
PROGRAMMING LANGUAGES:
IMPERATIVE PROGRAM CONSTRUCTION
8. CASE STUDIES

Shin-Cheng Mu
Autumn Term, 2024

National Taiwan University and Academia Sinica

1 / 17

FASTER DIVISION

QUOTIENT AND REMAINDER

• Recall the problem:

con A,B : Int {0 ⩽ A ∧ 0 < B}
var q, r : Int
?

{A = q× B+ r ∧ 0 ⩽ r< B} .

• Recall: recognising the postcondition as a conjunction, we
use A = q× B+ r ∧ 0 ⩽ r as the invariant and ¬ (r< B) as
the guard.

2 / 17

• The program we came up with:

q, r := 0,A
{A = q× B+ r ∧ 0 ⩽ r,bnd : r}
do B ⩽ r→ q := q+ 1

r := r− B
od
{A = q× B+ r ∧ 0 ⩽ r< B} .

• In each iteration of the loop, r is decreased by B.
• We can probably get a quicker program by decreasing r by
... 2 × B, when possible.

• What about decreasing r by 4 × B, 8 × B,... etc?

3 / 17

STRATEGY...

con A,B : Int {0 ⩽ A ∧ 0 < B}
var q, r,b, k : Int
...

{0 ⩽ k ∧ b = 2k × B ∧ A< b}
...

{A = q× b+ r ∧ 0 ⩽ r< b ∧
0 ⩽ k ∧ b = 2k × B,bnd : b}

do b ̸= B→ ...od
{A = q× B+ r ∧ 0 ⩽ r< B}

4 / 17

THE PROGRAM

con A,B : Int {0 ⩽ A ∧ 0 < B}
var q, r,b, k : Int
b, k := B, 0
do b ⩽ A→ b, k := b× 2, k+ 1 od
{0 ⩽ k ∧ b = 2k × B ∧ A< b}
q, r := 0,A
{A = q× b+ r ∧ 0 ⩽ r< b ∧ ndevelopingsuchprograms,

0 ⩽ k ∧ b = 2k×B,bnd:b}fyouaresurethatthequantifiedvariableswon′tbeneeded.
do b ̸= B→
if r< b / 2 → q,b, k := q× 2,b / 2, k− 1
| b / 2 ⩽ r→ q,b, k, r := q× 2 + 1,b / 2,

k− 1, r− b / 2
fi

od
{A = q× B+ r ∧ 0 ⩽ r< B} 5 / 17

con A,B : Int {0 ⩽ A ∧ 0 < B}
var q, r,b, k : Int
b, k := B, 0
do b ⩽ A→ b, k := b× 2, k+ 1 od
q, r := 0,A
do b ̸= B→
q,b, k := q× 2,b / 2, k− 1
if r< b → skip
| b ⩽ r→ q, r := q+ 1, r− b
fi

od
{A = q× B+ r ∧ 0 ⩽ r< B}

6 / 17

• The program has the advantage that we do not need to have
b / 2 in the guards.

• Note what the first assignment establishes:

{A = q× b+ r ∧ 0 ⩽ r< b ∧
0 ⩽ k ∧ b = 2k × B ∧ b ̸= B}

q,b, k := q× 2,b / 2, k− 1
{A = q× b+ r ∧ 0 ⩽ r< 2 × b ∧

0 ⩽ k ∧ b = 2k × B}

6 / 17

THE PROGRAM SKELETON

{M< N ∧ Φ M N}
l, r :=M,N
{Φ l r ∧ M ⩽ l< r ⩽ N,bnd : r− l}
do l+ 1 ̸= r→
{... ∧ l+ 2 ⩽ r}
m := anything s.t. l < m < r
{... ∧ l<m< r}
if Φ m r→ l :=m
| Φ l m → r :=m
fi

od
{M ⩽ l< N ∧ Φ l (l+ 1)}

Note: m := (l+ r) / 2 is a valid choice, thanks to the
precondition that l+ 2 ⩽ r.

7 / 17

CONSTRAINTS ON Φ

• But we need the if to be total.

• Therefore we demand a constrant on Φ:

Φ l r⇒ Φ l m ∨ Φ m r, if l < m < r. (1)

• Some Φ satisfying (1) (for F of appropriate type):

• Φ l r ≡ F[l] ̸= F[r],

• Φ l r ≡ F[l]< F[r],

• Φ l r ≡ F[l] ⩽ A ∧ A ⩽ F[r],

• Φ l r ≡ F[l]× F[r] ⩽ 0,

• Φ l r ≡ F[l] ∨ F[r],

• Φ l r ≡ ¬ (Q l) ∧ Q r.

• Van Gasteren and Feijen believe that Φ l r = F[l] ̸= F[r] is a
better example when explaining binary search.

8 / 17

SEARCHING FOR A KEY

• The case Φ l r ≡ ¬ (Q l) ∧ Q r is worth special attention.

• Choose Q i ≡ K< F[i] for some K.

• Therefore Φ l r ≡ F[l] ⩽ K< F[r].

• That constitutes the binary search we wanted!

• The postcondition: M ⩽ l< N ∧ F[l] ⩽ K< F[l+ 1].

• Note that we do not yet need F to be sorted!

• The algorithm gives you some l such that F[l] ⩽ K< F[l+ 1]. If
there are more than one such l, one is returned
non-deterministically.

9 / 17

SORTEDNESS

• That F is sorted comes in when we need to establish that
there is at most one l satisfying the postcondition.

• That is, either F[l] = K, or ¬ ⟨∃i : M ⩽ i< N : F[i] = K⟩.

10 / 17

THE PROGRAM... OR A PART OF IT

• Let Φ l r = F[l] ⩽ K< F[r].

• Processing the array fragment F [a . .b]:

l, r := a,b
{Φ l r ∧ a ⩽ l< r ⩽ b,bnd : r− l}
do l+ 1 ̸= r→
m := (l+ r) / 2
if F[m] ⩽ K→ l :=m
| K< F[m] → r :=m
fi

od
{a ⩽ l< b ∧ F[l] ⩽ K< F[l+ 1]}

• Note that F[a] and F[b] are never accessed.

• This program is not yet complete.... 11 / 17

INITIALISATION

• But wait.. to apply the algorithm to the entire array, we need
the precondition Φ 0 N, that is F[0] ⩽ K< F[N]. Is that true? (We
don’t even have F[N].)

• One can rule out cases when the precondition do not hold
(and also deal with empty array). E.g.

if 0 = N→ p := False
| 0 < N→
if K< F[0] → p := False
| F[N− 1] = K→ p, l := True,N− 1
| F[0] ⩽ K< F[N− 1] →

a,b := 0,N− 1
program above
p := F[l] = K

fi
fi

• where p is True iff. K presents in F.

12 / 17

PSEUDO ELEMENTS

• But there is a better way... introduce two pseudo elements!

• Let F[−1] = −∞ and F[N] = ∞.

• Initially, Φ 0 N is satisfied.

• In the code, F[−1] and F[N] are never accessed. Therefore we
do not actually have to represent them!

• We need to be careful interpreting the result, once the main
loop terminates, however.

13 / 17

THE PROGRAM (1)

Let Φ l r = F[l] ⩽ K< F[r].

con N, K : Int {0 ⩽ N}
con F : array [0..N) of Int {F ascending ∧
F[−1] = −∞ ∧ F[N] = ∞}

var l,m, r : Int
var p : Bool

l, r :=−1,N
{Φ l r ∧ −1 ⩽ l< r ⩽ N,bnd : r− l}
do l+ 1 ̸= r→
m := (l+ r) / 2
if F[m] ⩽ K→ l :=m
| K< F[m] → r :=m
fi

od
{−1 ⩽ l< N ∧ F[l] ⩽ K< F[l+ 1]} 14 / 17

A MORE COMMON PROGRAM

• Recall that Bentley proposed using binary search as an
exercise.

• Bentley’s solution can be rephrased below:

l, r,p := 0,N− 1, False
do l ⩽ r→
m := (l+ r) / 2
if F[m]< K → l :=m+ 1
| F[m] = k→ p := True;break
| K< F[m] → r :=m− 1
fi

od

15 / 17

A MORE COMMON PROGRAM

I’d like to derive it, but

• it is harder to formally deal with break.

• Still, Bentley employed a semi-formal reasoning using a loop
invariant to argue for the correctness of the program.

• To relate the test F[m] < K to l := m+ 1 we have to bring in
the fact that F is sorted earlier.

16 / 17

COMPARISON

• The two programs do not solve exactly the same problem
(e.g. when there are multiple Ks in F).

• Is the second program quicker because it assigns l and r to
m+ 1 and m− 1 rather than m?

• l := m+ 1 because F[m] is covered in another case;

• r := m− 1 because a range is represented differently.

• Is it quicker to perform an extra test to return early?

• When K is not in F, the test is wasted.

• Rolfe claimed that single comparison is quicker in average.

• Knuth: single comparison needs 17.5 lgN+ 17 instructions,
double comparison needs 18 lgN− 16 instructions.

17 / 17

	Faster Division
	Division in O((A/B)) Time
	Searching for a Key
	Searching with Premature Return

