PROGRAMMING LANGUAGES:
IMPERATIVE PROGRAM CONSTRUCTION
9. ARRAY MANIPULATION

Shin-Cheng Mu
Autumn Term, 2024

National Taiwan University and Academia Sinica

1/42

Materials in these notes are mainly from Kaldewaij. Some
examples are adapted from the course CSci 550: Program
Semantics and Derivation taught by Prof. H. Conrad
Cunningham, University of Mississippi.

2/ 42

SOME NOTES ON DEFINEDNESS

ASSIGNMENT REVISITED

- Recall the weakest precondition for assignments:
wp (x:=E) P = P[x\E] .

- That is not the whole story... since we have to be sure that
Eis defined!

3/42

DEFINEDNESS

- In our current language, given expression F there is a
systematic (inductive) definition on what needs to be
proved to ensure that £ is defined. Let's denote it by def E.

- We will not go into the detail but give examples.

- For example, if there is division in E, the denominator
must not be zero.

cdef(x+y/(z+x)=(z+x#0).
- def (x+y/2)=(2#0)=True.

4142

WEAKEST PRECONDITION

- A more complete rule:
wp (X :=E) P=P[X\E] A def E .
- In fact, all expressions need to be defined. E.g.

wp (ifBO*)SO ‘ B —)S1 ﬁ)P:
Bo=wpSoPABy=wpSiPA(ByV By)A
def By A def By .

5/42

HOW COME WE HAVE NEVER MENTIONED SO?

- How come we have never mentioned so?

- The first partial operation we have used was division. And
the denominator was usually a constant (namely, 2!).

6/42

ARRAY BOUND

- Array indexing is a partial operation too — we need to be
sure that the index is within the domain of the array.
- Let A:array [M..N) of Int and let | be an expression. We
define def (A[l]) =def IANM < [<N.
- E.g. given A:array [0..N) of Int,
cdef (Alx/z]+AY]) =z2£0AN0<Xx/Z<NAO<LSYy<N
- wp (s:=sTA[N]) P=P[s\sTA[N]A0<n<N.
- We never made it explicit, because conditions such as
0 < n < N were usually already in the invariant/guard and
thus discharged immediately.

7/ 42

ARRAY ASSIGNMENT

ARRAY ASSIGNMENT

- So far, all our arrays have been constants — we read from
the arrays but never wrote to them!
- Consider a: array [0..2) of Int, where a[0] = 1 and a[l] = 1.
- It should be true that
{a[o] =1 A a[1] = 1}
ala[1]] :=0
{ala[1]] =1} .

- However, if we use the previous wp,

wp (ala[1]] := 0) (a[a[1]] = 1)
(0[0[1]] = 1)[ala[1]]\0]

- What went wrong?
8/ 42

ANOTHER COUNTEREXAMPLE

- For a more obvious example where our previous wp does
not work for array assignment:

- wp (a[i] :=0) (a[2] # 0) appears to be a[2] # 0, since all]
does not appear (verbatim) in a[2] # 0.

- Butwhat if j = 2?

9/42

ARRAYS AS FUNCTIONS

- An array is a function. E.g. a:array [0..N) of Bool is a
function Int — Bool whose domain is [0..N).
- Indexing a[n] is function application.

- Some textbooks use the same notation for function
application and array indexing.
- (Could that have been a better choice for this course?)

10/ 42

FUNCTION ALTERATION

- Given [: A — B, let (f:x»e) denote the function that maps
X to e, and otherwise the same as f.

(f:xse)y=e ,ifx=y,
=fy , otherwise.

- For example, given fx = x?, (f:1-—1) is a function such
that

(f:1-—-1)1=-1,
(fil-—=1)x =x2 | ifx#1.

1/ 42

Wp FOR ARRAY ASSIGNMENT

- Key: assignment to array should be understood as altering
the entire function.

- Given a: array [M..N) of A (for any type A), the updated
rule:

wp (a[l] :=E) P = Pla\(a:I-E)] A
def (a[ll) A def E .

- In our examples, def (a[l]) and def E can often be
discharged immediately. For example, the boundary check
M < | < N can often be discharged soon. But do not forget
about them.

12/ 42

THE EXAMPLE

- Recall our example

{a[0] =1 A a[1] =1}
ala[1]] :=0
{afafi]] =1} .

- We aim to prove

a0j]=1Aa[l] =1=

wp (ala[t]] :=0) (a[a[1]] = 1) .

13/ 42

Assume a[0] =1 A a[l] = 1.

wp (alalt]] == 0) (afa[1]] = 1)

= { def of wp for array assignment }
(a:a[1]-0)[(a:a[1]-0)[1]] = 1

= {assumption: a[1] =1}
(a:1-0)[(a:1-0)[1]] = 1

= { def of alteration: (a:1-0)[0] =0 }
(a:1-0)[0] = 1

= {def of alteration: (a:1-0)[0] = a[0] }

alo] =1
= {assumption: a[0] =1}
True .

14/ 42

RESTRICTIONS

- In this course, parallel assignments to arrays are not
allowed.

- This is done to avoid having to define what the following
program ought to do:

X,y :=0,0;
alx,aly] == 0,1

- It is possible to give such programs a definition (e.g.
choose an order), but we prefer to keep it simple.

15/ 42

TYPICAL ARRAY MANIPULATION IN A
Loop

EXAMPLE: ALL ZEROS

Consider:

con N:Int {0 < N}

var h:array [0..N) of Int
allzeros
{{(Vi:0<I<N:h[]=0)}

16/ 42

THE USUAL DRILL

con N:Int {0 < N}
var h :array [0..N) of Int

var n:Int
n:=0
{(Vi:0<i<n:h[i]=0)A0<n<N,
bnd:N —n}
don#N-— 7
n:=n+1
od

{(¥i:0<i<N:h[]=0)}

17/ 42

- The calculation can certainly be generalised.

- Given a function H: Int — A, and suppose we want to
establish

Vi:0<i<N:h[i]=Hi) ,

where H does not depend on h (e.g, h does not occur free
in H).

“LetPn=0<n<NANM:0<i<n:h[i]=HI)).

- We aim to establish P (n+ 1), given Pn A n # N.

18/ 42

- One can prove the following:

{PnAn#NAE=Hn}
hin] :=E
{P(n+1)},

19/ 42

- which can be used in a program fragment...

{P o}
n:=0
{Pn,bnd:N—n}
don#N—
{establishE=Hn}
hin]:=E
n:=n+1
od

{(¥i:0<i<N:h[i]=Hi}

20/ 42

- Why do we need E? Isn't E simply H n?
- In some cases H n can be computed in one expression. In
such cases we can simply do h[n] := H n.

- In some cases E may refer to previously computed results
— other variables, or even h.

- Yes, E may refer to h while H does not. There are such
examples in the Practicals.

21/ 42

EXAMPLE: HISTOGRAM

Consider:

con N:Int {0 < N}; X:array [0..N) of Int

{(Mi:0<i<N:1<X[]<6)}

var h:array [1..6] of Int

histogram

{(Vi:1<i<6:h[]=
(#R:0K<R<N:X[Rl=1))}

22 [42

THE PROGRAM

LetPn=(Vi:1<i<6:h[i]=(#R:0<kR<n:X[R =1)).
con N:Int {0 < N}; X:array [0..N) of Int
{(Vi:0<I<N:1<X[]<6)}
var h :array [1..6] of Int
var n:int
n:=1
don#7—h[n:=0n:=n+1od
{P 0}
n:=0
{PnAO<n<N,bnd:N-—n}
don # N — h[X[n]] := h{X[n]] + 1

n:=n+1
od
{(Vi:1<i<6:h[i]=

—~ . \sF1 1 Sy

23/ 42

- swap h E F does not always literally “swaps the values.”
For example, it is not always the case that

{h[E] = X} swap h E F{h[F] =X} .

- Consider h[0] =0 A h[1] = 1. This does not hold:

{hth[0]] = 0} swap h (h[0]) (h[1]) {h[h[1]] = O} .

- In fact, after swapping we have h[0] = 1 A h[1] =0, and

hence h[h[1]] = 1.
24 [42

A SIMPLER CASE

- However, when h does not occur free in £ and F, we do
have
({(Vi:i£ENIZF:h[l]=HID} A
h[E] = X A h[F] =)
swap h E F
({(Vi:i£FENIFZF:h[ll]=HD} A
hlE] =Y A h[F] =X) .

- It is a convenient rule we use when reasoning about

swapping.
- Note that, in the rule above, £ and F are expressions, while
X, Y, H are logical variables.

24 [42

NOTE: KALDEWAI)'S SWAP

- Kaldewaij defined swap h E F as an abbreviation of
[var r;r:= h[E]; h[E] := h[F]; h[F] :=]

- where ris a fresh name and |[...]| denotes a program block
with local constants and variables. We have not used this
feature so far.

- | do not think this definition is correct, however. The
definition would not behave as we expect if F refers to h[E].

25/ 42

THE DUTCH NATIONAL FLAG

- Let RWB = {R, W, B} (standing respecively for red, white,
and blue).

con N:Int {0 < N}

var h:array [0..N) of RWB

var r,w: Int

dutch_national_flag

{0<r<w<NA
(Vi:0o<i<r:hli]=R)A
(Vi:r<i<w:h[i]=W)A
(Vi:w<i<N:h[l]=B)A}

- The program shall manipulate h only by swapping.
- Denote the postcondition by Q.

26/ 42

WHITE

- The case for white is the easiest, since

Po/\P1/\h[W]:W$
(Po A P1)[W\W—|— 1] .

- It is sufficient to let Sy, be simply w:=w + 1.

27 [42

BLUE

- We have
{Pr APy APy Aw<bAh[w] =B}
swap hw(b—1)
{Pr NPy APy Aw<bAh[b—1] =B}
b:=b-1
{Pr APy APy Aw< b}

- Thus we choose swap hw (b —1);b:=b — 1 as Sp.

28/ 42

RED

- Precondition: P, A Py A Pp Aw < b A h[w] =R.
- It appears that swap h w r establishes P[w\w + 1]. But we

have to see what h[r] is before we can increment r.

- Py implies r < w = h[r] = W. Equivalently, we have

r=wVvVh[r]=W.

29/ 42

RED: CASEr = w

- We have

{Pr NPy APy Ar=w<bA h[w] =R}
swap hwr

{Pr APy AP, Aw<bAh[r]=R}
rw:i=r+1,w+1

{P- APy APyANr=w< b}

30/ 42

RED: CASE h[r] = W

- We have

{Pr APy APy Aw<bAh[r] =W A h[w] =R}

swap hwr

{PrAh[rf]=RAN :r+1<i<w:h[i]]=W)A
hiw] =W A P, Aw < b}

rwi=r+1,w+1

{Pr NPy APy Ar=w< b}

- In both cases, swap hw r;r,w:=r+ 1,w+ 1 is a valid
choice.

31/ 42

con K,N:Int {0 < K< N}
var h :array [0..N) of A
- {(Vi:0<i<N:h[]=H])}
rotation
{(Vi: 0<i<N:h[(i+K)ymodN]=H[])} .

- To eliminate mod, the postcondition can be rewritten as:

Vi:0<i<N—K:h[i+K =H[]) A
Vi N—K<i<N:h[i+K—N=H[] .

- O, h[K..N) = H[0..N — K) A h[0..K) = H[N — K..N).
32/ 42

ABSTRACT NOTATIONS

- For this problem we benefit from using more abstract
notations.

- Segments of arrays can be denoted by variables. E.g.
X = H[0..N — K) and Y = H[N — K..N).

- Concatenation of arrays are denoted by juxtaposition. E.g.
H[0..N) = XY.

- Empty sequence is denoted by [].

- Length of a sequence X is denoted by [X.

32/ 42

- Specification:

{h = XY}
rotation
{h =YX}

- When [X = [Y we can establish the postcondition easily —
just swap the corresponding elements.

- Denote swapping of equal-lengthed array segments by
SWAP X'Y.

33/ 42

THINKING LENGTHS

- When [X< LY, h can be written as h = XUV,
- where[U=I[Xand UV =Y.
- Task:

{h=XUVALU=IL1X}

rotation
{h =UVX}

34/ 42

- Strategy:

{h=XUVALU=[X}

SWAP X U
{h = UXv}
77

{h = Uvx}

-+ The part ?? shall transform XV into VX — a problem having
the same form as the original!

- Some (including myself) would then go for a recursive
program. But there is another possibility.

35/ 42

LEADING TO AN INVARIANT...

- Consider the symmetric case where [X > [Y.

{(h=UwAlV=LY}

SWAP V'Y
{h=Uv}
7

{h=vyuv}

- In general, the array is of them form AUVB, where UV
needs to be transformed into VU, while A and B are parts
that are done.

36/ 42

THE INVARIANT

- Strategy:

{h = XY}

AUV, B:=[],X,Y,][]
{h=AUVB A YX = AVUB,bnd : [U+ | V}
doU#[]AV#][]— ..0od

{h =YX}

- Call the invariant P. Intuitively it means “currently the
array is AUVB, and if we exchange U and V, we are done.”

- Note the choice of guard: PA (U=[] AV =][]) = h=YX

37/ 42

AN ABSTRACT PROGRAM

AUV, B:=[],XY,]]
{h=AUVB A YX=AVUB,bnd: LU+ [V}
doU#[]AV#[] =

ifluzlvV— -—-1lU=LlV
{h = AUgU\VB A YX = A\/UoU1B}
SWAP Uy V
{h = AJW+B N YX = A\/U()U18}
U7 B:= Uo, U1B
{h = AUVB A YX = AVUB}
U<IV— —~[Vo=LU
{h = AWQVB A YX = AVo/1UB)
SWAP U Vg
{h = AVQW:B A YX = AVo/iUB}
AV = Ao, Vs

{h = AUVB A YX = AVUB}
38/ 42

REPRESENTING THE SEQUENCES

- Introduce a, b, k, [: Int.

- A = h|0..a);

- U= hl[a..a+ R), hence [U =k,

- V=nhl[b—L[.b), hence V=]

- B=h[b..N).

- Additional invariant: a+k=b — L.

- Why having both k and [? We will see later.

39/ 42

A CONCRETE PROGRAM

- Represented using indices:
a,k,[,b:=0,N—K KN
doR#AOAI#0—

ifk>1— SWAP (b—1)L(-1)
R,b:=k—1b—1
| k<1 — SWAPa kR
a,l:=a+RI[—k
fi
od
- where SWAP x num off abbreviates

[var n:Int
n:=x
do n # x+ num — swap h n (n + off)

n:=n+1
40/ 42

GREATEST COMMON DIVISOR

- To find out the number of swaps performed, we use a
variable t to record the number of swaps.

- If we keep only computation related to ¢, k, and [:

kL t:=N—KKO0

doRAOAI£0—
ifR>l—>ti=t+LkR:=k—
| k<> ti=t+Rl:=1—
fi

od

[
k

41/ 42

- Observe: the part concerning k and [resembles
computation of greatest common divisor.

- Infact, gcd R [= gcd N (N — K), which is gcd N K.

- When the program terminates, k + [= gcd N K.
- It's always true that t + k + [= N.

- Therefore, the total number of swaps is
t=N—-(R+1)=N-gcd NK.

42 [42

	Some Notes on Definedness
	Array Assignment
	Typical Array Manipulation in a Loop
	All Zeros
	Simple Array Assignment
	Histogram
	The Dutch National Flag

