PROGRAMMING LANGUAGES:
IMPERATIVE PROGRAM CONSTRUCTION
7. LOOP CONSTRUCTION Ill: USING ASSOCIATIVITY

Shin-Cheng Mu
Autumn, 2024

National Taiwan University and Academia Sinica

1/ 14

GENERAL USE OF ASSOCIATIVITY

TAIL RECURSION

- A function fis tail recursive if it looks like:
fx =hx, ifbx;
Fx =f(gx), if-(bx).

- Tail recursive functions can be naturally computed in a

loop. To derive a program that computes f X for given X:

con X; varr,Xx;

X=X

{fx=1X}

do —(b x) — x:=g x od
r-=hx

{r=rxy

provided that the loop terminates.

2/ 14

USING ASSOCIATIVITY

- What if the function to be computed is not tail recursive?
- Consider function k such that:

kx =aq, if bx;
kRx =hx®k(gx), if-(bx).

where & is associative with identity e.

- Note that k is not tail recursive.
- Goal: establish r = k X for given X.

- Trick: use an invariantr@ kR x = kR X.

- ‘computed’ @ ‘to be computed’ = R X.
- Strategy: keep shifting stuffs from right hand side of @ to

the left, until the right is e.

3/14

CONSTRUCTING THE LOoOP BODY

If b x holds:
rokx=~rX
= {bx}
roea=RX
Otherwise:
rekx=~rRX

{ =(bx) }

rohxek(gx)=~rRX

= { @ associative }
(rehx)ek(gx)=rRX

= (rokx=RX)[r,x\r®hx,gx].

4114

THE PROGRAM

con X; varr,Xx;

r,x.=exX

{rekx="RrRX}

do—(bx) = r,x:=r@&hxgxod
{rea=rX}

r-=roa

{r=FkX}

if the loop terminates.

5/14

EXAMPLE: EXPONENTATION

EXPONENTATION AGAIN

- Consider again computing A°P.

con A, B:Int {0 < B}

var r:Int
?
{r=A%}
- Notice that:
X0 = 1
¥ = 1x(xxxydv2 ifeveny,
X x V1 if odd y.

- How does it fit the pattern above? (Hint: k now has type
(Int x Int) — Int.)
- To be concrete, let us look at this specialised case in more

detail.
6/14

INVARIANT AND INITIALISATION

- To achieve r = AP, introduce variables a, b and choose
invariant r x a? = AB.

- To satisfy the invariant, initialise with r,a, b := 1, A, B.

- If b = 0 we have r = AP. Therefore the strategy would be
use b as bound and decrease b.

7114

LINEAR-TIME EXPONENTATION

- How to decrease b? One might try b:=b — 1. We calculate:

(r x ab = AB)[b\b — 1]
=rxab~t=AF .

- To fullfill the spec below

{rxab = AB}
r:=7
{rxab=t = AB}

One may choose r:=r x a.

8 /14

- That results in the program (omitting the assertions):

con A, B:Int{0 < B}
varr,a,b:Int

r,a,b:=1,A,B
dob#0—r:=rxab:=b-10od
{r=n%}

- This program use O(B) multiplications. But we wish to do
better this time.

9/14

TRY TO DECREASE FASTER

- Or, we try to decrease b faster by halfing it (let (/) denote
integer division).
(r x a® = AB)[b\b / 2]
=rxab/2=AB .
- How to fullfill the spec below?
{rxab = AB}
7
{r x ab/? = AB}
- If we choose a:=a x a:
(r x a®/?)[a\a x d]
= rx (ax a)”?
=rx (a?)"?
= r x q2x(b/2)

= {evenb} 10/ 14

- But wait! For the last step to be valid we need even b!

- That means the program fragment has to be put under a
guarded command:

even b —
{rxab=AB Aeven b}
a:=axa
{r x ab/? = AP}
b:=b/2
{r x ab = AP}

- For that we need to introduce an if in the loop body.

11/14

FAST EXPONENTIATION

- We can put the b :=b — 1 choice under an odd b guard,
resulting in the following program:
con A, B:Int{0 < B}
varr,a,b:Int

r,a,b:=1,A,B
{rxa?=ABA0<b,bnd:b}
dob#0—
if oddb —r:=rxa
b:=b-1
levenb —a:=axa
b:=b/2
fi
od

D T D 12/14

FAST EXPONENTIATION

- There is no reason, however, that you have to put the
b:=b — 1 choice under an odd b guard.
- You might come up with something like this:
con A, B:Int{0 < B}
varr,a,b:Int
r,a,b:=1,A,B
{rxa?=AB A0 <b,bnd:b}
dob#0—
r-=rxa
b:=b-1
if True — skip
levenb - a:=axa
b:=b/2
fi
A 13 /14

SIDE NOTE: CONSTRUCTING BRANCHES

- How do we construct branches?

- If a program fragment needs a side condition to work, we
know that we need a guard.

- We keep constructing branches until the disjunction of all
the guards can be satisfied.

14 [14

	General Use of Associativity
	Example: Exponentation

