
PROGRAMMING LANGUAGES:
IMPERATIVE PROGRAM CONSTRUCTION
7. LOOP CONSTRUCTION III: USING ASSOCIATIVITY

Shin-Cheng Mu
Autumn, 2024

National Taiwan University and Academia Sinica

1 / 14



GENERAL USE OF ASSOCIATIVITY



TAIL RECURSION

• A function f is tail recursive if it looks like:

f x = h x, if b x;
f x = f (g x), if ¬(b x).

• Tail recursive functions can be naturally computed in a
loop. To derive a program that computes f X for given X:

con X; var r, x;
x := X
{f x = f X}
do ¬(b x) → x := g x od
r := h x
{r = f X}

provided that the loop terminates.
2 / 14



USING ASSOCIATIVITY

• What if the function to be computed is not tail recursive?
• Consider function k such that:

k x = a, if b x;
k x = h x⊕ k (g x), if ¬(b x).

where ⊕ is associative with identity e.

• Note that k is not tail recursive.
• Goal: establish r = k X for given X.
• Trick: use an invariant r⊕ k x = k X.

• ‘computed’⊕ ‘to be computed’ = k X.
• Strategy: keep shifting stuffs from right hand side of ⊕ to
the left, until the right is e.

3 / 14



CONSTRUCTING THE LOOP BODY

If b x holds:

r⊕ k x = k X
≡ { b x }

r⊕ a = k X.

Otherwise:

r⊕ k x = k X
≡ { ¬(b x) }

r⊕ (h x⊕ k (g x)) = k X
≡ { ⊕ associative }

(r⊕ h x)⊕ k (g x) = k X
≡ (r⊕ k x = k X)[r, x\r⊕ h x,g x].

4 / 14



THE PROGRAM

con X; var r, x;

r, x := e, X
{r⊕ k x = k X}
do ¬(b x) → r, x := r⊕ h x,g x od
{r⊕ a = k X}
r := r⊕ a
{r = k X}

if the loop terminates.

5 / 14



EXAMPLE: EXPONENTATION



EXPONENTATION AGAIN

• Consider again computing AB.

con A,B : Int {0 ⩽ B}
var r : Int
?

{r = AB}

• Notice that:
x0 = 1
xy = 1× (x× x)y div 2 if even y,

= x× xy−1 if odd y.
• How does it fit the pattern above? (Hint: k now has type
(Int× Int) → Int.)

• To be concrete, let us look at this specialised case in more
detail.

6 / 14



INVARIANT AND INITIALISATION

• To achieve r = AB, introduce variables a, b and choose
invariant r× ab = AB.

• To satisfy the invariant, initialise with r,a,b := 1,A,B.
• If b = 0 we have r = AB. Therefore the strategy would be
use b as bound and decrease b.

7 / 14



LINEAR-TIME EXPONENTATION

• How to decrease b? One might try b := b− 1. We calculate:

(r× ab = AB)[b\b− 1]
= r× ab−1 = AB .

• To fullfill the spec below

{r× ab = AB}
r := ?

{r× ab−1 = AB}

One may choose r := r× a.

8 / 14



• That results in the program (omitting the assertions):

con A,B : Int {0 ⩽ B}
var r,a,b : Int

r,a,b := 1,A,B
do b ̸= 0 → r := r× a;b := b− 1 od
{r = AB}

• This program use O(B) multiplications. But we wish to do
better this time.

9 / 14



TRY TO DECREASE FASTER

• Or, we try to decrease b faster by halfing it (let (/) denote
integer division).

(r× ab = AB)[b\b / 2]
= r× ab/2 = AB .

• How to fullfill the spec below?
{r× ab = AB}
?

{r× ab/2 = AB}
• If we choose a := a× a:

(r× ab/2)[a\a× a]
= r× (a× a)b/2

= r× (a2)
b/2

= r× a2×(b/2)

= { even b }
r× ab .

10 / 14



• But wait! For the last step to be valid we need even b!
• That means the program fragment has to be put under a
guarded command:

even b→
{r× ab = AB ∧ even b}
a := a× a
{r× ab/2 = AB}
b := b / 2
{r× ab = AB}

• For that we need to introduce an if in the loop body.

11 / 14



FAST EXPONENTIATION

• We can put the b := b− 1 choice under an odd b guard,
resulting in the following program:

con A,B : Int {0 ⩽ B}
var r,a,b : Int

r,a,b := 1,A,B
{r× ab = AB ∧ 0 ⩽ b,bnd : b}
do b ̸= 0 →
if odd b → r := r× a

b := b− 1
| even b→ a := a× a

b := b / 2
fi

od
{r = AB}

• This program uses O(log B) multiplications.
12 / 14



FAST EXPONENTIATION

• There is no reason, however, that you have to put the
b := b− 1 choice under an odd b guard.

• You might come up with something like this:
con A,B : Int {0 ⩽ B}
var r,a,b : Int

r,a,b := 1,A,B
{r× ab = AB ∧ 0 ⩽ b,bnd : b}
do b ̸= 0 →
r := r× a
b := b− 1
if True → skip

| even b→ a := a× a
b := b / 2

fi
od
{r = AB}

• This program would be correct! Every pieces of proofs we
need has been constructed.

• But you do not get a faster program this way.

13 / 14



SIDE NOTE: CONSTRUCTING BRANCHES

• How do we construct branches?
• If a program fragment needs a side condition to work, we
know that we need a guard.

• We keep constructing branches until the disjunction of all
the guards can be satisfied.

14 / 14


	General Use of Associativity
	Example: Exponentation

