantifications.

The requirement we need to ensure that the range is not
empty are often added to the loop invariant.

18 / 37



A KEY PROPERTY

• The last step labelled “distributivity” uses a rule
mentioned before: provided that ¬occurs(i, F) and R
non-empty:

F+ ⟨ ↑ i : R : S ⟩ = ⟨ ↑ i : R : F+ S ⟩
F+ ⟨ ↓ i : R : S ⟩ = ⟨ ↓ i : R : F+ S ⟩ .

• The rules are valid because addition distributes into
maximum/minimum:

x+ (y ↑ z) = (x+ y) ↑ (x+ z) ,

x+ (y ↓ z) = (x+ y) ↓ (x+ z) .

• That is the key property that allows us to have an efficient
algorithm for the maximum segment sum problem!

• Through calculation, we not only have an algorithm, but
also identified the key property that makes it work, which
we can generalise to other problems.

19 / 37



DERIVED PROGRAM

con N : Int {0 ⩽ N}
con f : array [0..N) of Int
var r, s,n : Int

r, s,n := 0, 0, 0
{P0 ∧ P1 ∧ Q,bnd : N− n}
do n ̸= N→
s := (s+ f[n]) ↑ 0
r := r ↑ s
n := n+ 1

od
{r = ⟨↑ p q : 0 ⩽ p ⩽ q ⩽ N : sum p q⟩}

P0 ≡ r = ⟨↑ p q : 0 ⩽ p ⩽ q ⩽ n : sum p q⟩) ,

P1 ≡ s = ⟨↑ p : 0 ⩽ p ⩽ n : sum p n⟩) ,

Q ≡ 0 ⩽ n ⩽ N .
20 / 37



“STRENGTHENING”?

• We stay that the invariant P0 ∧ P1 ∧ Q is “stronger” than
P ∧ Q because the former promises more.

• The resulting loop computes values for two variables
rather than one.

• However, the program ends up being quicker because
more results from the previous iteration of the loop can
be utilised.

• It is a common phenomena: a generalised theorem is
easier to prove.

• We will see another way to generalise the invariant in the
rest of the course.

21 / 37



LESSONS LEARNT?

Let the symbols do the work!

• We discover how to strengthen the invariant by calculating
and finding out what is missing.

• Expressions are your friend, and blind guessing can be
minimised. We always get some clue from the expressions.

• Since we rely only on the symbols, the same
calculation/algorithm can be generalised to other
problems (e.g. as long as the same distributivity propery
holds).

22 / 37



If we remove the pre/postconditions and the invariant, can
you tell us what the program does?

• Without the assertions, programs mean nothing. The
assertions are what matter about the program.

• Structured programming is not about making (the
operational parts of) code easier to read/understand.

• Such efforts are bound to end in vain: even a simple
three-line loop can be hard to understand if the
assertions, encoding the intentions of the programmer,
are stripped away.

23 / 37



• Instead, structured programming is about organising the
code around the structure of the proofs.

• Once the pre/postconditions are given, and the invariants
and bounds are determined, one can derive the code
accordingly.

• It is pointless arguing, for example, “using a break here
makes the code easier to read.”

• One shall not need to “understand“ the operational parts
of the code, but to check whether it meets the
specification.

24 / 37



NO. OF PAIRS IN AN ARRAY



Consider constructing the following program:

con N : Int {0 ⩽ N};a : array [0..N) of Int
var r : Int
S
{r = ⟨#i j : 0 ⩽ i< j< N : a[i] ⩽ 0 ∧ a[j] ⩾ 0⟩}

25 / 37



PREVIOUSLY INTRODUCED TECHNIQUES

• Replace N by n. Use P ∧ Q as the invariant, where

P ≡ r = ⟨#i, j : 0 ⩽ i < j < n : a[i] ⩽ 0 ∧ a[j] ⩾ 0 ⟩,
Q ≡ 0 ⩽ n ⩽ N.

• Use ¬ (n = N) as guard. This way we immediately have
that P ∧ Q ∧ n = N imply the desired postcondition.

• Initialisation: n, r := 0, 0.
• Use N− n as the bound.
• To decrease the bound, let n := n+ 1 be the last
statement of the loop.

26 / 37



We get this program.

con N : Int {0 ⩽ N};a : array [0..N) of Int
var r,n : Int

r,n := 0, 0
{P ∧ Q,bnd : N− n}
do n ̸= N→ ...;n := n+ 1 od
{r = ⟨#i j : 0 ⩽ i< j< N : a[i] ⩽ 0 ∧ a[j] ⩾ 0⟩}

Now we need to construct the ... part.

27 / 37



CONSTRUCTING THE LOOP BODY

How to construct the ... part?

{P ∧ Q ∧ n ̸= N}
...

{(P ∧ Q)[n\n+ 1]}
n := n+ 1
{P ∧ Q}

28 / 37



NO. OF PAIRS IN AN ARRAY

To reason about P[n\n+ 1], we calculate (assuming
P ∧ Q ∧ n ̸= N):

⟨#i, j : 0 ⩽ i < j < n+ 1 : a[i] ⩽ 0 ∧ a[j] ⩾ 0 ⟩
= { split off j = n, see the next slide }

⟨#i, j : 0 ⩽ i < j < n : a[i] ⩽ 0 ∧ a[j] ⩾ 0 ⟩+
⟨#i : 0 ⩽ i < n : a[i] ⩽ 0 ∧ a[n] ⩾ 0 ⟩

= { P }
r+ ⟨#i : 0 ⩽ i < n : a[i] ⩽ 0 ∧ a[n] ⩾ 0 ⟩

=

r, if a[n] < 0;
r+ ⟨#i : 0 ⩽ i < n : a[i] ⩽ 0 ⟩, if a[n] ⩾ 0.

Let us try storing ⟨#i : 0 ⩽ i < n : a[i] ⩽ 0 ⟩ in another variable?
29 / 37



SPLITTING OFF?

For expository purpose let us exam how the splitting was done:

0 ⩽ i< j< n+ 1
= 0 ⩽ i< j ∧ j< n+ 1
= 0 ⩽ i< j ∧ (j< n ∨ j = n)
= (0 ⩽ i< j ∧ j< n) ∨ (0 ⩽ i< j ∧ j = n)
= 0 ⩽ i< j< n ∨ (0 ⩽ i< j ∧ j = n) .

Without information on n, either of the ranges could be empty.

30 / 37



A FREQUENT PATTERN

We may see this pattern often. For some ⋆, we need to
calculate:

⟨⋆i j : 0 ⩽ i< j< n+ 1 : R⟩
= { previous calculation }

⟨⋆i j : 0 ⩽ i< j< n ∨ (0 ⩽ i< j ∧ j = n) : R⟩
= ⟨⋆i j : 0 ⩽ i< j< n : R⟩ ⋆

⟨⋆i j : 0 ⩽ i< j ∧ j = n : R⟩
= { nesting (8.20) }

⟨⋆i j : 0 ⩽ i< j< n : R⟩ ⋆
⟨⋆j : j = n : ⟨⋆i : 0 ⩽ i< j : R⟩⟩

= { one-point rule }
⟨⋆i j : 0 ⩽ i< j< n : R⟩ ⋆

⟨⋆i : 0 ⩽ i< n : R[j\n]⟩ .

Calculation for other ranges (e.g. 0 ⩽ i ⩽ j ⩽ n+ 1) are slightly
different. Watch out! 31 / 37



STRENGTHENING THE INVARIANT

New plan: define

P0 ≡ r = ⟨#i, j : 0 ⩽ i < j < n : a[i] ⩽ 0 ∧ a[j] ⩾ 0 ⟩,
P1 ≡ s = ⟨#i : 0 ⩽ i < n : a[i] ⩽ 0 ⟩,
Q ≡ 0 ⩽ n ⩽ N,

and try to derive

con N : Int {N ⩾ 0}; a : array [0..N)of Int
var n, r, s : Int

n, r, s := 0, 0, 0
{P0 ∧ P1 ∧ Q,bnd : N− n}
do n ̸= N→ . . .n := n+ 1 od
{r = ⟨#i, j : 0 ⩽ i < j < N : a[i] ⩽ 0 ∧ a[j] ⩾ 0 ⟩}

32 / 37



UPDATE THE NEW VARIABLE

⟨#i : 0 ⩽ i < n : a[i] ⩽ 0 ⟩[n\n+ 1]
= ⟨#i : 0 ⩽ i < n+ 1 : a[i] ⩽ 0 ⟩
= { split off i = n (assuming 0 ⩽ n) }

⟨#i : 0 ⩽ i < n : a[i] ⩽ 0 ⟩+#(a[n] ⩽ 0)
= { P1 }

s+#(a[n] ⩽ 0)

=

s if a[n] > 0,
s+ 1 if a[n] ⩽ 0.

33 / 37



RESULTING PROGRAM

n, r, s := 0, 0, 0
{P0 ∧ P1 ∧ Q,bnd : N− n}
do n ̸= N→ {P0 ∧ P1 ∧ Q ∧ n ̸= N}
if a[n] < 0→ skip
| a[n] ⩾ 0→ r := r+ s
fi
{P0[n\n+ 1] ∧ P1 ∧ Q ∧ n ̸= N}
if a[n] > 0→ skip
| a[n] ⩽ 0→ s := s+ 1
fi
{(P0 ∧ P1 ∧ Q)[n\n+ 1]}
n := n+ 1

od
{r = ⟨#i, j : 0 ⩽ i < j < N : a[i] ⩽ 0 ∧ a[j] ⩾ 0 ⟩}

34 / 37



RESULTING PROGRAM

Since P0 ∧ P1 ∧ Q ∧ n ̸= N is a common precondition for the if’s
(the second if does not use P0), they can be combined:

n, r, s := 0, 0, 0
{P0 ∧ P1 ∧ Q,bnd : N− n}
do n ̸= N→ {P0 ∧ P1 ∧ Q ∧ n ̸= N}
if a[n] < 0→ s := s+ 1
| a[n] = 0→ r, s := r+ s, s+ 1
| a[n] > 0→ r := r+ s
fi
{(P0 ∧ P1 ∧ Q)[n\n+ 1]}
n := n+ 1

od
{r = ⟨#i, j : 0 ⩽ i < j < N : a[i] ⩽ 0 ∧ a[j] ⩾ 0 ⟩}

35 / 37



However, from the point of view of program derivation, the first
program is totally fine.

It closely matches the structure of proofs. If one tries to
understand a program by how its proof proceeds (which is the
way a program should be understood), rather than trying to
read it operationally, one may argue that first program is
easier to understand.

36 / 37



ISN’T IT GETTING A BIT TOO COMPLICATED?

• Quantifier and indexes manipulation tend to get very long
and tedious.

• Expect to see even longer expressions later!

• To certain extent, it is a restriction of the data structure we
are using. With arrays we have to manipulate the indexes.

• Is it possible to use higher-level data structures? Lists?
Trees?

• Heap-allocated data structure with pointers is a horrifying
beast!

• Trying to be more abstract lead to further developments in
programming languages, e.g. algebraic datatypes.

37 / 37


	Maximum Segment Sum
	No. of Pairs in an Array

