PROGRAMMING LANGUAGES:
IMPERATIVE PROGRAM CONSTRUCTION
8. CASE STUDIES

Shin-Cheng Mu
Autumn Term, 2024

National Taiwan University and Academia Sinica

1/17

FASTER DIVISION

QUOTIENT AND REMAINDER

- Recall the problem:

conA,B:Int{0<AAN0<B}
var g, r:Int

?
{A=gxB+rAn0<r<B} .

- Recall: recognising the postcondition as a conjunction, we
use A=qgxB+rA0<rastheinvariantand — (r < B) as
the guard.

2/17

- The program we came up with:

g,r:=0,A

{A=gxB+rA0<rbnd:r}

doB<r—qg:=q+1
r-=r—>5b

od

{A=qgxB+rn0<r<B} .

- In each iteration of the loop, r is decreased by B.

- We can probably get a quicker program by decreasing r by
.. 2 x B, when possible.

- What about decreasing r by 4 x B, 8 x B,... etc?

3/17

STRATEGY...

conA,B:Int{0<AAN0<B}
varg,r,b,kR:Int

{0<kRAb=28xBAA<D}
{A=gxb+rAn0<r<bAa
0<RkRAb=2fxB,bnd:b}

dob#B—..od
{A=gxB+rnAn0<r<B}

4117

THE PROGRAM

conA,B:Int{0<AA0<B}
var g,r,b,k:Int
b,k:=B,0
dob<A—bk:=bx2kR+10d
{0<RAb=28xBAA<bD}
g,r:=0,A
{A=qgxb+rA0<r<bAndevelopingsuchprograms,
0 < kR A b =2fxB, bnd:b}fyouaresurethatthequantifiedvariabl
dob#B—
ifr<b/2—qg,bjki=gx2,b/2,k—-1
|b/2<r—q,b,Ryr:=gx2+1,b/2,
kR—1,r—b/2
fi
od

{A=qgxB+rn0<r<B} 5/17

conA,B:Int{0<AA0<B}

varg,r,b,kR:Int

b,k:=B,0

dob<A—bk:=bx2k+1o0d

g,r:=0,A

dob#B—
q,b,k:=qx2,b/2,R—1
if r<b — sRip
|b<r—gq,r-=q+1,r—>b
fi

od

{A=gxB+rnAn0<r<B}

6/17

- The program has the advantage that we do not need to have
b /2 in the guards.

- Note what the first assignment establishes:

{A=gxb+rA0<r<ba
0<RAb=20xBAb#B}

g,b,k:==qgx2,b/2,R—1

{A=gxb+rAn0<r<2xbA
0<RADb=2FxB}

6/17

THE PROGRAM SKELETON

{(M<NA®MN}

[,r:==M,N

{®lrAM<SI<r<N,bnd:r—1}

dol+1#r—
{..Al+2<r1}
m:=anythingst. [<m<r
{.Al<m<r}
ifomr—l:=m
| lm —r:=m
fi

od

MKI<NAPLI(L+1)}

Note: m := ([+r) /2 is a valid choice, thanks to the

precondition that [+ 2 < 1.
7117

CONSTRAINTS ON ¢

- But we need the if to be total.

- Therefore we demand a constrant on &:

dlr=dlmvemr, ifl<m<r. (1)

- Some @ satisfying (1) (for F of appropriate type):
FII # FIr,

FI{] < Fr],

FI] <AANA<F[,
Fl

Fll

] x Flr] <0,
]V,
-(QbhnaQr

o lr

- Van Gasteren and Feijen believe that ® [r = F[l] # F[r]isa s8/17

SEARCHING FOR A KEY

- Thecase ® [r=-(Q[) A Qrisworth special attention.
- Choose Q | = K < F[i] for some K.

- Therefore ® [r = F[l] < K< F[r].

- That constitutes the binary search we wanted!

- The postcondition: M < [< N A F[l] < K< F[l+ 1].

- Note that we do not yet need F to be sorted!

- The algorithm gives you some [such that F[l] < K< F[[+ 1]. If
there are more than one such [, one is returned
non-deterministically.

9/17

SORTEDNESS

- That F is sorted comes in when we need to establish that
there is at most one [satisfying the postcondition.

- Thatis, either F[l] = K, or = (Ji : M < i < N : F[i] = K).

10/17

THE PROGRAM... OR A PART OF IT

- Letd [r=F[l] < K<F[r].

- Processing the array fragment F [a..D]:
[,r:-=a,b
{Plrna<l<r<b,bnd:r—1}
dol+1#r—

m:=(l+r)/2

if Ml < K—l:=m

| K< F[m] = r:=m

fi
od
{a<I<bAF]<K<Fl+1]}

- Note that Fla] and F[b] are never accessed.

- This program is not yet complete....

1/17

INITIALISATION

- But wait.. to apply the algorithm to the entire array, we need
the precondition ® 0 N, that is F[0] < K < F[N]. Is that true? (We
don’t even have F[N].)

- One can rule out cases when the precondition do not hold
(and also deal with empty array). E.g.
if 0 =N — p:=False
|O<N—
if K< F[0] — p := False
| FIN—=1] =K — p,l:=True,N — 1
| FIO] <K K< FIN —1] —
a,b:=0,N—-1
program above
p:=F[l] =K

fi 12/17

PSEUDO ELEMENTS

- But there is a better way... introduce two pseudo elements!
- Let Ff[—1] = —o0 and F[N] = oc.
- Initially, ® 0 N is satisfied.

- In the code, F[—1] and F[N] are never accessed. Therefore we
do not actually have to represent them!

- We need to be careful interpreting the result, once the main
loop terminates, however.

13/17

THE PROGRAM (1)

Let® [r=F[l] < K<Fr].

con N,K:Int {0 < N}

con F:array [0..N) of Int {F ascending A
F[—1] = —oo A FIN] = oo}

var [,m,r:Int

var p : Bool

l,r:=—1,N
{PlrAn-1<l<r<N,bnd:r—1}
dol+1#r—

m:=(l+r)/2

if Ml < K—l:=m

| K< Fm] = r:=m

fi

od
f e | o NAFI < K_—-FH L1 14 /17

A MORE COMMON PROGRAM

- Recall that Bentley proposed using binary search as an
exercise.

- Bentley’'s solution can be rephrased below:

l,r,p:=0,N—1, False
dol<r—
m:=(+r)/2
if M<K —=l:=m+1
| Fim] = kR — p :=True; break
| K<FM] - r=m-—1
fi
od

15 /17

A MORE COMMON PROGRAM

I'd like to derive it, but

- it is harder to formally deal with break.

- Still, Bentley employed a semi-formal reasoning using a loop
invariant to argue for the correctness of the program.

- To relate the test F[m] < Kto [:= m + 1 we have to bring in
the fact that F is sorted earlier.

16 /17

COMPARISON

- The two programs do not solve exactly the same problem
(e.g. when there are multiple Ks in F).

- Is the second program quicker because it assigns [and r to
m +1and m — 1 rather than m?

- [:=m+ 1 because F[m] is covered in another case;

- r:=m — 1because a range is represented differently.
- Is it quicker to perform an extra test to return early?

- When Kis not in F, the test is wasted.
- Rolfe claimed that single comparison is quicker in average.

-+ Knuth: single comparison needs 17.5Ig N + 17 instructions,
double comparison needs 18Ig N — 16 instructions.

17 /17

	Faster Division
	Division in O((A/B)) Time
	Searching for a Key
	Searching with Premature Return

